1
|
Mannu P, Dharman RK, Nga TTT, Mariappan A, Shao YC, Ishii H, Huang YC, Kandasami A, Oh TH, Chou WC, Chen CL, Chen JL, Dong CL. Tuning of Oxygen Vacancies in Co 3O 4 Electrocatalyst for Effectiveness in Urea Oxidation and Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403744. [PMID: 39434462 DOI: 10.1002/smll.202403744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/30/2024] [Indexed: 10/23/2024]
Abstract
The development of an excellent multifunctional electrocatalyst that is based on non-precious metal is critical for improving the electrochemical processes of the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the urea oxidation reaction (UOR) in alkaline media. This study demonstrates that incorporating Mo into Co3O4 facilitated the formation of rich oxygen vacancies (Vo), which promotes effective nitrate adsorption and activation in urea electrolysis. Subsequently, in situ/operando X-ray absorption spectroscopy is used to explore the active sites in Mo-Co3O4-3 under OER, indicating the oxygen vacancies are first filled with OH• in Mo-Co3O4; facilitated the pre-oxidation of low-valence Co, and promoted the reconstruction/deprotonation of intermediate Co-OOH•. Mo-Co3O4-3 electrocatalysts show impressive HER, OER, and UOR with low overpotentials of 141 mV, 220 mV, and 1.32 V, respectively, at 10 mA cm-2 in an alkaline medium. Furthermore, in situ/Operando Raman spectroscopy results reveal the importance of CoOOH active sites for enhanced electrochemical performance in Mo-Co3O4-3 compared to the pure Co3O4. The urea electrolyzer with Mo-Co3O4 electrocatalysts acts as an anode and the cathode delivers 1.42 V at 10 mA cm-2. A viable approach to creating effective UOR electrocatalysts involves synergistic engineering exploiting doping and oxygen vacancies.
Collapse
Affiliation(s)
- Pandian Mannu
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | | | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Athibala Mariappan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Yu-Cheng Shao
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hirofumi Ishii
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Asokan Kandasami
- Department of Physics & Centre for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chi-Liang Chen
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Jeng-Lung Chen
- Spring-8 Group & Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| |
Collapse
|
2
|
Yuan J, Cheng K, Qi H, Tu B, Liu R, Xiong C, Qiu P. Boost Electrocatalytic Activity of La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ Air Electrode Prepared by High-Temperature Shock for Solid Oxide Electrochemical Cells. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39370640 DOI: 10.1021/acsami.4c10925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
High-temperature shock (HTS) is an emerging material synthesis technology with advantages, such as rapid processing, low energy consumption, and high controllability. This technology can prepare ultrafine nanoparticles with uniform particle size distribution and introduce additional oxygen vacancies, offering significant potential for the preparation of key materials for solid oxide electrochemical cells (SOCs). In this study, the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) air electrode was successfully prepared using HTS technology. Compared to the conventional muffle furnace calcination, the HTS-prepared LSCF exhibits a larger specific surface area and a higher oxygen vacancy concentration, and it demonstrates significant improvements in performance. The oxygen ion conducting SOC (O-SOC) with the HTS-LSCF air electrode achieved a peak power density (PPD) of 960 mW cm-2 and a current density of 0.38 A cm-2 (at 1.3 V) at 700 °C. Meanwhile, the proton conducting SOC (P-SOC) with HTS-LSCF air electrode reached a PPD value of 1.34 W cm-2 and a current density of 3.43 A cm-2 (at 1.3 V) at 700 °C. Additionally, the P-SOC with HTS-LSCF air electrode showed no significant degradation during over 200 h of long-term testing, reflecting the excellent stability of HTS-LSCF. This work provides a fast, efficient, and economical approach for synthesizing high-performance, high-stability SOC air electrode materials.
Collapse
Affiliation(s)
- Jiazheng Yuan
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Kun Cheng
- State Grid Henan DC Center, Zhengzhou 450000, China
| | - Huiying Qi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Baofeng Tu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Rui Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chunyan Xiong
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Peng Qiu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
3
|
Zhang R, Han Y, Wu Q, Lu M, Liu G, Guo Z, Zhang Y, Zeng J, Wu X, Zhang D, Wu L, Song N, Yuan P, Du A, Huang K, Chen J, Yao X. Electron Accumulation Induced by Electron Injection-Incomplete Discharge on NiFe LDH for Enhanced Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402397. [PMID: 38634268 DOI: 10.1002/smll.202402397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Optimizing the local electronic structure of electrocatalysts can effectively lower the energy barrier of electrochemical reactions, thus enhancing the electrocatalytic activity. However, the intrinsic contribution of the electronic effect is still experimentally unclear. In this work, the electron injection-incomplete discharge approach to achieve the electron accumulation (EA) degree on the nickel-iron layered double hydroxide (NiFe LDH) is proposed, to reveal the intrinsic contribution of EA toward oxygen evolution reaction (OER). Such NiFe LDH with EA effect results in only 262 mV overpotential to reach 50 mA cm-2, which is 51 mV-lower compared with pristine NiFe LDH (313 mV), and reduced Tafel slope of 54.8 mV dec-1 than NiFe LDH (107.5 mV dec-1). Spectroscopy characterizations combined with theoretical calculations confirm that the EA near concomitant Vo can induce a narrower energy gap and lower thermodynamic barrier to enhance OER performance. This study clarifies the mechanism of the EA effect on OER activity, providing a direct electronic structure modulation guideline for effective electrocatalyst design.
Collapse
Affiliation(s)
- Rongrong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yun Han
- Queensland Micro- and Nanotechnology Centre, School of Engineering and Built Environment, Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Qilong Wu
- IPRI, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Guangsheng Liu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Zhangtao Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Pei Yuan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology Gardens Point Campus, Brisbane, 4001, Australia
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun Chen
- IPRI, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Advanced Energy and IGCME, Shenzhen Campus, Sun Yat-Sen University (SYSU), Shenzhen, Guangdong, 518100, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| |
Collapse
|
4
|
Zhong K, Sun P, Xu H. Advances in Defect Engineering of Metal Oxides for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310677. [PMID: 38686700 DOI: 10.1002/smll.202310677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Photocatalytic CO2 reduction technology, capable of converting low-density solar energy into high-density chemical energy, stands as a promising approach to alleviate the energy crisis and achieve carbon neutrality. Semiconductor metal oxides, characterized by their abundant reserves, good stability, and easily tunable structures, have found extensive applications in the field of photocatalysis. However, the wide bandgap inherent in metal oxides contributes to their poor efficiency in photocatalytic CO2 reduction. Defect engineering presents an effective strategy to address these challenges. This paper reviews the research progress in defect engineering to enhance the photocatalytic CO2 reduction performance of metal oxides, summarizing defect classifications, preparation methods, and characterization techniques. The focus is on defect engineering, represented by vacancies and doping, for improving the performance of metal oxide photocatalysts. This includes advancements in expanding the photoresponse range, enhancing photogenerated charge separation, and promoting CO2 molecule activation. Finally, the paper provides a summary of the current issues and challenges faced by defect engineering, along with a prospective outlook on the future development of photocatalytic CO2 reduction technology.
