1
|
Shearer J, Wilson DF. Nature of the Nickel-Halogen Bond in NiX + Compounds (X = F, Cl, Br, I): A Multireference Configuration Interaction and Ab Initio Valence Bond Study. Inorg Chem 2024; 63:23757-23771. [PMID: 39639559 DOI: 10.1021/acs.inorgchem.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In a recent study (Inorg. Chem. 2024, 63, 11812-11820), gas-phase cationic NiX+ compounds (X = F, Cl, Br, and I) were probed by nickel L-edge XAS, from which it was concluded that NiF+ was best described as an ionic [Ni2+F-]+ complex while the remaining three compounds were described as covalent Ni(3d9)L species (L depicts a ligand-based hole). An abrupt transition from a classical to an inverted ligand field was suggested as responsible for the change in ground-state electronic structures. Herein, the NiX+ series is investigated by using MRCI and ab initio VB calculations. Nickel L-edge X-ray absorption spectra were also modeled within a ROCIS formalism. It was found that all four compounds possess normal ligand fields and nominal Ni(3d9) electron counts. Furthermore, it was found that the dominant bonding interactions in NiF+ and NiCl+ are two 2-center/3-electron (2c/3e) bonds, while in NiBr+ and NiI+ the dominant bonding interactions are one Ni-X covalent bond and one 2c/3e bond. The change in bonding interactions between NiF+/NiCl+ vs NiBr+/NiI+ was rationalized by considering the marked decrease in resonance energy that stabilizes the 2c/3e bond for the heavier halide congeners, which results from the disparity in electronegativities between the nickel-center and the heavier halides.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Devin F Wilson
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| |
Collapse
|
2
|
Leyser da Costa Gouveia T, Maganas D, Neese F. General Spin-Restricted Open-Shell Configuration Interaction Approach: Application to Metal K-Edge X-ray Absorption Spectra of Ferro- and Antiferromagnetically Coupled Dimers. J Phys Chem A 2024. [PMID: 39680653 DOI: 10.1021/acs.jpca.4c05228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this work, we present a generalized implementation of the previously developed restricted open-shell configuration interaction singles (ROCIS) family of methods. The new method allows us to treat high-spin (HS) ferro- as well as antiferromagnetically (AF) coupled systems while retaining the total spin as a good quantum number. To achieve this important and nontrivial goal, we employ the machinery of the iterative configuration expansion (ICE) method, which is able to tackle general configuration interaction (CI) problems on the basis of spin-adapted configuration state functions (CSFs). While ICE is designed to work in restricted orbital spaces, the new general-spin ROCIS (GS-ROCIS) method is designed to be applicable to larger molecules by employing a prototyping strategy. This new method can be applied to closed-shell, high-spin open-shell, as well as antiferromagnetic reference CSFs. In addition, GS-ROCIS can be combined with the pair natural orbital (PNO) machinery in the form of the PNO-GS-ROCIS method. With this extension, one can drastically reduce the required virtual space in the vicinity of the involved core orbitals, leading to computational savings of several orders of magnitude with negligible (<1%) loss in accuracy. To demonstrate the use of the new methodology, the metal K pre-edge X-ray absorption excitation problem of an antiferromagnetically coupled copper model dimer was investigated. By first analyzing a model copper dimer, it is shown that even for the minimum core excitation problem that involves the two antiferromagnetically coupled singly occupied orbitals and one virtual orbital, the resulting GS-ROCIS and broken-symmetry configuration interaction singles (BS-CIS) spectra may differ in terms of the number, energy position, and relative intensity of the computed bands. Furthermore, the methodology was validated to perform equally well in computing the K-edge spectra of antiferromagnetic nickel oxide dimers and mixed-valence cobalt oxide trimers. Collectively, the present development represents an important methodological advance in the application of theoretical X-ray spectroscopy.
