1
|
Zhu J, Chen W, Poli S, Jiang T, Gerlach D, Junqueira JR, Stuart MCA, Kyriakou V, Costa Figueiredo M, Rudolf P, Miola M, Morales DM, Pescarmona PP. Nanostructured Fe-Doped Ni 3S 2 Electrocatalyst for the Oxygen Evolution Reaction with High Stability at an Industrially-Relevant Current Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58520-58535. [PMID: 39404487 PMCID: PMC11533162 DOI: 10.1021/acsami.4c09821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
A novel oxygen evolution reaction (OER) electrocatalyst was prepared by a synthesis strategy consisting of the solvothermal growth of Ni3S2 nanostructures on Ni foam, followed by hydrothermal incorporation of Fe species (Fe-Ni3S2/Ni foam). This electrocatalyst displayed a low OER overpotential of 230 mV at 100 mA·cm-2, a low Tafel slope of 43 mV·dec-1, and constant performance at an industrially relevant current density (500 mA·cm-2) over 100 h in a 1.0 M KOH electrolyte, despite a minor loss of Fe in the process. Based on a detailed characterization by (in situ) Raman spectroscopy, (quasi-in situ) XPS, SEM, TEM, XRD, ICP-AES, EIS, and Cdl analysis, the high OER activity and stability of Fe-Ni3S2/Ni foam were attributed to the nanostructuring of the surface in the form of stable nanosheets and to the combination of Ni3S2 granting suitable electrical conductivity with newly formed NiFe-based (oxy)hydroxides at the surface of the material providing the active sites for OER.
Collapse
Affiliation(s)
- Jiahui Zhu
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Wei Chen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands
| | - Stefano Poli
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Tao Jiang
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Dominic Gerlach
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AGGroningen, The Netherlands
| | - João R.
C. Junqueira
- Analytical
Chemistry - Center for Electrochemical Sciences (CES), Faculty of
Chemistry and Biochemistry, Ruhr University
Bochum, D-44780Bochum Germany
| | - Marc C. A. Stuart
- Electron
Microscopy Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen,9747 AG Groningen, The Netherlands
| | - Vasileios Kyriakou
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Marta Costa Figueiredo
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AGGroningen, The Netherlands
| | - Matteo Miola
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Dulce M. Morales
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Paolo P. Pescarmona
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| |
Collapse
|
2
|
Zhang J, Wang X, Du F, Wu J, Xiao S, Zhou Y, Wu H, Shao Z, Cai W, Li Y. Phosphorous Vacancy and Built-In Electric Field Effect of Co-Doped MoP@MXene Heterostructures to Tune Catalytic Activity for Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400304. [PMID: 38881255 DOI: 10.1002/smll.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Developing cost-effective, durable bifunctional electrocatalysts is crucial but remains challenging due to slow hydrogen/oxygen evolution reaction (HER/OER) kinetics in water electrolysis. Herein, a combined engineering strategy of phosphorous vacancy (Vp) and spontaneous built-in electric field (BIEF) is proposed to design novel highly-conductive Co-doped MoP@MXene heterostructures with phosphorous vacancy (Vp-Co-MoP@MXene). Wherein, Co doping regulates the surface electronic structure and charge re-distribution of MoP, Vp induces more defects and active sites, while BIEF accelerates the interfacial charge transfer rate between Vp-Co-MoP and MXene. Therefore, the synergistic integration of Vp-Co-MoP/MXene efficiently decreases activation energy and kinetic barrier, thus promoting its intrinsically catalytic activity and structural stability. Consequently, the Vp-Co-MoP@MXene catalyst displays low overpotentials of 102.3/196.5 and 265.0/320.0 mV at 10/50 mA cm-2 for HER and OER, respectively. Notably, two-electrode electrolyzers with the Vp-Co-MoP@MXene bifunctional catalysts to achieve 10/50 mA cm-2, only need low-cell voltages of 1.57/1.64 V in alkaline media. Besides, experimental and theoretical results confirm that the hetero-structure effectively reduces hydrogen adsorption free energy and rate-determining-step energy barrier of OER intermediates, thereby greatly boosting its intrinsically catalytic activity. This work verifies an effective strategy to fabricate efficient non-precious bifunctional electro-catalysts for water splitting via combination engineering of phosphorous vacancy, cation doping, and BIEF.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xinying Wang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Feixiang Du
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jiayi Wu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Shengfu Xiao
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yiru Zhou
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Hao Wu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhuhang Shao
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Weitong Cai
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunyong Li
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
3
|
Etxebarria A, Lopez Luna M, Martini A, Hejral U, Rüscher M, Zhan C, Herzog A, Jamshaid A, Kordus D, Bergmann A, Kuhlenbeck H, Roldan Cuenya B. Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. ACS Catal 2024; 14:14219-14232. [PMID: 39324051 PMCID: PMC11421220 DOI: 10.1021/acscatal.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Water splitting has emerged as a promising route for generating hydrogen as an alternative to conventional production methods. Finding affordable and scalable catalysts for the anodic half-reaction, the oxygen evolution reaction (OER), could help with its industrial widespread implementation. Iron-containing Ni-based catalysts have a competitive performance for the use in commercial alkaline electrolyzers. Due to the complexity of studying the catalysts at working conditions, the active phase and the role that iron exerts in conjunction with Ni are still a matter of investigation. Here, we study this topic with NiO(001) and Ni0.75Fe0.25O x (001) thin film model electrocatalysts employing surface-sensitive techniques. We show that iron constrains the growth of the oxyhydroxide phase formed on top of the Ni or NiFe oxide, which is considered the active phase for the OER. Besides, operando Raman and grazing incidence X-ray absorption spectroscopy experiments reveal that the presence of iron affects both, the disorder level of the active phase and the oxidative charge around Ni during OER. The observed compositional, structural, and electronic properties of each system have been correlated with their electrochemical performance.