Collapse
Affiliation(s)
- Kang Zhong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Peipei Sun
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
5
|
Zeng Y, Zhuo Q, Pan J, Lan Y, Dai L, Guan B. Switching reactive oxygen species reactions derived from Mn-Pt anchored zeolite for selective catalytic ozonation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123747. [PMID: 38460590 DOI: 10.1016/j.envpol.2024.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Rationally switching reactive oxygen species (ROS) reactions in advanced oxidation processes (AOPs) is urgently needed to improve the adaptability and efficiency for the engineering application. Herein we synthesized bimetallic Mn-Pt catalysts based on zeolite to realize the switching of ROS reactions in catalytic ozonation for sustainable degradation of organic pollutants from water. The ROS reactions switched from singlet oxygen (1O2, 71.01%) to radical-dominated (93.79%) pathway by simply introducing defects and changing Pt/Mn ratios. The oxygen vacancy induced by anchoring Mn-Pt species from zeolite external surface (MnPt/H-Beta) to internal framework (MnPt@Si-Beta) exposes more electron-rich Pt2+/Pt4+ redox sites, accelerating the decomposition of O3 to generate •OH via electron transfer and switching ROS reactions. The Mn site acted as a bridge plays a critical role in conducting electrons from organic pollutants to Pt sites, which solidly solves the electron loss of catalysts, facilitating the efficient degradation of pollutants. A 34.7-fold increase in phenol degradation compared with the non-catalytic ozonation and an excellent catalytic stability are achieved by MnPt@Si-Beta/O3. The 1O2-dominated ROS reaction originated from MnPt/H-Beta/O3 exhibits superior performances in anti-interference for Cl-, HCO3-, NO3-, and SO4-. This work establishes a novel strategy for switching ROS reactions to expand the targeted applications of O3 based AOPs for environmental remediation.
Collapse
Affiliation(s)
- Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qizheng Zhuo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Lan
- Zhejiang Zheda Qiushi Property Management Co., Ltd., Logistics Group, Zhejiang University, Hangzhou, 310058, China
| | - Liyan Dai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Wang Q, Wu Z, Wang R, Tang M, Lu S, Cai T, Qiu J, Jin J, Peng Y. New mechanistic insight into catalytic decomposition of dioxins over MnO x-CeO 2/TiO 2 catalysts: A combined experimental and density functional theory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170911. [PMID: 38354796 DOI: 10.1016/j.scitotenv.2024.170911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Elucidation of the catalytic decomposition mechanism of dioxins is pivotal in developing highly efficient dioxin degradation catalysts. In order to accurately simulate the whole molecular structure of dioxins, two model compounds, o-dichlorobenzene (o-DCB) and furan, were employed to represent the chlorinated benzene ring and oxygenated central ring within a dioxin molecule, respectively. Experiments and Density Functional Theory (DFT) calculations were combined to investigate the adsorption as well as oxidation of o-DCB and furan over MnOx-CeO2/TiO2 catalyst (denoted as MnCe/Ti). The results indicate that competitive adsorption exists between furan and o-DCB. The former exhibits superior adsorption capacity on MnCe/Ti catalyst at 100 °C - 150 °C, for it can adsorb on both surface metal atom and surface oxygen vacancies (Ov) via its O-terminal; while the latter adsorbs primarily by anchoring its Cl atom to surface Ov. Regarding oxidation, furan can be completely oxidized at 150 °C - 300 °C with a high CO2 selectivity (above 80 %). However, o-DCB cannot be totally oxidized and the resulting intermediates cause the deactivation of catalyst. Interestingly, the pre-adsorption of furan on catalyst surface can facilitate the catalytic oxidation of o-DCB below 200 °C, possibly because the dissociated adsorption of furan may form additional reactive oxygen species on catalyst surface. Therefore, this work provides new insights into the catalytic decomposition mechanism of dioxins as well as the optimization strategies for developing dioxin-degradation catalysts with high efficiency at low temperature.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhihao Wu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rui Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China; Research Institute of Zhejiang University-Taizhou, Taizhou 318012, Zhejiang, China.
| | - Tianyi Cai
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Juan Qiu
- Research Institute of Zhejiang University-Taizhou, Taizhou 318012, Zhejiang, China
| | - Jing Jin
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yaqi Peng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Dai F, Liu N, Bai Z, Wang C, Cao J, Shi M. Insight into high-performance of La-Ce-MnOx oxides with different calcination temperatures for diesel soot combustion. ENVIRONMENTAL TECHNOLOGY 2024; 45:306-314. [PMID: 35924754 DOI: 10.1080/09593330.2022.2109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2024]
Abstract
A series of La-Ce-MnOx catalysts derived from the precipitation of acetate salt and ammonium carbonate were calcined at different temperatures and applied for the catalytic oxidation of soot from diesel exhausts. The structure states of the as-prepared catalysts and catalytic behaviour for soot oxidation were studied by many characterization techniques such as XRD, XANES, N2 adsorption-desorption, TPR, O2-TPD, XPS and TGA. XANES results display most Mn species are Mn4+ when the samples are calcined at 500 and 600°C. However, for MCLa-700 and MCLa-800 catalysts, the predominance valence is 3+ ions. The MCLa-500 and MCLa-600 catalysts possess higher concentrations of surface active oxygen evidenced by H2-TPR and soot-TPR. Therefore, the combustion rate of soot over MCLa-600 catalyst is remarkably increased with the T10, T50 and T90 at 318°C, 360°C and 388°C under NOx atmosphere respectively.
Collapse
Affiliation(s)
- Fangfang Dai
- The Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, Chenzhou, People's Republic of China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Na Liu
- The Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Zhe Bai
- The Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Chen Wang
- The Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Jiangting Cao
- The Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Midong Shi
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, Chenzhou, People's Republic of China
| |
Collapse
|
8
|
Huang X, Yu G, Quan B, Xu J, Sun G, Shao G, Zhang Q, Guo T, Guan J, Zhang M, Zhu X, Gu L. Harnessing Pseudo-Jahn-Teller Disordering of Monoclinic Birnessite for Excited Interfacial Polarization and Local Magnetic Domains. SMALL METHODS 2023; 7:e2300045. [PMID: 37093215 DOI: 10.1002/smtd.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The symmetry in a polymorph is one of the most important elements for determining the inherent lattice nature. The MnO2 host tends to high-symmetry MnO6 octahedra as a result of the electronic structure t2g 3 eg 0 of Mn4+ ions, displaying an ordered structure accompanying with poor polarization loss and limiting its application toward high-performance microwave absorbers. Here, a pseudo-Jahn-Teller (PJT) distortion and PJT disordering design with abundant self-forming interfaces and local magnetic domains in the monoclinic birnessite-MnO2 host is first reported. The PJT distortion can give rise to asymmetric MnO6 octahedra, inducing the formation of interfaces and increased electron spin magnetic moment in the lattice. The resultant birnessite with PJT distortions and PJT disordering delivers an outstanding reflection loss value of -42.5 dB at an ultralow thickness of 1.7 mm, mainly derived from the excited interfacial polarization and magnetic loss. This work demonstrates an effective approach in regulating the lattice structure of birnessite for boosting microwave absorption performance.
Collapse
Affiliation(s)
- Xiaogu Huang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Gaoyuan Yu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bin Quan
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jing Xu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guomin Sun
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Gaofeng Shao
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tengchao Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jiaping Guan
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mingji Zhang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohui Zhu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Yang W, Bai Y, Peng L, Qu M, Sun K. Enhanced oxygen evolution performance of iron-nickel oxide catalyst through dual-defect engineering. J Colloid Interface Sci 2023; 648:701-708. [PMID: 37321089 DOI: 10.1016/j.jcis.2023.05.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Transition metal oxides have been extensively investigated for oxygen evolution reaction (OER). While the introduction of oxygen vacancies (Vo) was found to be an effective way to enhance the electrical conductivity and the OER electrocatalytic activity of transition metal oxides, the oxygen vacancies are easily damaged during the long-term catalytic process, resulting in rapid decay of the electrocatalytic activity. Herein, we proposed the strategy of dual-defect engineering to enhance the catalytic activity and stability of NiFe2O4 by filling the oxygen vacancies of NiFe2O4 with phosphorus atoms. The filled P atoms could form coordination with iron and nickel ions to compensate the coordination number and optimize the local electronic structure, which not only enhances the electrical conductivity but also improves the intrinsic activity of the electrocatalyst. Meanwhile, the filling of P atoms could stabilize the Vo and thus improving the cycling stability of the material. The theoretical calculation further demonstrates that the improvement in conductivity and intermediate binding by P refilling remarkably contributes to enhancing the OER activity of NiFe2O4-Vo-P. Benefiting from the synergistic effect of filled P atoms and Vo, the derived NiFe2O4-Vo-P exhibits fascinating activity with ultra-low OER overpotentials of 234 and 306 mV at 10 and 200 mA cm-2, together with the good durability for 120 h at relatively high current density of 100 mA cm-2. This work sheds light on the design of high-performance transition metal oxide catalysts through defect regulation in the future.