Collapse
Affiliation(s)
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilheim-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilheim-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Klemeyer L, Gröne TLR, Zito CDA, Vasylieva O, Gumus Akcaalan M, Harouna-Mayer SY, Caddeo F, Steenbock T, Hussak SA, Kesavan JK, Dippel AC, Sun X, Köppen A, Saveleva VA, Kumar S, Bester G, Glatzel P, Koziej D. Utilizing High X-ray Energy Photon-In Photon-Out Spectroscopies and X-ray Scattering to Experimentally Assess the Emergence of Electronic and Atomic Structure of ZnS Nanorods. J Am Chem Soc 2024; 146:33475-33484. [PMID: 39585247 PMCID: PMC11638900 DOI: 10.1021/jacs.4c10257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The key to controlling the fabrication process of transition metal sulfide nanocrystals is to understand the reaction mechanism, especially the coordination of ligands and solvents during their synthesis. We utilize in situ high-energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) as well as in situ valence-to-core X-ray emission spectroscopy (vtc-XES) combined with density functional theory (DFT) calculations to identify the formation of a tetrahedral [Zn(OA)4]2+ and an octahedral [Zn(OA)6]2+ complex, and the ligand exchange to a tetrahedral [Zn(SOA)4]2+ complex (OA = oleylamine, OAS = oleylthioamide), during the synthesis of ZnS nanorods in oleylamine. We observe in situ the transition of the electronic structure of [Zn(SOA)4]2+ with a HOMO/LUMO gap of 5.0 eV toward an electronic band gap of 4.3 and 3.8 eV for 1.9 nm large ZnS wurtzite nanospheres and 2 × 7 nm sphalerite nanorods, respectively. Thus, we demonstrate how in situ multimodal X-ray spectroscopy and scattering studies can not only resolve structure, size, and shape during the growth and synthesis of NPs in organic solvents and at high temperature but also give direct information about their electronic structure, which is not readily accessible through other techniques.
Collapse
Affiliation(s)
- Lars Klemeyer
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Tjark L. R. Gröne
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Cecilia de Almeida Zito
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Olga Vasylieva
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Melike Gumus Akcaalan
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sani Y. Harouna-Mayer
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- The
Hamburg Center for Ultrafast Imaging, Hamburg 22761, Germany
| | - Francesco Caddeo
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Torben Steenbock
- Department
of Chemistry, University of Hamburg, HARBOR, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sarah-Alexandra Hussak
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Jagadesh Kopula Kesavan
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Ann-Christin Dippel
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - Xiao Sun
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
- Institute
of Integrated Natural Science, University
of Koblenz, Universitätsstraße
1, Koblenz 56070, Germany
| | - Andrea Köppen
- Department
of Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Viktoriia A. Saveleva
- ESRF, The
European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043, France
| | - Surender Kumar
- Department
of Chemistry, University of Hamburg, HARBOR, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Gabriel Bester
- The
Hamburg Center for Ultrafast Imaging, Hamburg 22761, Germany
- Department
of Chemistry, University of Hamburg, HARBOR, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Pieter Glatzel
- ESRF, The
European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble 38043, France
| | - Dorota Koziej
- Institute
for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- The
Hamburg Center for Ultrafast Imaging, Hamburg 22761, Germany
| |
Collapse
|
4
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Souilah C, Jannuzzi SAV, Becker FJ, Demirbas D, Jenisch D, Ivlev S, Xie X, Peredkov S, Lichtenberg C, DeBeer S, Casitas A. Synthesis of Iron(IV) Alkynylide Complexes and Their Reactivity to Form 1,3-Diynes. Angew Chem Int Ed Engl 2024:e202421222. [PMID: 39551703 DOI: 10.1002/anie.202421222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The isolation of thermally unstable and highly reactive organoiron(IV) complexes is a challenge for synthetic chemists. In particular, the number of examples where the C-based ligand is not part of the chelating ligand remains scarce. These compounds are of interest because they could pave the way to designing catalytic cycles of bond forming reactions proceeding via organoiron(IV) intermediates. Herein, we report the synthesis and characterization, including single-crystal X-ray diffraction, of a family of alkynylferrates(III) and Fe(IV) alkynylide complexes. The alkynylferrates(III) are formed by transmetalation of the Fe(III) precursor [(N3N')FeIII] (N3N'3- is tris(N-tert-butyldimethylsilyl-2-amidoethyl)amine) with lithium alkynylides, and their further one-electron oxidation enables the synthesis of the corresponding Fe(IV) alkynylides. The electronic structure of this family of organometallic Fe(III) and Fe(IV) complexes has been thoroughly investigated by spectroscopic methods (EPR, NMR, 57Fe Mössbauer, X-Ray absorption (XAS) and emission (XES) spectroscopies) and theoretical calculations. While alkynylferrates(III) are sluggish to engage into C-C bond forming processes, the Fe(IV) alkynylides react to afford 1,3-diynes at room temperature. A bimolecular reductive elimination from a bimetallic Fe(IV) intermediate to form the 1,3-diynes is proposed based on the mechanistic investigations performed.