Collapse
Affiliation(s)
| | | | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Chao Zhan
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Afshan Jamshaid
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - David Kordus
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Helmut Kuhlenbeck
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
4
|
Lee C, Yun YH, Kim SH, Doo G, Lee S, Park H, Park Y, Shin J, Cho HS, Kim SK, Cho E, Jung C, Kim M. Structural and Compositional Optimization of Fe-Co-Ni Ternary Amorphous Electrocatalysts for Efficient Oxygen Evolution in Anion Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405468. [PMID: 39263762 DOI: 10.1002/smll.202405468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) offers a sustainable path for hydrogen production with advantages such as high current density, dynamic responsiveness, and low-cost electrocatalysts. However, the development of efficient and durable oxygen evolution reaction (OER) electrocatalysts under operating conditions is crucial for achieving the AEMWE. This study systematically investigated Fe-Co-Ni ternary amorphous electrocatalysts for the OER in AEMWE through a comprehensive material library system comprising 21 composition series. The study aims to explore the relationship between composition, degree of crystallinity, and electrocatalytic activity using ternary contours and binary plots to derive optimal catalysts. The findings reveal that higher Co and lower Fe contents lead to increased structural disorder within the Fe-Co-Ni system, whereas an appropriate amount of Fe addition is necessary for OER activity. It is concluded that the amorphous structure of Fe-Co3-Ni possesses an optimal ternary composition and degree of crystallinity to facilitate the OER. Post-OER analyses reveal that the optimized ternary amorphous structure induces structural reconstruction into an OER-favorable OOH-rich surface. The Fe-Co3-Ni electrocatalysts exhibit outstanding performances in both half-cells and single-cells, with an overpotential of 256 mV at 10 mA cm- 2 and a current density of 2.0 A cm- 2 at 1.89 V, respectively.
Collapse
Affiliation(s)
- Changsoo Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Young Hwa Yun
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Se-Ho Kim
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gisu Doo
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Sechan Lee
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyunjeong Park
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Youngtae Park
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Jooyoung Shin
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Hyun-Seok Cho
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Department of Chemical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Kyung Kim
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - EunAe Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chanwon Jung
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
- Department of Materials Science and Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - MinJoong Kim
- Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
- Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| |
Collapse
|
5
|
Wang C, Wang Y, Sun W, Huang D, Lin S, Wang L, Zeng H. Electricity-driven dealkalization of bauxite residue based on thermodynamics, kinetics, and mineral transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45747-45760. [PMID: 38977552 DOI: 10.1007/s11356-024-34100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/09/2024] [Indexed: 07/10/2024]
Abstract
High alkalinity content of bauxite residue is a major factor that hinders resource reutilization and pollutes the environment. Although acid neutralization is a direct and effective method, the amount of acid and secondary waste of sodium salt are still difficult problems to solve. Herein, we innovatively integrated an electric field into the acid neutralization dealkalization of bauxite residue and analyzed the dealkalization behavior by thermodynamics, kinetics, and mineral transformation. The results show that the pH of the anode chamber was maintained at the acidic levels of 3-6 after 30 min of galvanostatic electrolysis, and bauxite residue can realize dealkalization by acid neutralization. In the anode chamber, Na+ was released into the leachate via the reactions of Na3Al3Si3O12 and the removal of encapsulated soluble alkali. The stainless steel wire mesh anode exhibited its superiority and decreased the Na2O content in bauxite residue from 9.48 to 3.13% through convective mass transfer driven by the electric field and steady-state diffusion under stirring. This research provides a promising method for the electricity-driven dealkalization of bauxite residue, thus facilitating the development of multifield coupling theory and the application of electric fields in the alumina industry.