Collapse
Affiliation(s)
- Weiwei Yang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China; Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Bai
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China; Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Lin Peng
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Meixiu Qu
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
10
|
Zeng Y, Zhuo Q, Dai L, Guan B. Mn anchored zeolite molecular nest for enhanced catalytic ozonation of cephalexin. CHEMOSPHERE 2023:139058. [PMID: 37257654 DOI: 10.1016/j.chemosphere.2023.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
The molecular nest structured catalysts have demonstrated better performance than the traditional supported catalysts. However, they have not been tried in antibiotics or other organic pollutants removal from water by advanced oxidation processes (AOPs). Here we synthesized Mn anchored zeolite molecular nest (Mn@ZN) for the catalytic ozonation of cephalexin (CLX), which is the widely used antibiotic and also a refractory pollutant in water. The ozonation catalyzed by Mn@ZN achieves 97% of CLX degradation in only 2 min and a reaction rate constant of 0.2454 L mg-1·s-1, which is 79.2 times higher than that of the non-catalytic ozonation. Even after ten cycles, the 0.46Mn@ZN/O3 still achieves a CLX degradation efficiency higher than 88% in 2 min, presenting an excellent stability. Mn ions stabilized by the molecular nests facilitate Lewis acid sites and oxygen vacancies, providing active sites for O3 sorption and decomposition into ·O2- and 1O2 through electrons transfer for the radical reaction with CLX. DFT calculation indicates that both the oxygen vacancy formation energy and the O3 adsorption energy of Mn@ZN are reduced by the Mn species introduction. This study finds a fascinating catalyst of Mn@ZN for the catalytic ozonation of antibiotics, and also a smart design strategy for zeolite confined metals catalysts for water treatment.
Collapse
Affiliation(s)
- Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 320013, China
| | - Qizheng Zhuo
- School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Liyan Dai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 320013, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 320058, China.
| |
Collapse
|
11
|
Wan X, Shi K, Li H, Shen F, Gao S, Duan X, Zhang S, Zhao C, Yu M, Hao R, Li W, Wang G, Peressi M, Feng Y, Wang W. Catalytic Ozonation of Polluter Benzene from -20 to >50 °C with High Conversion Efficiency and Selectivity on Mullite YMn 2O 5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37225661 DOI: 10.1021/acs.est.3c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Catalytic decomposition of aromatic polluters at room temperature represents a green route for air purification but is currently challenged by the difficulty of generating reactive oxygen species (ROS) on catalysts. Herein, we develop a mullite catalyst YMn2O5 (YMO) with dual active sites of Mn3+ and Mn4+ and use ozone to produce a highly reactive O* upon YMO. Such a strong oxidant species on YMO shows complete removal of benzene from -20 to >50 °C with a high COx selectivity (>90%) through the generated reactive species O* on the catalyst surface (60 000 mL g-1 h-1). Although the accumulation of water and intermediates gradually lowers the reaction rate after 8 h at 25 °C, a simple treatment by ozone purging or drying in the ambient environment regenerates the catalyst. Importantly, when the temperature increases to 50 °C, the catalytic performance remains 100% conversion without any degradation for 30 h. Experiments and theoretical calculations show that such a superior performance stems from the unique coordination environment, which ensures high generation of ROS and adsorption of aromatics. Mullite's catalytic ozonation degradation of total volatile organic compounds (TVOC) is applied in a home-developed air cleaner, resulting in high efficiency of benzene removal. This work provides insights into the design of catalysts to decompose highly stable organic polluters.
Collapse
Affiliation(s)
- Xiang Wan
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Kai Shi
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Huan Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Fangxie Shen
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shan Gao
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xiangmei Duan
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Shen Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Chunning Zhao
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Meng Yu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Ruiting Hao
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, Yunnan Province, China
| | - Weifang Li
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Maria Peressi
- Department of Physics, University of Trieste, Trieste 34151, Italy
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Pei Y, Wilkinson DP, Gyenge E. Insights into the Electrochemical Behavior of Manganese Oxides as Catalysts for the Oxygen Reduction and Evolution Reactions: Monometallic Core-Shell Mn/Mn 3 O 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204585. [PMID: 36732852 DOI: 10.1002/smll.202204585] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/17/2022] [Indexed: 05/11/2023]
Abstract
Overcoming the sluggish electrode kinetics of both oxygen reduction and evolution reactions (ORR/OER) with non-precious metal electrocatalysts will accelerate the development of rechargeable metal-air batteries and regenerative fuel cells. The authors investigated the electrochemical behavior and ORR/OER catalytic activity of core-porous shell Mn/Mn3 O4 nanoparticles in comparison with other manganese dioxides (β- and γ-MnO2 ), and benchmarked against Pt/C and Pt/C-IrO2 . Under reversible operation in O2 -saturated 5 M KOH at 22 °C, the early stage activity of core-shell Mn/Mn3 O4 shows two times higher ORR and OER current density compared to the other MnO2 structures at 0.32 and 1.62 V versus RHE, respectively. It is revealed that Mn(III) oxidation to Mn(IV) is the primary cause of Mn/Mn3 O4 activity loss during ORR/OER potential cycling. To address it, an electrochemical activation method using Co(II) is proposed. By incorporating Co(II) into MnOx , new active sites are introduced and the content of Mn(II) is increased, which can stabilize the Mn(III) sites through comproportionation with Mn(IV). The Co-incorporated Mn/Mn3 O4 has superior activity and durability. Furthermore, it also surpassed the activity of Pt/C-IrO2 with similar durability. This study demonstrates that cost-effective ORR/OER catalysis is possible.
Collapse
Affiliation(s)
- Yu Pei
- Department of Chemical and Biological Engineering, Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - David P Wilkinson
- Department of Chemical and Biological Engineering, Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Előd Gyenge
- Department of Chemical and Biological Engineering, Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
13
|
Qi L, Li S, Wang W, Li J. Investigation of Mg-doping effect on the activity and P tolerance of V 2O 5-MoO 3 /TiO 2 catalysts for NH 3-SCR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62880-62891. [PMID: 36952161 DOI: 10.1007/s11356-023-26548-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
V2O5-MoO3/TiO2 catalyst modified by Mg was studied to obtain higher NOx SCR activity and higher P, SO2, and H2O resistance than the V2O5-MoO3/TiO2. The results show that Mg modification can promote the denitration activity of V2O5-MoO3/TiO2 catalyst, and the maximum NOx removal efficiency of Mg1-SCR catalyst was 97.5%; the optimum reaction temperature and flow rate were 350℃ and 1200 mL/min, respectively. Mg doping can broaden the reaction temperature window of the catalyst, and the denitration efficiency can reach more than 87% at 300℃. P2O5 solution was prepared as poisoning precursor and mixed with catalyst to simulate the process of catalyst P-poisoning. The step-wise study showed that Mg0.5-SCR and Mg1-SCR catalyst displays higher durable resistance to P, SO2, and H2O than original catalyst. The degree of denitrification efficiency reduction of Mg1-SCR is 4% smaller than that of Mg0-SCR after passing SO2. Mg0.5-SCR catalyst achieves 88% denitrification efficiency at 350 °C after simulating phosphorus poisoning. The catalysts have been characterized by X-ray diffraction, Brunner - Emmet - Teller, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscop, programmed temperature desorption, and programmed temperature reduction. The obtained results suggested that the Mg doping made the active components more dispersed on the surface of the supports, improved the thermal stability of the catalyst, promoted the transition of VOx from monomeric state to polymerized state, inhibited the interaction between P and V, and protected the acid site.