Collapse
Affiliation(s)
- Charafa Souilah
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Felix J Becker
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Derya Demirbas
- Max-Planck-Institut für Kohlenforschung (MPI KOFO), Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Daniel Jenisch
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergei Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Alicia Casitas
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
6
|
Naranjo-Montoya OA, Bridger M, Bhar R, Kalkhoff L, Schleberger M, Wende H, Tarasevitch A, Bovensiepen U. Table-top source for x-ray absorption spectroscopy with photon energies up to 350 eV. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:103001. [PMID: 39356188 DOI: 10.1063/5.0219921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
We present a table-top setup for x-ray absorption spectroscopy (XAS) based on high harmonic generation (HHG) in noble gases. Using sub-millijoule pump pulses at a central wavelength of 1550 nm, broadband HHG in the range of 70-350 eV was demonstrated. The HHG coherence lengths of several millimeters were achieved by reaching the nonadiabatic regime of harmonic generation. Near edge x-ray absorption fine structure spectroscopy experiments on the boron K edge of a boron foil and a hexagonal boron nitride (hBN) 2D material demonstrate the capabilities of the setup. Femtosecond pulse duration makes pump-probe XAS experiments with corresponding time resolution possible.
Collapse
Affiliation(s)
- O A Naranjo-Montoya
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - M Bridger
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - R Bhar
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - L Kalkhoff
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - M Schleberger
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - H Wende
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - A Tarasevitch
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | - U Bovensiepen
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Castillo R, Van Kuiken BE, Weyhermüller T, DeBeer S. Experimentally Assessing the Electronic Structure and Spin-State Energetics in MnFe Dimers Using 1s3p Resonant Inelastic X-ray Scattering. Inorg Chem 2024; 63:18468-18483. [PMID: 39282749 PMCID: PMC11445731 DOI: 10.1021/acs.inorgchem.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
The synergistic interaction between Mn and Fe centers is investigated via a comprehensive analysis of full 1s3p resonant inelastic X-ray scattering (RIXS) planes at both the Fe and Mn K-edges in a series of homo- and heterometallic molecular systems. Deconvolution of the experimental two-dimensional 1s3p RIXS maps provides insights into the modulation of metal-ligand covalency and variations in the metal multiplet structure induced by subtle electronic structural differences imposed by the presence of the second metal. These modulations in the electronic structure are key toward understanding the reactivity of biological systems with active sites that require heterometallic centers, including MnFe purple acid phosphatases and MnFe ribonucleotide reductases. Herein, we demonstrate the capabilities of 1s3p RIXS to provide information on the excited state energetics in both element- and spin-selective fashion. The contributing excited states are identified and isolated by their multiplicity and π- and σ-contributions, building a conceptual bridge between the electronic structures of metal centers and their reactivity. The ability of the presented 1s3p RIXS methodology to address fundamental questions in transition metal catalysis reactivity is highlighted.
Collapse
Affiliation(s)
- Rebeca
G. Castillo
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | | | - Thomas Weyhermüller
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
8
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Rana A, Peredkov S, Behrens M, DeBeer S. Probing the Local Environment in Potassium Salts and Potassium-Promoted Catalysts by Potassium Valence-to-Core X-ray Emission Spectroscopy. Inorg Chem 2024; 63:16217-16223. [PMID: 39162299 PMCID: PMC11372750 DOI: 10.1021/acs.inorgchem.4c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Potassium plays an important role in biology as well as a promoter in heterogeneous catalysis. There are, however, limited characterization techniques for potassium available in the literature. This study elucidates the potential of element-selective X-ray emission spectroscopy (XES) for characterizing the coordination environment and the electronic properties of potassium. A series of XES measurements were conducted, primarily focusing on the VtC transition (Kβ2,5) of potassium halides (KCl, KBr, and KI) and oxide-bound potassium salts, including potassium nitrate (KNO3) and potassium carbonate (K2CO3). Across the series of potassium halides, the VtC transition energy is observed to increase, as accurately reproduced by TDDFT calculations. Molecular orbital analysis suggests that the Kβ2,5 transition is primarily derived from halide np contributions, with the primary factor influencing the energy shift being the metal-ligand distances. For oxide ligands, an additional Kβ″ transition appears alongside the Kβ2,5, which is attributed to a low-energy ligand ns, as elucidated by theoretical calculations. Finally, the XES spectra of two potassium-promoted catalysts for ammonia decomposition/synthesis were measured. These spectra show that potassium within the catalyst is distinct from other K salts in the VtC region, which could be promising for understanding the role of potassium as an electronic promoter.