Collapse
Affiliation(s)
- Chengwen Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Yanxiu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
- , Changsha, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Dandan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Shangyong Lin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| | - Hua Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
- , Changsha, China
| |
Collapse
|
6
|
Jesudass SC, Surendran S, Moon DJ, Shanmugapriya S, Kim JY, Janani G, Veeramani K, Mahadik S, Kim IG, Jung P, Kwon G, Jin K, Kim JK, Hong K, Park YI, Kim TH, Heo J, Sim U. Defect engineered ternary metal spinel-type Ni-Fe-Co oxide as bifunctional electrocatalyst for overall electrochemical water splitting. J Colloid Interface Sci 2024; 663:566-576. [PMID: 38428114 DOI: 10.1016/j.jcis.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Sathyanarayanan Shanmugapriya
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea
| | - Krishnan Veeramani
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shivraj Mahadik
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Il Goo Kim
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Pildo Jung
- Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas Lawrence, KS 66045, United States
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Kootak Hong
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jaeyeong Heo
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 58330 Jeollanamdo, Republic of Korea; Research Institute, NEEL Sciences, INC., Gwangju 61186, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Quan X, Ma J, Shao Q, Li H, Sun L, Huang G, Yan S, Hong Z, Wang Y, Wang X. Tungsten doped FeCoP 2 nanoparticles embedded into carbon for highly efficient oxygen evolution reaction. RSC Adv 2024; 14:16639-16648. [PMID: 38784417 PMCID: PMC11110020 DOI: 10.1039/d4ra02326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Designing active and stable electrocatalysts with economic efficiency for oxygen evolution reaction (OER) is essential for developing water splitting process at an industrial scale. Herein, we rationally designed a tungsten doped iron cobalt phosphide incorporated with carbon (Wx-FeCoP2/C), prepared by a mechanochemical approach. X-ray photoelectron spectroscopy (XPS) revealed that the doping of W led to an increasing of Co3+/Co2+ and Fe3+/Fe2+ molar ratios, which contributed to the enhanced OER performance. As a result, a current density of 10 mA cm-2 was achieved in 1 M KOH at an overpotential of 264 mV on the optimized W0.1-FeCoP2/C. Moreover, at high current density of 100 mA cm-2, the overpotential value was 310 mV, and the corresponding Tafel slope was measured to be 48.5 mV dec-1, placing it among the best phosphide-based catalysts for OER. This work is expected to enlighten the design strategy of highly efficient phosphide-based OER catalysts.
Collapse
Affiliation(s)
- Xinyao Quan
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Jiajia Ma
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Qianshuo Shao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Haocong Li
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Lingxiang Sun
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Guili Huang
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Su Yan
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Zhanglian Hong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yuning Wang
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences Suzhou 215155 China
| | - Xiaoqing Wang
- College of Materials and Chemical Engineering, Chuzhou University 239000 Chuzhou China
| |
Collapse
|
8
|
Wu Q, Li F, Sheng H, Qi Y, Yuan J, Bi H, Li W, Xie E, Lan W. In Situ Fabrication of Hierarchical CuO@CoNi-LDH Composite Structures for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669688 DOI: 10.1021/acsami.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Layered double hydroxide (LDH) materials, despite their high theoretical capacity, exhibit significant performance degradation with increasing load due to their low conductivity. Simultaneously achieving both high capacity and high rate performance is challenging. Herein, we fabricated vertically aligned CuO nanowires in situ on the copper foam (CF) substrate by alkali-etching combined with the annealing process. Using this as a skeleton, electrochemical deposition technology was used to grow the amorphous α-phase CoNi-LDH nanosheets on its surface. Thanks to the high specific surface area of the CuO skeleton, ultrahigh loading (̃16.36 mg cm-2) was obtained in the fabricated CF/CuO@CoNi-LDH electrode with the cactus-like hierarchical structure, which enhanced the charge transfer and ion diffusion dynamics. The CF/CuO@CoNi-LDH electrode achieved a good combination of high areal capacitance (33.5 F cm-2) and high rate performance (61% capacitance retention as the current density increases 50 times). The assembled asymmetric supercapacitor device demonstrated a maximum potential window of 0-1.6 V and an energy density of 1.7 mWh cm-2 at a power density of 4 mW cm-2. This work provides a feasible strategy for the design and fabrication of high-mass-loading LDH composites for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Qiyuan Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Fengfeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Yifeng Qi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Huasheng Bi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
9
|