Collapse
Affiliation(s)
- Liqiang Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China.
| | - Silan Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Wen Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| | - Jingxin Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, People's Republic of China
| |
Collapse
|
14
|
Gong X, Xu J, Zhang T, Sun Y, Fang S, Li N, Zhu J, Wu Z, Li J, Gao E, Wang W, Yao S. DRIFTS-MS Investigation of Low-Temperature CO Oxidation on Cu-Doped Manganese Oxide Prepared Using Nitrate Aerosol Decomposition. Molecules 2023; 28:molecules28083511. [PMID: 37110744 PMCID: PMC10144047 DOI: 10.3390/molecules28083511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cu-doped manganese oxide (Cu-Mn2O4) prepared using aerosol decomposition was used as a CO oxidation catalyst. Cu was successfully doped into Mn2O4 due to their nitrate precursors having closed thermal decomposition properties, which ensured the atomic ratio of Cu/(Cu + Mn) in Cu-Mn2O4 close to that in their nitrate precursors. The 0.5Cu-Mn2O4 catalyst of 0.48 Cu/(Cu + Mn) atomic ratio had the best CO oxidation performance, with T50 and T90 as low as 48 and 69 °C, respectively. The 0.5Cu-Mn2O4 catalyst also had (1) a hollow sphere morphology, where the sphere wall was composed of a large number of nanospheres (about 10 nm), (2) the largest specific surface area and defects on the interfacing of the nanospheres, and (3) the highest Mn3+, Cu+, and Oads ratios, which facilitated oxygen vacancy formation, CO adsorption, and CO oxidation, respectively, yielding a synergetic effect on CO oxidation. DRIFTS-MS analysis results showed that terminal-type oxygen (M=O) and bridge-type oxygen (M-O-M) on 0.5Cu-Mn2O4 were reactive at a low temperature, resulting in-good low-temperature CO oxidation performance. Water could adsorb on 0.5Cu-Mn2O4 and inhibited M=O and M-O-M reaction with CO. Water could not inhibit O2 decomposition to M=O and M-O-M. The 0.5Cu-Mn2O4 catalyst had excellent water resistance at 150 °C, at which the influence of water (up to 5%) on CO oxidation could be completely eliminated.
Collapse
Affiliation(s)
- Xingfan Gong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Ning Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| |
Collapse
|
15
|
Zhu Y, Guan Z, Li X, Xia D, Li D. Ultrafast short-range catalytic pathway modified peroxymonosulfate activation over CuO with surface oxygen defects for tetracycline hydrochloride degradation. ENVIRONMENTAL RESEARCH 2023; 222:115322. [PMID: 36693467 DOI: 10.1016/j.envres.2023.115322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The presence of antibiotics in water bodies seriously threatens the ecosystem and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS), an effective method to remove antibiotics, have a bottleneck problem that the low oxidant utilization is attributed to the hindered electron transfer between metal oxides and peroxides. Here, CuO with rich oxygen vacancies (OVs), MSCuO-300, was synthesized to efficiently degrade tetracycline hydrochloride (TTCH) (k = 0.095 min-1). The dominant role of direct adsorption and activation of OVs and its regulated Cu-O, rather than surface hydroxyl adsorption, mediated a short-range catalytic pathway. The shortened catalytic pathway between active sites and PMS accelerated the charge transfer at the interface, which promoted PMS activation. Compared with CuxO-500 and Commercial CuO, the activation rate of PMS was increased by 11.97, and 12.64 times, respectively. OVs contributed to the production of 1O2 and O2•-, the main active species. In addition, MSCuO-300/PMS showed excellent adaptability to real water parameters, such as pH (3-11), anions, and continuous reactor maintained for 168 h. This study provides a successful case for the purification of antibiotic-containing wastewater in the design of efficient catalysts by oxygen defect strategies.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Xiaohu Li
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| |
Collapse
|
16
|
Gong P, He F, Xie J, Fang D. Catalytic removal of toluene using MnO 2-based catalysts: A review. CHEMOSPHERE 2023; 318:137938. [PMID: 36702414 DOI: 10.1016/j.chemosphere.2023.137938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) have serious hazard to human health and ecological environment. Due to its low cost and high activity, the catalytic oxidation technology considered to be the most effective method to remove VOCs. Toluene is one of the typical VOCs, hence its catalytic elimination is crucial for the regulation of VOCs. Manganese dioxide (MnO2) has been extensively studied for its excellent redox performance and low-temperature operation conditions. In this review, we summarize the research progresses in the toluene catalytic oxidation of MnO2-based catalysts, which contain single MnO2, metal-doped MnO2 and supported MnO2 catalyst. In particular, we pay much attention on the relationship between the chemical properties and toluene oxidation performance over MnO2 catalyst, as well as the catalytic reaction mechanisms. Moreover, the effects of different crystal forms and morphologies on the catalytic toluene reaction were discussed. And the perspective on MnO2 catalysts for the catalytic oxidation of toluene has been proposed. We expect that the summary of these important findings can serve as an important reference for the catalytic treatment of VOCs.
Collapse
Affiliation(s)
- Pijun Gong
- School of Environment and Materials Engineering, Yantai University, Yantai 264005, PR China.
| | - Feng He
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Junlin Xie
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - De Fang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
17
|
Villanueva-Martínez N, Alegre C, Martínez-Visús I, Lázaro M. Bifunctional oxygen electrocatalysts based on non-critical raw materials: Carbon nanostructures and iron-doped manganese oxide nanowires. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
Song ZY, Li YY, Duan W, Xiao XY, Gao ZW, Zhao YH, Liang B, Chen SH, Li PH, Yang M, Huang XJ. Decisive role of electronic structure in electroanalysis for sensing materials: Insights from density functional theory. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
19
|
Liu Y, Gu C, Chen L, Zhou W, Liao Y, Wang C, Ma L. Ru-MnO x Interaction for Efficient Hydrodeoxygenation of Levulinic Acid and Its Derivatives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4184-4193. [PMID: 36626197 DOI: 10.1021/acsami.2c22045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide interaction was widely observed in supported metal catalysts, playing a significant role in tuning the catalytic performance. Here, we reported that the interaction of Ru and MnOx was able to facilitate the hydrodeoxygenation of levulinic acid (LA) to 2-butanol with a high turnover frequency (1.99 × 106 h-1), turnover number (4411), and yield (98.8%). Moreover, this catalyst was capable of removing the hydroxymethyl group of lactones and diol with high yields of products. The high activity of the Ru-MnOx catalyst was due to the strong Ru-MnOx interaction, which facilitated reduction of Ru oxide to Ru0 and Mn oxide to Mn2+. The increased fractions of Ru0 and Mn2+ provided metal and Lewis acid sites, respectively, and therefore facilitated LA hydrodeoxygenation. A linear correlation between the hydrodeoxygenation activity of the Ru-MnOx catalyst and [Mn2+]ln([Ru0]) was observed.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Canshuo Gu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang330031PR China
| | - Yuhe Liao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing210096, PR China
| |
Collapse
|
20
|
Zhai R, Deng C, Du S, Li L. A DFT study of CH4 adsorption on OMS-2 (1 1 0) surface with different types of oxygen vacancies. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Lu Y, Cao C, Pan X, Liu Y, Cui D. Structure design mechanisms and inflammatory disease applications of nanozymes. NANOSCALE 2022; 15:14-40. [PMID: 36472125 DOI: 10.1039/d2nr05276h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanozymes are artificial enzymes with high catalytic activity, low cost, and good biocompatibility, and have received ever-increasing attention in recent years. Various inorganic and organic nanoparticles have been found to exhibit enzyme-like activities and are used as nanozymes for diverse biomedical applications ranging from tumor imaging and therapeutics to detection. However, their further clinical applications are hindered by the potential toxicity and long-term retention of nanomaterials in vivo. Clarifying the catalytic mechanism of nanozymes and identifying the key factors responsible for their behavior can guide the design of nanozyme structure, enlighten the ways to improve their enzyme-like activities, and minimize the dosage of nanozymes, leading to reduced toxicity to the human body for a real biomedical application prospect. In particular, inflammation occurring in numerous diseases is closely related to reactive oxygen species, and the active oxygen scavenging ability of nanozymes potentially exerts excellent therapeutic effects on inflammatory diseases. In this review, we systematically summarize the structure-activity relationship of nanozymes, including regulation strategies for size and morphology, surface structure, and composition. Based on the structure-activity mechanisms, a series of chemically designed nanozymes developed to target various inflammatory diseases are briefly summarized.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
- National Engineering Center for Nanotechnology, Shanghai 200240, People's Republic of China.