Collapse
Affiliation(s)
- Atanu Rana
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Malte Behrens
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Roemelt C, Peredkov S, Neese F, Roemelt M, DeBeer S. Valence-to-core X-ray emission spectroscopy of transition metal tetrahalides: mechanisms governing intensities. Phys Chem Chem Phys 2024; 26:19960-19975. [PMID: 38994715 DOI: 10.1039/d4cp00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Valence-to-core (VtC) X-ray emission spectroscopy offers the opportunity to probe the valence electronic structure of a system filtered by selection rules. From this, the nature of its ligands can be inferred. While a preceding 1s ionization creates a core hole, in VtC XES this core hole is filled with electrons from mainly ligand based orbitals. In this work, we investigated the trends in the observed VtC intensities for a series of transition metal halides, which spans the first row transition metals from manganese to copper. Further, with the aid of computational studies, we corroborated these trends and identified the mechanisms and factors that dictate the observed intensity trends. Small amounts of metal p contribution to the ligand orbitals are known to give rise to intensity of a VtC transition. By employing an LCAO (linear combination of atomic orbitals) approach, we were able to assess the amount of metal p contribution to the ligand molecular orbitals, as well as the role of the transition dipole moment and correlate these factors to the experimentally observed intensities. Finally, by employing an ano (atomic natural orbital) basis set within the calculations, the nature of the metal p contribution (3p vs. 4p) was qualitatively assessed and their trends discussed within the same transition metal halide series.
Collapse
Affiliation(s)
- Christina Roemelt
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Michael Roemelt
- Humboldt University Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
11
|
Guo M, Temperton R, D'Acunto G, Johansson N, Jones R, Handrup K, Ringelband S, Prakash O, Fan H, de Groot LHM, Hlynsson VF, Kaufhold S, Gordivska O, Velásquez González N, Wärnmark K, Schnadt J, Persson P, Uhlig J. Using Iron L-Edge and Nitrogen K-Edge X-ray Absorption Spectroscopy to Improve the Understanding of the Electronic Structure of Iron Carbene Complexes. Inorg Chem 2024; 63:12457-12468. [PMID: 38934422 PMCID: PMC11234367 DOI: 10.1021/acs.inorgchem.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Iron-centered N-heterocyclic carbene compounds have attracted much attention in recent years due to their long-lived excited states with charge transfer (CT) character. Understanding the orbital interactions between the metal and ligand orbitals is of great importance for the rational tuning of the transition metal compound properties, e.g., for future photovoltaic and photocatalytic applications. Here, we investigate a series of iron-centered N-heterocyclic carbene complexes with +2, + 3, and +4 oxidation states of the central iron ion using iron L-edge and nitrogen K-edge X-ray absorption spectroscopy (XAS). The experimental Fe L-edge XAS data were simulated and interpreted through restricted-active space (RAS) and multiplet calculations. The experimental N K-edge XAS is simulated and compared with time-dependent density functional theory (TDDFT) calculations. Through the combination of the complementary Fe L-edge and N K-edge XAS, direct probing of the complex interplay of the metal and ligand character orbitals was possible. The σ-donating and π-accepting capabilities of different ligands are compared, evaluated, and discussed. The results show how X-ray spectroscopy, together with advanced modeling, can be a powerful tool for understanding the complex interplay of metal and ligand.
Collapse
Affiliation(s)
- Meiyuan Guo
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | | | - Giulio D'Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
- Department of Chemical Engineering, Stanford University, 94305 Stanford, California, United States
| | | | - Rosemary Jones
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | | | - Sven Ringelband
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Om Prakash
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Hao Fan
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Lisa H M de Groot
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Valtýr Freyr Hlynsson
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Simon Kaufhold
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Olga Gordivska
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | | | - Kenneth Wärnmark
- NanoLund, Lund University, 22100 Lund, Sweden
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | - Petter Persson
- NanoLund, Lund University, 22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-Ray Science, Lund University, 22370 Lund, Sweden
| |
Collapse
|
12
|
Leyser da Costa Gouveia T, Maganas D, Neese F. Restricted Open-Shell Hartree-Fock Method for a General Configuration State Function Featuring Arbitrarily Complex Spin-Couplings. J Phys Chem A 2024; 128:5041-5053. [PMID: 38886177 PMCID: PMC11215774 DOI: 10.1021/acs.jpca.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
In this work, we present a general spin restricted open-shell Hartree-Fock (ROHF) implementation that is able to generate self-consistent field (SCF) wave functions for an arbitrary configuration state function (CSF). These CSFs can contain an arbitrary number of unpaired electrons in arbitrary spin-couplings. The resulting method is named CSF-ROHF. We demonstrate that starting from the ROHF energy expression, for example, the one given by Edwards and Zerner, it is possible to obtain the values of the ROHF vector-coupling coefficients by setting up an open-shell for each group of consecutive parallel-coupled spins dictated by the unique spin-coupling pattern of any given CSF. To achieve this important and nontrivial goal, we employ the machinery of the iterative configuration expansion configuration interaction (ICE-CI) method, which is able to tackle general CI problems on the basis of spin-adapted CSFs. This development allows for the efficient generation of SCF spin-eigenfunctions for systems with complex spin-coupling patterns, such as polymetallic chains and metal clusters, while maintaining SCF scaling with system size (quadratic or less, depending on the specific algorithm and approximations chosen).