Chen J, Liu Y, Duan R, Huang Q, Li C. Binuclear Metal Phthalocyanines with Enhanced Activity in the Oxygen Evolution Reaction: A First-Principles Study. J Phys Chem Lett 2024:3336-3344. [PMID: 38498308 DOI: 10.1021/acs.jpclett.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rational design of efficient catalysts for the electrochemical oxygen evolution reaction (OER) critically relies on a comprehensive understanding of the reaction mechanisms. Herein, the alkaline OER on planar mononuclear metal phthalocyanines (MPc, where M = Mn, Co, Fe, and Ni) and binuclear metal phthalocyanines (bi-MPc) is studied using density functional theory (DFT) methods. Both FePc and bi-CoPc exhibit enhanced stability and OER activity, with the energy required for the leaching of central metal being as high as 2.28 and 2.45 eV and the overpotentials of the OER being 0.48 and 0.57 V, respectively. Through electronic structure analysis, it is found that, in the OER process of bi-MPc, the large macrocyclic ligand and metal ions not bonding with the intermediate can serve as hole reservoirs. Intermediate species are further stabilized by the dispersal of a positive charge, reducing the free energy. These findings underscore the significance of macrocyclic ligands in the rate-determining step of the OER catalyst.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Key Laboratory of Advanced Catalysis of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
10
|
Lun S, Wang H, Deng Y, Cui J, Liang P, Wang K, Lv L, Wan H, Wang H. FeNi decorated nitrogen-doped hollow carbon spheres as ultra-stable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery with 2.7% decay after 300 hours cycling. RSC Adv 2024; 14:3857-3866. [PMID: 38274171 PMCID: PMC10810229 DOI: 10.1039/d3ra08572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Research on non-noble metal bifunctional electrocatalysts with high efficiency and long-lasting stability is crucial for many energy storage devices such as zinc-air batteries. In this report, nitrogen-doped porous hollow carbon spheres with a size of about 300 nm were fabricated using a modified Stöber method and decorated with an FeNi alloy through a pyrolytic reduction process, resulting in a promising bifunctional electrocatalyst for both the oxygen evolution reaction and oxygen reduction reaction. The as-prepared FeNi@NHCS electrocatalyst exhibits excellent bifunctional activity in KOH electrolyte, attributed to its mesoporous structure, large specific surface area, and the strong coupling between the FeNi nanoalloy and nitrogen-doped carbon carriers. The electrocatalyst demonstrates excellent ORR performance with E1/2 = 0.828 V and OER activity with Ej=10 mA = 1.51 V. A zinc-air battery using FeNi@NHCS as the air electrode achieves an open-circuit voltage of 1.432 V and a maximum power density of 181.8 mW cm-2. After 300 h of galvanostatic charge-discharge cycles, the charge-discharge voltage gap (ΔU) of the battery had only decayed by 2.7%, demonstrating superior cycling stability.
Collapse
Affiliation(s)
- Shengjie Lun
- Hubei Yangtze Memory Laboratories Wuhan 430205 China
- School of Microelectronics, Hubei University Wuhan 430062 China
| | - HanBin Wang
- Hubei Yangtze Memory Laboratories Wuhan 430205 China
- School of Microelectronics, Hubei University Wuhan 430062 China
| | - Yijing Deng
- School of Microelectronics, Hubei University Wuhan 430062 China
| | - Jinting Cui
- School of Microelectronics, Hubei University Wuhan 430062 China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University Hangzhou 310018 China
| | - Kaiwen Wang
- School of Microelectronics, Hubei University Wuhan 430062 China
| | - Lin Lv
- Hubei Yangtze Memory Laboratories Wuhan 430205 China
- School of Microelectronics, Hubei University Wuhan 430062 China
| | - Houzhao Wan
- Hubei Yangtze Memory Laboratories Wuhan 430205 China
- School of Microelectronics, Hubei University Wuhan 430062 China
| | - Hao Wang
- Hubei Yangtze Memory Laboratories Wuhan 430205 China
- School of Microelectronics, Hubei University Wuhan 430062 China
| |
Collapse
|
11
|
Xu W, Wang Z, Liu P, Tang X, Zhang S, Chen H, Yang Q, Chen X, Tian Z, Dai S, Chen L, Lu Z. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306062. [PMID: 37907201 DOI: 10.1002/adma.202306062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Indexed: 11/02/2023]
Abstract
Although hydrogen gas (H2 ) storage might enable offshore renewable energy to be stored at scale, the commercialization of technology for H2 generation by seawater electrolysis depends upon the development of methods that avoid the severe corrosion of anodes by chloride (Cl- ) ions. Here, it is revealed that the stability of an anode used for seawater splitting can be increased by more than an order of magnitude by loading Ag nanoparticles on the catalyst surface. In experiments, an optimized NiFe-layered double hydroxide (LDH)@Ag electrode displays stable operation at 400 mA cm-2 in alkaline saline electrolyte and seawater for over 5000 and 2500 h, respectively. The impressive long-term durability is more than 20 times that of an unmodified NiFe-LDH anode. Meticulous characterization and simulation reveals that in the presence of an applied electric field, free Cl- ions react with oxidized Ag nanoparticles to form stable AgCl species, giving rise to the formation of a Cl- -free layer near the anode surface. Because of its simplicity and effectiveness, it is anticipated that the proposed strategy to immobilize chloride ions on the surface of an anode has the potential to become a crucial technology to control corrosion during large-scale electrolysis of seawater to produce hydrogen.