| |
Collapse
|
22
|
Morphological engineering of 3D hollow urchin-like MnO2 spheres as bifunctional oxygen electrocatalyst for zinc-air batteries. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Ma S, Guo J, Ye X, Tian B, Jiang X, Gao T. Mechanistic and thermodynamic insights into the SO 2 oxidation on MnO 2 catalysts: A combined theoretical and experimental study. CHEMOSPHERE 2022; 307:135885. [PMID: 35926747 DOI: 10.1016/j.chemosphere.2022.135885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Manganese oxide (especially manganese dioxide [MnO2]) is an excellent catalytic material for SO2 removal in flue gas desulfurization. In this study, the effect of crystalline structure of MnO2 (α-MnO2, β-MnO2, γ-MnO2 and δ-MnO2) on their activity for SO2 oxidation was studied based on density functional theory with Hubbard U corrections (DFT + U). The calculated results showed that α-MnO2 has mild energy barriers of 0.69 eV and 0.46 eV, and β-MnO2 has poor redox performance on SO2 molecules, which has the highest energy barrier of 2.17 eV and the largest oxygen formation energy of 1.74 eV, making it difficult for the oxygen atom to remove from the surface lattice to form reactive sites. Thermodynamic calculations showed that α-MnO2 is suitable for SO2 oxidation for its low energy barriers, reaction energy close to zero in the first half, and relatively high spontaneity in the whole reaction. Experimental tests showed that α-MnO2 had the best catalytic oxidation effect, with the highest sulfur capacity (304.11 mg/g), but β-MnO2 had poor catalytic oxidation performance, with a sulfur capacity of 41.59 mg/g. This work studies the catalytic performance and mechanism of SO2 removal and proposes a strategy to improve the catalytic activity by phase structure.
Collapse
Affiliation(s)
- Shenggui Ma
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China; National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, China.
| | - Jundong Guo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Xue Ye
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Bowen Tian
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Carbon Neutral Technology Innovation Center of Sichuan, Chengdu 610065, China; National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, China.
| | - Tao Gao
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
24
|
Devi P, Verma R, Singh JP. Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Yu H, Qin G, Wang J, Zhao X, Li L, Yu X, Zhang X, Lu Z, Yang X. Improving Oxygen Reduction Reaction Performance via Central Ions Enhanced Crystal-Field Splitting of MnO 6 Octahedron. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haoran Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Guoqing Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Jianxiu Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xinning Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin300130, China
| |
Collapse
|
26
|
Zhou Z, Zheng X, Liu M, Liu P, Han S, Chen Y, Lan B, Sun M, Yu L. Engineering Amorphous/Crystalline Structure of Manganese Oxide for Superior Oxygen Catalytic Performance in Rechargeable Zinc-Air Batteries. CHEMSUSCHEM 2022; 15:e202200612. [PMID: 35686961 DOI: 10.1002/cssc.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Although amorphous materials are popular in oxygen electrocatalysis, their performance requires further improvement to meet the need for rechargeable zinc-air batteries. In this work, an amorphous/crystalline layered manganese oxide (ACMO) was designed, and its unique amorphous/crystalline homogeneous structure activated its oxygen reduction activity with a positive half-wave potential of 0.81 V and oxygen evolution activity with a moderate overpotential of 407 mV at 10 mA cm-2 . Moreover, the amorphous/crystalline structure endowed ACMO with excellent stability. While employed as the air-electrode material for rechargeable zinc-air batteries, ACMO overcame the poor cycling stability of manganese oxide and cycled stably for 1000 cycles (≈17 days) at 10 mA cm-2 . Besides, it delivered a high power density of 159.7 mW cm-2 and a narrow voltage gap of 0.66 V. This work gives an insight into designing oxide materials with amorphous/crystalline structure and feasible guidance for harmonizing electrochemical activity and stability.
Collapse
Affiliation(s)
- Zihao Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Xiaoying Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| | - Manna Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Peng Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Shengbo Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Yingru Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Bang Lan
- School of Chemistry and Environment, Jiaying University, 514015, Meizhou, P. R.China
| | - Ming Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, P. R. China
| |
Collapse
|
27
|
Chen D, Wu Y, Huang Z, Chen J. A Novel Hybrid Point Defect of Oxygen Vacancy and Phosphorus Doping in TiO 2 Anode for High-Performance Sodium Ion Capacitor. NANO-MICRO LETTERS 2022; 14:156. [PMID: 35917004 PMCID: PMC9346024 DOI: 10.1007/s40820-022-00912-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/08/2022] [Indexed: 05/28/2023]
Abstract
Although sodium ion capacitors (SICs) are considered as one of the most promising electrochemical energy storage devices (organic electrolyte batteries, aqueous batteries and supercapacitor, etc.) due to the combined merits of battery and capacitor, the slow reaction kinetics and low specific capacity of anode materials are the main challenges. Point defects including vacancies and heteroatoms doping have been widely used to improve the kinetics behavior and capacity of anode materials. However, the interaction between vacancies and heteroatoms doping have been seldomly investigated. In this study, a hybrid point defects (HPD) engineering has been proposed to synthesize TiO2 with both oxygen vacancies (OVs) and P-dopants (TiO2/C-HPD). In comparison with sole OVs or P-doping treatments, the synergistic effects of HPD on its electrical conductivity and sodium storage performance have been clarified through the density functional theory calculation and sodium storage characterization. As expected, the kinetics and electronic conductivity of TiO2/C-HPD3 are significantly improved, resulting in excellent rate performance and outstanding cycle stability. Moreover, the SICs assembled from TiO2/C-HPD3 anode and nitrogen-doped porous carbon cathode show outstanding power/energy density, ultra-long life with good capacity retention. This work provides a novel point defect engineering perspective for the development of high-performance SICs electrode materials.
Collapse
Affiliation(s)
- Daming Chen
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Youchun Wu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhiquan Huang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jian Chen
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
28
|
Efficient Epoxidation of Styrene within Pickering Emulsion-Based Compartmentalized Microreactors. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Wan X, Wang L, Zhang S, Shi H, Niu J, Wang G, Li W, Chen D, Zhang H, Zhou X, Wang W. Ozone Decomposition below Room Temperature Using Mn-based Mullite YMn 2O 5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8746-8755. [PMID: 35617124 DOI: 10.1021/acs.est.1c08922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A super-low-temperature ozone decomposition is realized without energy consumption on a ternary oxide catalyst mullite YMn2O5 for the first time. The YMn2O5 oxide catalyzed ozone decomposition from a low temperature of -40 °C with 29% conversion (reaction rate: 1534.2 μmol g-1 h-1) and quickly reached 100% (5459.5 μmol g-1 h-1) when warmed up to -5 °C. The superior low-temperature performance over YMn2O5 could surpass that of the reported ozone decomposition catalysts. The structure and element valence characterizations confirmed that YMn2O5 remained the same after 100 h of room-temperature reaction, indicating excellent durability of the catalyst. O2-TPD (O2-temperature-programmed desorption) showed that the active sites are the Mn3+ sites bonded with singly coordinated oxygen on the surface. Combined with in situ Raman measurements and density functional theory calculations, we found that the ozone decomposition reaction on YMn2O5 showed a barrier of only 0.29 eV, following the Eley-Rideal (E-R) mechanism with a rate-limiting step of intermediate O22- desorption. The low barrier minimizes the accumulation of intermediate products and realizes the fast O3 decomposition even at super-low temperatures. Fundamentally, the moderate Mn-O bonding strength in the low-symmetry ternary oxides is crucial to produce singly coordinated active species on the surface responsible for the efficient ozone degradation at low temperatures.