Collapse
Affiliation(s)
| | - Dimitrios Maganas
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
13
|
Munzone A, Pujol M, Tamhankar A, Joseph C, Mazurenko I, Réglier M, Jannuzzi SAV, Royant A, Sicoli G, DeBeer S, Orio M, Simaan AJ, Decroos C. Integrated Experimental and Theoretical Investigation of Copper Active Site Properties of a Lytic Polysaccharide Monooxygenase from Serratia marcescens. Inorg Chem 2024; 63:11063-11078. [PMID: 38814816 DOI: 10.1021/acs.inorgchem.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this paper, we employed a multidisciplinary approach, combining experimental techniques and density functional theory (DFT) calculations to elucidate key features of the copper coordination environment of the bacterial lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens (SmAA10). The structure of the holo-enzyme was successfully obtained by X-ray crystallography. We then determined the copper(II) binding affinity using competing ligands and observed that the affinity of the histidine brace ligands for copper is significantly higher than previously described. UV-vis, advanced electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) techniques, including high-energy resolution fluorescence detected (HERFD) XAS, were further used to gain insight into the copper environment in both the Cu(II) and Cu(I) redox states. The experimental data were successfully rationalized by DFT models, offering valuable information on the electronic structure and coordination geometry of the copper center. Finally, the Cu(II)/Cu(I) redox potential was determined using two different methods at ca. 350 mV vs NHE and rationalized by DFT calculations. This integrated approach not only advances our knowledge of the active site properties of SmAA10 but also establishes a robust framework for future studies of similar enzymatic systems.
Collapse
Affiliation(s)
- Alessia Munzone
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Manon Pujol
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Ashish Tamhankar
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Chris Joseph
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
- European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Giuseppe Sicoli
- LASIRE UMR CNRS 8516, Université de Lille, Villeneuve-d'Arcy 59655, France
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Christophe Decroos
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
- Department of Integrative Structural Biology, Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67400, France
| |
Collapse
|
14
|
Ding Z, Chen S, Yang T, Sheng Z, Zhang X, Pei C, Fu D, Zhao ZJ, Gong J. Atomically dispersed MoNi alloy catalyst for partial oxidation of methane. Nat Commun 2024; 15:4636. [PMID: 38821951 PMCID: PMC11143339 DOI: 10.1038/s41467-024-49038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
The catalytic partial oxidation of methane (POM) presents a promising technology for synthesizing syngas. However, it faces severe over-oxidation over catalyst surface. Attempts to modify metal surfaces by incorporating a secondary metal towards C-H bond activation of CH4 with moderate O* adsorption have remained the subject of intense research yet challenging. Herein, we report that high catalytic performance for POM can be achieved by the regulation of O* occupation in the atomically dispersed (AD) MoNi alloy, with over 95% CH4 conversion and 97% syngas selectivity at 800 °C. The combination of ex-situ/in-situ characterizations, kinetic analysis and DFT (density functional theory) calculations reveal that Mo-Ni dual sites in AD MoNi alloy afford the declined O2 poisoning on Ni sites with rarely weaken CH4 activation for partial oxidation pathway following the combustion reforming reaction (CRR) mechanism. These results underscore the effectiveness of CH4 turnovers by the design of atomically dispersed alloys with tunable O* adsorption.
Collapse
Affiliation(s)
- Zheyuan Ding
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Tingting Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Zunrong Sheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Xianhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| |
Collapse
|
15
|
Geoghegan BL, Bilyj JK, Bernhardt PV, DeBeer S, Cutsail GE. X-ray absorption and emission spectroscopy of N 2S 2 Cu(II)/(III) complexes. Dalton Trans 2024; 53:7828-7838. [PMID: 38624161 DOI: 10.1039/d4dt00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kβ valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.
Collapse
Affiliation(s)
- Blaise L Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, UK
| | - Jessica K Bilyj
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
16
|
Peredkov S, Pereira N, Grötzsch D, Hendel S, Wallacher D, DeBeer S. PINK: a tender X-ray beamline for X-ray emission spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:622-634. [PMID: 38662410 PMCID: PMC11075709 DOI: 10.1107/s1600577524002200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kβ lines) and Zr to Ag (Lα, Lβ), as well as light elements including P, S, Cl, K and Ca (Kα, Kβ). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30-80) provides a high photon flux (1014 photons s-1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000-40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.