Collapse
Affiliation(s)
- Wenwen Xu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Zhongfeng Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingying Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi, 333403, P. R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Sixie Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haocheng Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Xu Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Chen D, Hu X, Chen C, Lin D, Xu J. Tailoring Fe 0 Nanoparticles via Lattice Engineering for Environmental Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17178-17188. [PMID: 37903754 DOI: 10.1021/acs.est.3c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure-property-activity relationships. The materials' reactivity-selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements' amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.
Collapse
Affiliation(s)
- Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Yang F, Lopez Luna M, Haase FT, Escalera-López D, Yoon A, Rüscher M, Rettenmaier C, Jeon HS, Ortega E, Timoshenko J, Bergmann A, Chee SW, Roldan Cuenya B. Spatially and Chemically Resolved Visualization of Fe Incorporation into NiO Octahedra during the Oxygen Evolution Reaction. J Am Chem Soc 2023; 145:21465-21474. [PMID: 37726200 PMCID: PMC10557136 DOI: 10.1021/jacs.3c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 09/21/2023]
Abstract
The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe3+ ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeOx aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeOx aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.
Collapse
Affiliation(s)
- Fengli Yang
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Mauricio Lopez Luna
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Felix T. Haase
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Daniel Escalera-López
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
14
|
Huang H, Ning S, Xie Y, He Z, Teng J, Chen Z, Fan Y, Shi JY, Barboiu M, Wang D, Su CY. Synergistic Modulation of Electronic Interaction to Enhance Intrinsic Activity and Conductivity of Fe-Co-Ni Hydroxide Nanotube for Highly Efficient Oxygen Evolution Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302272. [PMID: 37127855 DOI: 10.1002/smll.202302272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The large-scale hydrogen production and application through electrocatalytic water splitting depends crucially on the development of highly efficient, cost-effective electrocatalysts for oxygen evolution reaction (OER), which, however, remains challenging. Here, a new electrocatalyst of trimetallic Fe-Co-Ni hydroxide (denoted as FeCoNiOx Hy ) with a nanotubular structure is developed through an enhanced Kirkendall process under applied potential. The FeCoNiOx Hy features synergistic electronic interaction between Fe, Co, and Ni, which not only notably increases the intrinsic OER activity of FeCoNiOx Hy by facilitating the formation of *OOH intermediate, but also substantially improves the intrinsic conductivity of FeCoNiOx Hy to facilitate charge transfer and activate catalytic sites through electrocatalyst by promoting the formation of abundant Co3+ . Therefore, FeCoNiOx Hy delivers remarkably accelerated OER kinetics and superior apparent activity, indicated by an ultra-low overpotential potential of 257 mV at a high current density of 200 mA cm-2 . This work is of fundamental and practical significance for synergistic catalysis related to advanced energy conversion materials and technologies.
Collapse
Affiliation(s)
- Huanfeng Huang
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shunlian Ning
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanyu Xie
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhujie He
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun Teng
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhuodi Chen
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanan Fan
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Ying Shi
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- Adaptive Supramolecular Nanosystems Group, Institut Europeen des Membranes, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, 34095, France
| | - Dawei Wang
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials, School of Chemistry, MOE Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
15
|
Qiao C, Usman Z, Wei J, Gan L, Hou J, Hao Y, Zhu Y, Zhang J, Cao C. Efficient O-O Coupling at Catalytic Interface to Assist Kinetics Optimization on Concerted and Sequential Proton-Electron Transfer for Water Oxidation. ACS NANO 2023. [PMID: 37377176 DOI: 10.1021/acsnano.3c00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A catalyst kinetics optimization strategy based on tuning active site intermediates adsorption is proposed. Construction of the M-OOH on the catalytic site before the rate-determining step (RDS) is considered a central issue in the strategy, which can optimize the overall catalytic kinetics by avoiding competition from other reaction intermediates on the active site. Herein, the kinetic energy barrier of the O-O coupling for as-prepared sulfated Co-NiFe-LDH nanosheets is significantly reduced, resulting in the formation of M-OOH on the active site at low overpotential, which is directly confirmed by in situ Raman and charge transfer fitting results. Moreover, catalysts constructed from active sites of highly efficient intermediates make a reliable model for studying the mechanism of the OER in proton transfer restriction. In weakly alkaline environments, a sequential proton-electron transfer (SPET) mechanism replaces the concerted proton-electron transfer (CPET) mechanism, and the proton transfer step becomes the RDS; high-speed consumption of reaction intermediates (M-OOH) induces sulfated Co-NiFe-LDH to exhibit excellent kinetics.