Collapse
Affiliation(s)
- Xiang Wan
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Lijing Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shen Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Haozhe Shi
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin 300211, China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environment Sciences, Tianjin 300191, China
| | - Weifang Li
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environment Sciences, Tianjin 300191, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Haijun Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Zhou L, Wang C, Li Y, Liu X, Deng H, Shan W, He H. The effect of hydrogen reduction of α-MnO2 on formaldehyde oxidation: The roles of oxygen vacancies. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Tu C, Lu H, Zhou T, Zhang W, Deng L, Cao W, Yang Z, Wang Z, Wu X, Ding J, Xu F, Gao C. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 2022; 286:121597. [DOI: 10.1016/j.biomaterials.2022.121597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
|
32
|
Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Morinson-Negrete JD, Ortega-López C, Espitia-Rico MJ. Effects of Mono-Vacancies of Oxygen and Manganese on the Properties of the MnO 2/Graphene Heterostructure. MATERIALS 2022; 15:ma15082731. [PMID: 35454425 PMCID: PMC9032963 DOI: 10.3390/ma15082731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 01/13/2023]
Abstract
The effects of the monovacancies of oxygen (VO) and manganese (VMn) on the structural and electronic properties of the 1T−MnO2/graphene heterostructure are investigated, within the framework of density functional theory (DFT). We found that the values of the formation energy for the heterostructure without and with vacancies of VO and VMn were −20.99 meVÅ2 , −32.11meVÅ2, and −20.81 meVÅ2, respectively. The negative values of the formation energy indicate that the three heterostructures are energetically stable and that they could be grown in the experiment (exothermic processes). Additionally, it was found that the presence of monovacancies of VO and VMn in the heterostructure induce: (a) a slight decrease in the interlayer separation distance in the 1T−MnO2/graphene heterostructure of ~0.13% and ~1.41%, respectively, and (b) a contraction of the (Mn−O) bond length of the neighboring atoms of the VO and VMn monovacancies of ~2.34% and ~6.83%, respectively. Calculations of the Bader charge for the heterostructure without and with VO and VMn monovacancies show that these monovacancies induce significant changes in the charge of the first-neighbor atoms of the VO and VMn vacancies, generating chemically active sites (locales) that could favor the adsorption of external atoms and molecules. From the analysis of the density of state and the structure of the bands, we found that the graphene conserves the Dirac cone in the heterostructure with or without vacancies, while the 1T−MnO2 monolayer in the heterostructures without and with VO monovacancies exhibits half-metallic and magnetic behavior. These properties mainly come from the hybridization of the 3d−Mn and 2p−O states. In both cases, the heterostructure possesses a magnetic moment of 3.00 μβ/Mn. From this behavior, it can be inferred the heterostructures with and without VO monovacancies could be used in spintronics.
Collapse
Affiliation(s)
- Juan David Morinson-Negrete
- Grupo Avanzado de Materiales y Sistemas Complejos GAMASCO, Universidad de Córdoba, Montería CP 230001, Colombia; (J.D.M.-N.); (C.O.-L.)
- Doctorado en Ciencias Física, Universidad de Córdoba, Montería CP 203001, Colombia
- Grupo de Investigación AMDAC, Institución Educativa José María Córdoba, Montería CP 230001, Colombia
| | - César Ortega-López
- Grupo Avanzado de Materiales y Sistemas Complejos GAMASCO, Universidad de Córdoba, Montería CP 230001, Colombia; (J.D.M.-N.); (C.O.-L.)
- Doctorado en Ciencias Física, Universidad de Córdoba, Montería CP 203001, Colombia
| | - Miguel J. Espitia-Rico
- Grupo GEFEM, Universidad Distrital Francisco José de Caldas, Bogotá CP 110111, Colombia
- Correspondence: ; Tel.: +57-6013239300 (ext. 1516)
| |
Collapse
|
34
|
Lin X, Xia S, Zhang L, Zhang Y, Sun S, Chen Y, Chen S, Ding B, Yu J, Yan J. Fabrication of Flexible Mesoporous Black Nb 2 O 5 Nanofiber Films for Visible-Light-Driven Photocatalytic CO 2 Reduction into CH 4. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200756. [PMID: 35181950 DOI: 10.1002/adma.202200756] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Achieving high selectivity and conversion efficiency simultaneously is a challenge for visible-light-driven photocatalytic CO2 reduction into CH4 . Here, a facile nanofiber synthesis method and a new defect control strategy at room-temperature are reported for the fabrication of flexible mesoporous black Nb2 O5 nanofiber catalysts that contain abundant oxygen-vacancies and unsaturated Nb dual-sites, which are efficient towards photocatalytic production of CH4 . The oxygen-vacancy decreases the bandgap width of Nb2 O5 from 3.01-2.25 eV, which broadens the light-absorption range from ultraviolet to visible-light, and the dual sites in the mesopores can easily adsorb CO2 , so that the intermediate product of CO* can be spontaneously changed into *CHO. The formation of a highly stable NbCHO* intermediate at the dual sites is proposed to be the key feature determining selectivity. The preliminary results show that without using sacrificial agents and photosensitizers, the nanofiber catalyst achieves 64.8% selectivity for CH4 production with a high evolution rate of 19.5 µmol g-1 h-1 under visible-light. Furthermore, the flexible catalyst film can be directly used in devices, showing appealing and broadly commercial applications.
Collapse
Affiliation(s)
- Xi Lin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuhui Xia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Liang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Songmei Sun
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuehui Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuo Chen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
35
|
Mn-vacancy birnessite for photo-assisted elimination of formaldehyde at ambient condition. J Colloid Interface Sci 2022; 618:229-240. [PMID: 35339959 DOI: 10.1016/j.jcis.2022.03.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
Visible light-assisted catalysis has recently attracted considerable attention because it is efficient, cost effective, and does not cause indoor air pollution. Several birnessite-type MnO2 catalysts with different numbers of manganese vacancies (MVs) were synthesized in this study and used for photo-assisted catalytic oxidation of HCHO. Under visible light irradiation, MVs act as trapping centers to accelerate electrons transport and produce abundant reactive radicals to boost the activation of molecular oxygen, thereby improving the catalytic HCHO oxidation. The birnessite with the highest number of MVs exhibits remarkable oxidation activity with 80 ppm of HCHO (42% HCHO conversion was attained at ambient temperature) and a corresponding gas hourly space velocity (GHSV) of 60 L/(g·h) in a dynamic experiment. Moreover, it mineralizes 80 ppm of HCHO within 160 min in a static experiment, whereas it only takes 90 min under the same conditions with the visible light irradiation. The activity factor of birnessite with the highest MV content under visible light irradiation is 2.2 times that observed under dark conditions. Overall, this study elucidates the photothermal catalytic oxidation of HCHO, and concludes that the birnessite comprising MVs is a promising material for air purification applications.