Collapse
Affiliation(s)
- Sergey Peredkov
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| | - Nilson Pereira
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| | - Daniel Grötzsch
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstrasse 36, Berlin, Germany
| | - Stefan Hendel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Wandzilak A, Grubel K, Skubi KL, McWilliams SF, Bessas D, Rana A, Hugenbruch S, Dey A, Holland PL, DeBeer S. Mössbauer and Nuclear Resonance Vibrational Spectroscopy Studies of Iron Species Involved in N-N Bond Cleavage. Inorg Chem 2023; 62:18449-18464. [PMID: 37902987 PMCID: PMC10647920 DOI: 10.1021/acs.inorgchem.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 11/01/2023]
Abstract
Diketiminate-supported iron complexes are capable of cleaving the strong triple bond of N2 to give a tetra-iron complex with two nitrides (Rodriguez et al., Science, 2011, 334, 780-783). The mechanism of this reaction has been difficult to determine, but a transient green species was observed during the reaction that corresponds to a potential intermediate. Here, we describe studies aiming to identify the characteristics of this intermediate, using a range of spectroscopic techniques, including Mössbauer spectroscopy, electronic absorption spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and nuclear resonance vibrational spectroscopy (NRVS) complemented by density functional theory (DFT) calculations. We successfully elucidated the nature of the starting iron(II) species and the bis(nitride) species in THF solution, and in each case, THF breaks up the multiiron species. Various observations on the green intermediate species indicate that it has one N2 per two Fe atoms, has THF associated with it, and has NRVS features indicative of bridging N2. Computational models with a formally diiron(0)-N2 core are most consistent with the accumulated data, and on this basis, a mechanism for N2 splitting is suggested. This work shows the power of combining NRVS, Mössbauer, NMR, and vibrational spectroscopies with computations for revealing the nature of transient iron species during N2 cleavage.
Collapse
Affiliation(s)
- Aleksandra Wandzilak
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
- Faculty
of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow 30-059, Poland
| | - Katarzyna Grubel
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kazimer L. Skubi
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department
of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Sean F. McWilliams
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dimitrios Bessas
- European
Synchrotron Radiation Facility, Grenoble F-38043, France
| | - Atanu Rana
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
- School of
Chemical Science, Indian Association for
the Cultivation of Science, Kolkata 700032, India
| | - Stefan Hugenbruch
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Abhishek Dey
- School of
Chemical Science, Indian Association for
the Cultivation of Science, Kolkata 700032, India
| | - Patrick L. Holland
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
19
|
Gao Y, Thakur N, Uchiyama T, Cao W, Yamamoto K, Watanabe T, Kumar M, Sato R, Teranishi T, Imai H, Sakurai Y, Uchimoto Y. Investigating Degradation Mechanisms in PtCo Alloy Catalysts: The Role of Co Content and a Pt-Rich Shell Using Operando High-Energy Resolution Fluorescence Detection X-ray Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37908070 DOI: 10.1021/acsami.3c11248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Low Pt-based alloy catalysts are regarded as an efficient strategy in achieving high activity for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs). However, the desired durability for the low Pt-based catalysts, such as the Pt1Co3 catalyst, has still been considered a great challenge for PEMFCs. In this study, we investigate sub-2.5 nm PtxCoy alloy catalysts with varying Co content and Pt1Co3@Pt core-shell (CS) nanostructure catalysts obtained through a simple displacement reaction. The Pt1Co3@Pt_H catalysts showed a high mass activity (MA) of 1.46 A/mgPt at 0.9 V and 14% MA loss after 10k accelerated degradation test (ADT) cycles, which suggested the improved stability compared with Pt1Co3 catalysts (52% MA loss). To clarify the degradation mechanism, operando high-energy resolution fluorescence detection X-ray absorption spectroscopy (XAS) was applied in addition to conventional advanced measurement techniques, including operando conventional XAS, to analyze the electronic state and structure changes during operation potentials. We found that introducing Co improves the catalysts' activity mainly from the strain effect, but an excessive amount of Co leads to increased Pt-oxidation, which accelerates the degradation of the catalysts. The Pt1Co3@Pt_H catalyst shows high tolerance to Pt-oxidation, benefiting both the stability and activity. Our findings demonstrate an in-depth understanding of the degradation mechanism and the importance of designing PtCo CS nanostructures with optimal Co content for enhanced performance in PEMFCs.