Collapse
Affiliation(s)
- Chen Qiao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zahid Usman
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan
| | - Jie Wei
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lin Gan
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Yingying Hao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jiatao Zhang
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
16
|
Mehmood R, Fan W, Hu X, Li J, Liu P, Zhang Y, Zhou Z, Wang J, Liu M, Zhang F. Confirming High-Valent Iron as Highly Active Species of Water Oxidation on the Fe, V-Coupled Bimetallic Electrocatalyst: In Situ Analysis of X-ray Absorption and Mössbauer Spectroscopy. J Am Chem Soc 2023. [PMID: 37227965 DOI: 10.1021/jacs.3c02288] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Iron (Fe)-based bimetallic oxides/hydroxides have been widely investigated for promising alkaline electrochemical oxygen evolution reactions (OERs), but it still remains argumentative whether Fe3+ or Fe4+ intermediates are highly active for efficient OER. Here, we rationally designed and prepared one Fe, V-based bimetallic composite nanosheet by employing the OER-inert V element as a promoter to completely avoid the argument of real active metals and using our recently developed one-dimensional conductive nickel phosphide (NP) as a support. The as-obtained hierarchical nanocomposite (denoted as FeVOx/NP) was evaluated as a model catalyst to gain insight into the iron-based species as highly active OER sites by performing in situ X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy measurements. It was found that the high-valent Fe4+ species can only be detected during the OER process of the FeVOx/NP nanocomposite instead of the iron counterpart itself. Together with the fact that the OER activities of both the vanadium and iron counterparts are by far worse than that of the FeVOx/NP composite, we can confirm that the high-valent Fe4+ formed are the highly active species for efficient OER. As demonstrated by density functional theory simulations, the composite of Fe and V metals is proposed to cause a decreased Gibbs free energy as well as theoretical overpotential of water oxidation with respect to its counterparts, as is responsible for its excellent OER performance with extremely low OER overpotential (290 mV at 500 mA cm-2) and extraordinary stability (1000 h at 100 mA cm-2).
Collapse
Affiliation(s)
- Rashid Mehmood
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
| | - Xu Hu
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
| | - Jiangnan Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peijia Liu
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yashi Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhou
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Min Liu
- College of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
| |
Collapse
|
17
|
Viswanathan P, Kim K. In Situ Surface Restructuring of Amorphous Ni-Doped CoMo Phosphate-Based Three-Dimensional Networked Nanosheets: Highly Efficient and Durable Electrocatalyst for Overall Alkaline Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16571-16583. [PMID: 36971241 DOI: 10.1021/acsami.2c18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing cost-efficient bifunctional electrocatalysts with high efficiency and durability for the production of green hydrogen and oxygen is a demanding and challenging research area. Due to their high earth abundance, transition metal-based electrocatalysts are alternatives to noble metal-based water splitting electrocatalysts. Herein, binder-free three-dimensional (3D) networked nanosheets of Ni-doped CoMo ternary phosphate (Pi) were prepared using a facile electrochemical synthetic strategy on flexible carbon cloth without any high-temperature heat treatment or complicated electrode fabrication. The optimized CoMoNiPi electrocatalyst delivers admirable hydrogen (η10 = 96 mV) and oxygen (η10 = 272 mV) evolution performances in 1.0 M KOH electrolyte. For overall water splitting in a two-electrode system, the present catalyst demands only 1.59 and 1.90 V to reach current densities of 10 and 100 mA/cm2, respectively, which is lower than that of the Pt/C||RuO2 couple (1.61 V @ 10 mA/cm2, 2 V > @ 100 mA/cm2) and many other catalysts reported previously. Furthermore, the present catalyst delivers excellent long-term stability in a two-electrode system continuously over 100 h at a high current density of 100 mA/cm2, exhibiting nearly 100% faradic efficiency. The unique 3D amorphous structure with high porosity, a high active surface area, and lower charge transfer resistance provides excellent overall water splitting. Notably, the amorphous structure of the present catalyst favors the in situ surface reconstruction during electrolysis and generates very stable surface-active sites capable of long-term performance. The present work provides a route for the preparation of multimetallic-Pi nanostructures for various electrode applications that are easy to prepare and have superior activity, high stability, and low cost.