Collapse
|
36
|
Cheng G, Liu P, Chen S, Wu Y, Huang L, Chen M, Hu C, Lan B, Su X, Sun M, Yu L. Self-templated formation of hierarchical hollow β-MnO2 microspheres with enhanced oxygen reduction activities. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Sun M, Hu XT, Liu HH, Yang BJ, Wang C, Zhai LF, Wang S. Bimetal heterointerfaces towards enhanced electro-activation of O 2 under room condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127271. [PMID: 34564044 DOI: 10.1016/j.jhazmat.2021.127271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Efficient catalysts for oxygen (O2) activation under room condition are required for effective wet air oxidation (WAO) technology. Here, we report a novel manganese-cobalt-based composite (MnO-CoO@Co) fabricated on a graphite felt (GF) support for catalyzing the electro-activation of O2 under room condition. Abundant Co-MnO and CoO-MnO heterointerfaces are formed in the composite. In comparison to the single-metal counterparts, i.e. CoO@Co/GF (16.99 wt% Co) and MnO/GF (26.83 wt% Mn), the bimetal MnO-CoO@Co/GF (5.29 wt% Co and 8.79 wt% Mn) displays an improved oxygen storage capacity and provides more active sites to accommodate surface adsorbed oxygen species. Notably, the strong synergy derived from bimetal heterointerfaces enhances the electron transfer and oxygen mobilization during the electro-activation of O2, thereby significantly reducing the reaction barrier. MnO-CoO@Co/GF exhibits excellent efficiency and stability in electrocatalytic WAO (ECWAO) towards the removal of pharmaceuticals and personal care products (PPCPs) over a wide pH range from 4.0 to 10.0. A model pollutant sulfamethoxazole (SMX) acquires mineralization efficiency of 78.4 ± 2.1% and mineralization current efficiency of 157.89% at +1.0 V of electrode potential. The toxicity of PPCPs can be totally eliminated after the ECWAO treatment. This work highlights the synergy derived from bimetal heterointerfaces in O2 electrocatalysis, and provides a promising approach for advanced WAO catalysts in PPCPs pollution control.
Collapse
Affiliation(s)
- Min Sun
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xin-Tian Hu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Hui Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bao-Jun Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chuanpi Wang
- Greentown Agricultral Testing Technology Co., Ltd., Hangzhou 310052, China
| | - Lin-Feng Zhai
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia.
| |
Collapse
|
38
|
Liu S, Kang L, Hu J, Jung E, Henzie J, Alowasheeir A, Zhang J, Miao L, Yamauchi Y, Jun SC. Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defect-Induced Manipulation toward Flexible Solid-State Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104507. [PMID: 34821033 DOI: 10.1002/smll.202104507] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Indexed: 05/20/2023]
Abstract
As a typical battery-type material, CuCo2 S4 is a promising candidate for supercapacitors due to the high theoretical specific capacity. However, its practical application is plagued by inherently sluggish ion diffusion kinetics and inferior electrical transport properties. Herein, sulfur vacancies are incorporated in CuCo2 S4 hollow nanoarchitectures (HNs) to accelerate redox reactivity. Experimental analyses and theoretical investigations uncover that the generated sulfur vacancies increase the active electron states, reduce the adsorption barriers of electrolyte ions, and enrich reactive redox species, thus achieving enhanced electrochemical performance. Consequently, the deficient CuCo2 S4 with optimized vacancy concentration presents a high specific capacity of 231 mAh g-1 at 1 A g-1 , a ≈1.78 times increase compared to that of pristine CuCo2 S4 , and exhibits a superior rate capability (73.8% capacity retention at 20 A g-1 ). Furthermore, flexible solid-state asymmetric supercapacitor devices assembled with the deficient CuCo2 S4 HNs and VN nanosheets deliver a high energy density of 61.4 W h kg-1 at 750 W kg-1 . Under different bending states, the devices display exceptional mechanical flexibility with no obvious change in CV curves at 50 mV s-1 . These findings provide insights for regulating electrode reactivity of battery-type materials through intentional nanoarchitectonics and vacancy engineering.
Collapse
Affiliation(s)
- Shude Liu
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jisong Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Euigeol Jung
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Joel Henzie
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Azhar Alowasheeir
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ling Miao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| |
Collapse
|
39
|
Hao Y, Sun S, Du X, Qu J, Li L, Yu X, Zhang X, Yang X, Zheng R, Cairney JM, Lu Z. Boosting Oxygen Reduction Activity of Manganese Oxide Through Strain Effect Caused By Ion Insertion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105201. [PMID: 34837322 DOI: 10.1002/smll.202105201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Transition-metal oxides with a strain effect have attracted immense interest as cathode materials for fuel cells. However, owing to the introduction of heterostructures, substrates, or a large number of defects during the synthesis of strain-bearing catalysts, not only is the structure-activity relationship complicated but also their performance is mediocre. In this study, a mode of strain introduction is reported. Transition-metal ions with different electronegativities are intercalated into the cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) structure with K ions as the template, resulting in the octahedral structural distortion of MnO6 and producing strains of different degrees. Experimental studies reveal that Ni-OMS-2 with a high compressive strain (4.12%) exhibits superior oxygen reduction performance with a half-wave potential (0.825 V vs RHE) greater than those of other reported manganese-based oxides. This result is related to the increase in the covalence of MnO6 octahedral configuration and shifting down of the eg band center caused by the higher compression strain. This research avoids the introduction of new chemical bonds in the main structure, weakens the effect of eg electron filling number, and emphasizes the pure strain effect. This concept can be extended to other transition-metal-oxide catalysts.
Collapse
Affiliation(s)
- Yixin Hao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shuo Sun
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xihua Du
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiangtao Qu
- Australian Centre for Microscopy and Microanalysis, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Rongkun Zheng
- The School of Physics, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
40
|
Mantry SP, Mohapatra BD, Behera RK, Varadwaj KS. Oxygen reduction activity of Fe/Co/Ni doped MnOx @ graphene nanohybrid: A comparative study. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Lin F, Wang Q, Huang X, Jin J. Investigation of chlorine-poisoning mechanism of MnO x/TiO 2 and MnO x-CeO 2/TiO 2 catalysts during o-DCBz catalytic decomposition: Experiment and first-principles calculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113454. [PMID: 34365187 DOI: 10.1016/j.jenvman.2021.113454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The catalytic activity and stability of MnOx/TiO2 and MnOx-CeO2/TiO2 catalysts for the oxidative degradation of 1,2-dichorobenzene (o-DCBz) at low temperatures (≤275 °C) were experimentally examined. The chlorine (Cl) poisoning mechanism of the catalysts was also clarified based on the catalyst characterization combined with theoretical calculations. Experimental results show that the MnOx/TiO2 catalyst is considerably deactivated during o-DCBz catalytic decomposition, mainly due to the chlorination of the catalytic active component. Ce addition and high temperature can effectively promote the resistance of MnOx/TiO2 catalyst to Cl poisoning. Density functional theory (DFT) calculations in the framework of first-principles reveal that Cl atom prefers to anchor on surface oxygen vacancy (OV) rather than on top site of Mn atom. The adsorption of Cl atom on surface OV hinders the dissociated adsorption of O2 on surface OV and interrupts the regeneration of the surface reactive oxygen species. The adsorption of Cl atom on top site of Mn atom increases the formation energy of surface OV and damages the surface Lewis acid sites which act as the important adsorption sites for o-DCBz molecules. Ce addition causes Cl atom to adsorb preferentially onto the OV around Ce atom, which weakens the interaction between Cl atom and Mn atom. Consequently, the chlorination of the MnOx species is prevented and the oxygen mobility of the catalyst is guaranteed to some extent.