Collapse
Affiliation(s)
- Yunfei Gao
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Neha Thakur
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Weijie Cao
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kentaro Yamamoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Watanabe
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mukesh Kumar
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideto Imai
- Fuel Cell Cutting-Edge Research Center Technology Research Association, Aomi, Koto, Tokyo 135-0064, Japan
| | - Yoshiharu Sakurai
- Japan Synchrotron Radiation Research Institute (JASRI), Koto, Sayo, Hyogo 679-5198, Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Wang J, Hsu CS, Wu TS, Chan TS, Suen NT, Lee JF, Chen HM. In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat Commun 2023; 14:6576. [PMID: 37852958 PMCID: PMC10584842 DOI: 10.1038/s41467-023-42370-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Realizing viable electrocatalytic processes for energy conversion/storage strongly relies on an atomic-level understanding of dynamic configurations on catalyst-electrolyte interface. X-ray absorption spectroscopy (XAS) has become an indispensable tool to in situ investigate dynamic natures of electrocatalysts but still suffers from limited energy resolution, leading to significant electronic transitions poorly resolved. Herein, we highlight advanced X-ray spectroscopies beyond conventional XAS, with emphasis on their unprecedented capabilities of deciphering key configurations of electrocatalysts. The profound complementarities of X-ray spectroscopies from various aspects are established in a probing energy-dependent "in situ spectroscopy map" for comprehensively understanding the solid-liquid interface. This perspective establishes an indispensable in situ research model for future studies and offers exciting research prospects for scientists and spectroscopists.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
21
|
Kotobi A, Singh K, Höche D, Bari S, Meißner RH, Bande A. Integrating Explainability into Graph Neural Network Models for the Prediction of X-ray Absorption Spectra. J Am Chem Soc 2023; 145:22584-22598. [PMID: 37807700 PMCID: PMC10591337 DOI: 10.1021/jacs.3c07513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 10/10/2023]
Abstract
The use of sophisticated machine learning (ML) models, such as graph neural networks (GNNs), to predict complex molecular properties or all kinds of spectra has grown rapidly. However, ensuring the interpretability of these models' predictions remains a challenge. For example, a rigorous understanding of the predicted X-ray absorption spectrum (XAS) generated by such ML models requires an in-depth investigation of the respective black-box ML model used. Here, this is done for different GNNs based on a comprehensive, custom-generated XAS data set for small organic molecules. We show that a thorough analysis of the different ML models with respect to the local and global environments considered in each ML model is essential for the selection of an appropriate ML model that allows a robust XAS prediction. Moreover, we employ feature attribution to determine the respective contributions of various atoms in the molecules to the peaks observed in the XAS spectrum. By comparing this peak assignment to the core and virtual orbitals from the quantum chemical calculations underlying our data set, we demonstrate that it is possible to relate the atomic contributions via these orbitals to the XAS spectrum.
Collapse
Affiliation(s)
- Amir Kotobi
- Helmholtz-Zentrum
Hereon, Institute of Surface
Science, Geesthacht, DE 21502, Germany
| | - Kanishka Singh
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Berlin, DE 10409, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Berlin, DE 14195, Germany
| | - Daniel Höche
- Helmholtz-Zentrum
Hereon, Institute of Surface
Science, Geesthacht, DE 21502, Germany
| | - Sadia Bari
- Deutsches
Elektronen-Synchrotron DESY, Hamburg, DE 22607, Germany
- Zernike
Institute for Advanced Materials, University
of Groningen, Groningen 9712, Netherlands
| | - Robert H. Meißner
- Helmholtz-Zentrum
Hereon, Institute of Surface
Science, Geesthacht, DE 21502, Germany
- Hamburg
University of Technology, Institute of Polymers
and Composites, Hamburg, DE 21073, Germany
| | - Annika Bande
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Berlin, DE 10409, Germany
- Leibniz
University Hannover, Institute of Inorganic
Chemistry, Hannover, DE 30167, Germany
| |
Collapse
|
22
|
Peters S, Kunkel B, Cakir CT, Kabelitz A, Witte S, Bernstein T, Bartling S, Radtke M, Emmerling F, Abdel-Mageed AM, Wohlrab S, Guilherme Buzanich A. Time-, space- and energy-resolved in situ characterization of catalysts by X-ray absorption spectroscopy. Chem Commun (Camb) 2023; 59:12120-12123. [PMID: 37743795 DOI: 10.1039/d3cc03277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A setup for dispersive X-ray absorption spectroscopy (XAS) with spatial, temporal and energy resolution is presented. Through investigation of a Mo/HZSM-5 catalyst during the dehydroaromatization of methane we observed a reduction gradient along the packed bed. Our new method represents an unprecedented addition to the analytical toolbox for in situ characterizations.
Collapse
Affiliation(s)
- Stefan Peters
- Leibniz Institute for Catalysis (LIKAT Rostock), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Benny Kunkel
- Leibniz Institute for Catalysis (LIKAT Rostock), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Cafer Tufan Cakir
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, Berlin 12489, Germany.
| | - Anke Kabelitz
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, Berlin 12489, Germany.
| | - Steffen Witte
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, Berlin 12489, Germany.
| | - Thomas Bernstein
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, Berlin 12489, Germany.
| | - Stephan Bartling
- Leibniz Institute for Catalysis (LIKAT Rostock), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Martin Radtke
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, Berlin 12489, Germany.