Collapse
Affiliation(s)
- Perumal Viswanathan
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyuwon Kim
- Electrochemistry Laboratory for Sensors and Energy (ELSE), Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
18
|
Gao F, Wang X, Cui WG, Liu Y, Yang Y, Sun W, Chen J, Liu P, Pan H. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. SMALL METHODS 2023; 7:e2201532. [PMID: 36813753 DOI: 10.1002/smtd.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
As a straightforward way to fix solar energy, photo/photothermal catalysis with semiconductor provides a promising way to settle the energy shortage and environmental crisis in many fields, especially in clean energy conversion. Topologically porous heterostructures (TPHs), featured with well-defined pores and mainly composed by the derivatives of some precursors with specific morphology, are a major part of hierarchical materials in photo/photothermal catalysis and provide a versatile platform to construct efficient photocatalysts for their enhanced light absorption, accelerated charges transfer, improved stability, and promoted mass transportation. Therefore, a comprehensive and timely review on the advantages and recent applications of the TPHs is of great importance to forecast the potential applications and research trend in the future. This review initially demonstrates the advantages of TPHs in photo/photothermal catalysis. Then the universal classifications and design strategies of TPHs are emphasized. Besides, the applications and mechanisms of photo/photothermal catalysis in hydrogen evolution from water splitting and COx hydrogenation over TPHs are carefully reviewed and highlighted. Finally, the challenges and perspectives of TPHs in photo/photothermal catalysis are also critically discussed.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ping Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
19
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Gloag L, Poerwoprajitno AR, Cheong S, Ramadhan ZR, Adschiri T, Gooding JJ, Tilley RD. Synthesis of hierarchical metal nanostructures with high electrocatalytic surface areas. SCIENCE ADVANCES 2023; 9:eadf6075. [PMID: 36630515 PMCID: PMC9833653 DOI: 10.1126/sciadv.adf6075] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
3D interconnected structures can be made with molecular precision or with micrometer size. However, there is no strategy to synthesize 3D structures with dimensions on the scale of tens of nanometers, where many unique properties exist. Here, we bridge this gap by building up nanosized gold cores and nickel branches that are directly connected to create hierarchical nanostructures. The key to this approach is combining cubic crystal-structured cores with hexagonal crystal-structured branches in multiple steps. The dimensions and 3D morphology can be controlled by tuning at each synthetic step. These materials have high surface area, high conductivity, and surfaces that can be chemically modified, which are properties that make them ideal electrocatalyst supports. We illustrate the effectiveness of the 3D nanostructures as electrocatalyst supports by coating with nickel-iron oxyhydroxide to achieve high activity and stability for oxygen evolution reaction. This work introduces a synthetic concept to produce a new type of high-performing electrocatalyst support.
Collapse
Affiliation(s)
- Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Soshan Cheong
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Zeno R. Ramadhan
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tadafumi Adschiri
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Advanced Institute of Materials Research, WPI-AIMR, Tohoku University, Sendai 980-8577, Japan
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Nishimoto T, Shinagawa T, Naito T, Harada K, Yoshida M, Takanabe K. High Current Density Oxygen Evolution in Carbonate Buffered Solution Achieved by Active Site Densification and Electrolyte Engineering. CHEMSUSCHEM 2023; 16:e202201808. [PMID: 36341589 PMCID: PMC10100521 DOI: 10.1002/cssc.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
High current density reaching 1 A cm-2 for efficient oxygen evolution reaction (OER) was demonstrated by interactively optimizing electrolyte and electrode at non-extreme pH levels. Careful electrolyte assessment revealed that the state-of-the-art nickel-iron oxide electrocatalyst in alkaline solution maintained its high OER performance with a small Tafel slope in K-carbonate solution at pH 10.5 at 353 K. The OER performance was improved when Cu or Au was introduced into the FeOx -modified nanostructured Ni electrode as the third element during the preparation of electrode by electrodeposition. The resultant OER achieved 1 A cm-2 at 1.53 V vs. reversible hydrogen electrode (RHE) stably for 90 h, comparable to those in extreme alkaline conditions. Constant Tafel slopes, apparent activation energy, and the same signatures from operando X-ray absorption spectroscopy among these samples suggested that this improvement seems solely correlated with enhanced electrochemical surface area caused by adding the third element.