Collapse
Affiliation(s)
- Feng Lin
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qiulin Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xiaoniu Huang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Jin
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
42
|
|
43
|
Ahmad S, Nawaz T, Ullah A, Ahmed M, Khan MO, Saher S, Qamar A, Sikandar MA. Thermal optimization of manganese dioxide nanorods with enhanced ORR activity for alkaline membrane fuel cell. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Shahbaz Ahmad
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Tahir Nawaz
- U.S.‐Pakistan Center for Advanced Studies in Energy National University of Sciences and Technology Islamabad Pakistan
| | - Abid Ullah
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Mushtaq Ahmed
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - M. Owais Khan
- Department Of Mechanical Engineering University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Saim Saher
- Ariston Energy Solutions Peshawar Pakistan
- Advanced Materials Laboratory (AML) Peshawar Pakistan
| | - Affaq Qamar
- U.S.‐Pakistan Center for Advanced Studies in Energy University of Engineering and Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Ali Sikandar
- Department of Civil Engineering CECOS University of IT & Emerging Sciences Peshawar Pakistan
| |
Collapse
|
44
|
Du D, Zheng R, Chen X, Xiang W, Zhao C, Zhou B, Li R, Xu H, Shu C. Adjusting the Covalency of Metal-Oxygen Bonds in LaCoO 3 by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium-Oxygen Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33133-33146. [PMID: 34240845 DOI: 10.1021/acsami.1c08586] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Developing high-efficiency dual-functional catalysts to promote oxygen electrode reactions is critical for achieving high-performance aprotic lithium-oxygen (Li-O2) batteries. Herein, Sr and Fe cation-codoped LaCoO3 perovskite (La0.8Sr0.2Co0.8Fe0.2O3-σ, LSCFO) porous nanoparticles are fabricated as promising electrocatalysts for Li-O2 cells. The results demonstrate that the LSCFO-based Li-O2 batteries exhibit an extremely low overpotential of 0.32 V, ultrahigh specific capacity of 26 833 mA h g-1, and superior long-term cycling stability (200 cycles at 300 mA g-1). These prominent performances can be partially attributed to the existence of abundant coordination unsaturated sites caused by oxygen vacancies in LSCFO. Most importantly, density functional theory (DFT) calculations reveal that codoping of Sr and Fe cations in LaCoO3 results in the increased covalency of Co 3d-O 2p bonds and the transition of Co3+ from an ordinary low-spin state to an intermediate-spin state, eventually resulting in the transformation from nonconductor LCO to metallic LSCFO. In addition, based on the theoretical calculations, it is found that the inherent adsorption capability of LSCFO toward the LiO2 intermediate is reduced due to the increased covalency of Co 3d-O 2p bonds, leading to the formation of large granule-like Li2O2, which can be effectively decomposed on the LSCFO surface during the charging process. Notably, this work demonstrates a unique insight into the design of advanced perovskite oxide catalysts via adjusting the covalency of transition-metal-oxygen bonds for high-performance metal-air batteries.
Collapse
Affiliation(s)
- Dayue Du
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Ruixin Zheng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xianfei Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Wei Xiang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chuan Zhao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Bo Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Runjing Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| |
Collapse
|
45
|
Liu H, Jia W, Yu X, Tang X, Zeng X, Sun Y, Lei T, Fang H, Li T, Lin L. Vitamin C-Assisted Synthesized Mn–Co Oxides with Improved Oxygen Vacancy Concentration: Boosting Lattice Oxygen Activity for the Air-Oxidation of 5-(Hydroxymethyl)furfural. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04503] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huai Liu
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| | - Wenlong Jia
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| | - Xin Yu
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
| | - Xing Tang
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| | - Xianhai Zeng
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| | - Yong Sun
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| | - Tingzhou Lei
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213000, China
| | - Huayu Fang
- Key Lab for Sport Shoes Upper Materials of Fujian Province (Fujian Huafeng New Material Co., Ltd.), Putian 351152, Fujian, China
| | - Tianyuan Li
- Key Lab for Sport Shoes Upper Materials of Fujian Province (Fujian Huafeng New Material Co., Ltd.), Putian 351152, Fujian, China
| | - Lu Lin
- Xiamen Key Laboratory of Clean and High-Valued Utilization for Biomass, College of Energy, Xiamen University, Xiang’an South Road, Xiamen 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen University, Xiang’an South Road, Xiamen 361005, Fujian, China
| |
Collapse
|
46
|
Yuan H, Yang H, Hu P, Wang H. Origin of Water-Induced Deactivation of MnO 2-Based Catalyst for Room-Temperature NO Oxidation: A First-Principles Microkinetic Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiyang Yuan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huagui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - P. Hu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
47
|
Lei H, Zhang Q, Wang Y, Gao Y, Wang Y, Liang Z, Zhang W, Cao R. Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Trans 2021; 50:5120-5123. [PMID: 33881086 DOI: 10.1039/d1dt00441g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is of great importance. Herein, Co tetrakis(pentafluorophenyl)porphyrin (Co-P) and Fe chloride tetrakis(pentafluorophenyl)porphyrin (Fe-P) were loaded on carbon nanotubes (CNTs) for combining the electrocatalytic advantages of both Co-P and Fe-P. The resultant (Co-P)0.5(Fe-P)0.5@CNT composite displayed significantly boosted activity for the selective four-electron ORR with a half-wave potential of 0.80 V versus reversible hydrogen electrode (RHE) and for the OER with a potential of 1.65 V versus RHE to obtain 10 mA cm-2 current density in 0.1 M KOH. A Zn-air battery assembled from (Co-P)0.5(Fe-P)0.5@CNT exhibited a small charge-discharge voltage gap of 0.74 V at 2 mA cm-2, a high power density of 174.5 mW cm-2 and a good rechargeable stability (>120 cycles).
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
48
|
Zheng J, Peng X, Wang Z. Plasma-assisted defect engineering of N-doped NiCo 2O 4 for efficient oxygen reduction. Phys Chem Chem Phys 2021; 23:6591-6599. [PMID: 33704337 DOI: 10.1039/d1cp00525a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Defect control is a promising way to enhance the electrocatalysis performance of metal oxides. Oxygen vacancy enriched NiCo2O4 was successfully prepared using cold plasma. Oxygen as a plasma-forming gas introduces oxygen vacancies via electron etching. The concentration of oxygen vacancies can be controlled by different plasma-forming gas. CoO, which formed on the plasma samples, is beneficial for quick charge transfer and electrocatalytic performance. A high amount of nitrogen atoms of up to 10.1% was doped on NiCo2O4 because of the enriched oxygen vacancies and improved the stability of the oxygen defects and the conductivity of the catalyst. Electrocatalytic studies showed that the plasma-induced N-doped NiCo2O4 shows enhanced electrocatalytic performance for the oxygen reduction reaction (ORR). It shows a typical four-electron process that considerably improves the current density and onset potential. The HO2- % was as low as 0.59% and current density was 4.9 mA cm-2 at 0.2 V (Vs. RHE) on the plasma-treated NiCo2O4. Calculations based on density functional theory reveal the mechanism for the promotion of the catalytic ORR activity via plasma treatment. This increases the electron density near the Fermi level, reducing the work function, and changing the position of the d-band center.
Collapse
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Centre of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | |
Collapse
|
49
|
Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using manganese dioxide with different crystal structures: A comparative study. J Colloid Interface Sci 2021; 592:416-429. [PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
Collapse
|
50
|
Liu X, Wang C, Zhu T, Lv Q, Che D. Simultaneous removal of SO 2 and NO x with OH from the catalytic decomposition of H 2O 2 over Fe-Mo mixed oxides. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:123936. [PMID: 33070004 DOI: 10.1016/j.jhazmat.2020.123936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
In this paper, the simultaneous removal of SO2 and NOx catalyzed by Fe-Mo mixed oxides at varying Mo/Fe atomic ratios was reported for the first time with the aim of reducing H2O2 consumption and elucidating the roles of Fe and Mo species in the catalytic process. Fe-Mo mixed oxides with varying Mo/Fe atomic ratios were synthesized and the catalytic performances were systematically studied. The catalyst with Mo/Fe atomic ratio of 2.0 exhibited the highest activity, with which removal efficiencies of 89.4 % for NOx and 100 % for SO2 can be attained at extremely low H2O2 dosage. Products analysis revealed that SO2 was mainly removed via wet scrubber, while the adequate oxidation resulting from OH radicals was the prerequisite for NOx removal. The redox pair of Fe2+/Fe3+ played a significant role in decomposing H2O2, while Mo species had double effect on catalytic activity. Higher Mo content resulted in abundant oxygen vacancies and stronger surface acidity, which favored OH formation. However, the excessive Mo content involved severe surface Mo enrichment and remarkably reduced the active sites of Fe species. The H2O2/Fe-Mo catalyst system showed excellent stability and had a promising prospect for simultaneously removing SO2 and NOx in coal-fired flue gas.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Chang'an Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Tao Zhu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Qiang Lv
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Defu Che
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|