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, Berlin 12489, Germany.
| | - Ali Mohamed Abdel-Mageed
- Leibniz Institute for Catalysis (LIKAT Rostock), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Sebastian Wohlrab
- Leibniz Institute for Catalysis (LIKAT Rostock), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
| | - Ana Guilherme Buzanich
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, Berlin 12489, Germany.
| |
Collapse
|
23
|
Gómez-Suárez A, Neumann CN. Stereochemistry in All Its Shapes and Forms: The 56 th Bürgenstock Conference. Angew Chem Int Ed Engl 2023; 62:e202309468. [PMID: 37590448 DOI: 10.1002/anie.202309468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
Collapse
Affiliation(s)
- Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
24
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
25
|
Liu Y, Chatterjee S, Cutsail GE, Peredkov S, Gupta SK, Dechert S, DeBeer S, Meyer F. Cu 4S Cluster in "0-Hole" and "1-Hole" States: Geometric and Electronic Structure Variations for the Active Cu Z* Site of N 2O Reductase. J Am Chem Soc 2023; 145:18477-18486. [PMID: 37565682 PMCID: PMC10450684 DOI: 10.1021/jacs.3c04893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/12/2023]
Abstract
The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique μ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(μ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(μ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(μ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(μ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central μ4-S in the fully reduced 0-hole state.
Collapse
Affiliation(s)
- Yang Liu
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sayanti Chatterjee
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Sergey Peredkov
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Sandeep K. Gupta
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Lim H, Brueggemeyer MT, Transue WJ, Meier KK, Jones SM, Kroll T, Sokaras D, Kelemen B, Hedman B, Hodgson KO, Solomon EI. Kβ X-ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for H 2O 2 Activation. J Am Chem Soc 2023; 145:16015-16025. [PMID: 37441786 PMCID: PMC10557184 DOI: 10.1021/jacs.3c04048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d10 Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the H2O2 O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with H2O2.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Wesley J Transue
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Katlyn K Meier
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Bradley Kelemen
- IFF Health and Biosciences, Palo Alto, California 94304, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
27
|
Han J, Guan J. Heteronuclear dual-metal atom catalysts for nanocatalytic tumor therapy. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
28
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
29
|
Mendoza D, Dong ST, Lassalle-Kaiser B. In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: status and perspectives. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Ross RD, Sheng H, Ding Y, Janes AN, Feng D, Schmidt JR, Segre CU, Jin S. Operando Elucidation of Electrocatalytic and Redox Mechanisms on a 2D Metal Organic Framework Catalyst for Efficient Electrosynthesis of Hydrogen Peroxide in Neutral Media. J Am Chem Soc 2022; 144:15845-15854. [PMID: 35985015 DOI: 10.1021/jacs.2c06810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The practical electrosynthesis of hydrogen peroxide (H2O2) is hindered by the lack of inexpensive and efficient catalysts for the two-electron oxygen reduction reaction (2e- ORR) in neutral electrolytes. Here, we show that Ni3HAB2 (HAB = hexaaminobenzene), a two-dimensional metal organic framework (MOF), is a selective and active 2e- ORR catalyst in buffered neutral electrolytes with a linker-based redox feature that dynamically affects the ORR behaviors. Rotating ring-disk electrode measurements reveal that Ni3HAB2 has high selectivity for 2e- ORR (>80% at 0.6 V vs RHE) but lower Faradaic efficiency due to this linker redox process. Operando X-ray absorption spectroscopy measurements reveal that under argon gas the charging of the organic linkers causes a dynamic Ni oxidation state, but in O2-saturated conditions, the electronic and physical structures of Ni3HAB2 change little and oxygen-containing species strongly adsorb at potentials more cathodic than the reduction potential of the organic linker (Eredox ∼ 0.3 V vs RHE). We hypothesize that a primary 2e- ORR mechanism occurs directly on the organic linkers (rather than the Ni) when E > Eredox, but when E < Eredox, H2O2 production can also occur through Ni-mediated linker discharge. By operating the bulk electrosynthesis at a low overpotential (0.4 V vs RHE), up to 662 ppm of H2O2 can be produced in a buffered neutral solution in an H-cell due to minimized strong adsorption of oxygenates. This work demonstrates the potential of conductive MOF catalysts for 2e- ORR and the importance of understanding catalytic active sites under electrochemical operation.
Collapse
Affiliation(s)
- R Dominic Ross
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yujia Ding
- Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Aurora N Janes
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dawei Feng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Carlo U Segre
- Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|