Collapse
Affiliation(s)
- Takeshi Nishimoto
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Tatsuya Shinagawa
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Takahiro Naito
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| | - Kazuki Harada
- Department of Applied ChemistryGraduate School of Sciences and Technology for InnovationYamaguchi University2-16-1 Tokiwadai, UbeYamaguchiJapan
| | - Masaaki Yoshida
- Department of Applied ChemistryGraduate School of Sciences and Technology for InnovationYamaguchi University2-16-1 Tokiwadai, UbeYamaguchiJapan
- Blue Energy Center for SGE Technology (BEST)Yamaguchi University2-16-1 Tokiwadai, UbeYamaguchiJapan
| | - Kazuhiro Takanabe
- Department of Chemical System EngineeringSchool of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyoJapan
| |
Collapse
|
22
|
Wang H, He Q, Zhan F, Chen L. Fe, Co-codoped layered double hydroxide nanosheet arrays derived from zeolitic imidazolate frameworks for high-performance aqueous hybrid supercapacitors and Zn-Ni batteries. J Colloid Interface Sci 2023; 630:286-296. [DOI: 10.1016/j.jcis.2022.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
|
23
|
Kreider ME, Burke Stevens M. Material Changes in Electrocatalysis: An In Situ/Operando Focus on the Dynamics of Cobalt‐Based Oxygen Reduction and Evolution Catalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering Stanford University 443 Via Ortega, Stanford California 94305 United States
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park California 94025 United States
| |
Collapse
|
24
|
Chen Z, Xu C, Zhao F, Xi S, Li W, Huang M, Cai B, Gu M, Wang HL, Xiang XD. High-Performance Oxygen Evolution Reaction Electrocatalysts Discovered via High-Throughput Aerogel Synthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhuyang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Chen Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Fu Zhao
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Weixuan Li
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Mingcheng Huang
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Bijun Cai
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Meng Gu
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Hsing-Lin Wang
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - X.-D. Xiang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| |
Collapse
|
25
|
Moschkowitsch W, Samanta B, Zion N, Honig HC, Cullen DA, Caspary Toroker M, Elbaz L. NiFe-mixed metal porphyrin aerogels as oxygen evolution reaction catalysts in alkaline electrolysers. NANOSCALE 2022; 14:18033-18040. [PMID: 36445268 DOI: 10.1039/d2nr05675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aerogels are a very interesting group of materials owing to their unique physical and chemical properties. In the context of electrocatalysis, the focus has been on their physical properties, and they have been used primarily as catalyst supports so far. In this work, we synthesized porphyrin aerogels containing Ni and NiFe mixed metal materials and studied them as catalysts for the oxygen evolution reaction (OER). Different Ni : Fe ratios were synthesized and studied in electrochemical cells, and DFT calculations were conducted in order to gain insight into their behavior. The activity trends were dependent on the metal ratios and differ from known NiFeOOH materials due to the change in the oxidation states of the metals to higher numbers. Herein, we show that Ni and Fe have a synergistic effect on the OER, despite being structurally separated. They are connected electronically, though, through a large organic aromatic system that facilitates electron sharing between them. Among the mixed metal porphyrin aerogels, the best ratio was found to be Ni : Fe = 35 : 65, in contrast to oxide/oxyhydroxide materials in which a ratio of 80 : 20 was found to be ideal.
Collapse
Affiliation(s)
- Wenjamin Moschkowitsch
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Bipasa Samanta
- Department of Materials Science and Engineering and The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Noam Zion
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Hilah C Honig
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Maytal Caspary Toroker
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
26
|
NiFeOx and NiFeCoOx Catalysts for Anion Exchange Membrane Water Electrolysis. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hydrogen production using an Anion exchange membrane (AEM) electrolyzer allows the use of non-platinum group metal catalysts for oxygen evolution reaction (OER). Nickel and Cobalt-based oxides are active in an alkaline environment for OER and are relatively inexpensive compared to IrO2 catalysts used in Polymer electrolyte membrane (PEM) electrolysis. Mixed metal oxide catalysts NiFeOx and NiFeCoOx catalysts were synthesized by the coprecipitation method using NaOH. X-ray diffraction results showed mainly NiO diffraction peaks for the NiFeOx catalyst due to the low concentration of Fe, for the NiFeCoOx catalyst, NiCo2O4 diffraction peaks were observed. NiFeCoOx catalysts showed a higher Anion exchange membrane water electrolysis (AEMWE) performance compared to NiFeOx and commercial NiO, the highest current density at 2 V was 802 mA cm−2 at 70 °C using 1 M KOH as an electrolyte. The effect of electrolyte concentration was studied by using 0.01 M, 0.1 M and 1 M KOH concentrations in an electrolysis operation. Electrochemical Impedance spectroscopy was performed along with the equivalent circuit fitting to calculate ohmic and activation resistances, the results showed a decrease in ohmic and activation resistances with the increase in electrolyte concentration. Commercially available AEM (Fumasep FAA-3-50 and Sustainion dioxide membrane X-37-50 grade T) were tested at similar conditions and their performance was compared. EIS results showed that X-37-50 offered lower ohmic resistance than the FAA-3-50 membrane.
Collapse
|
27
|
Wang A, Zhang X, Gao S, Zhao C, Kuang S, Lu S, Niu J, Wang G, Li W, Chen D, Zhang H, Zhou X, Zhang S, Zhang B, Wang W. Fast-Charging Zn-Air Batteries with Long Lifetime Enabled by Reconstructed Amorphous Multi-Metallic Sulfide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204247. [PMID: 36177691 DOI: 10.1002/adma.202204247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Developing fast-charging Zn-air batteries is crucial for widening their application but remains challenging owing to the limitation of sluggish oxygen evolution reaction (OER) kinetics and insufficient active sites of electrocatalysts. To solve this issue, a reconstructed amorphous FeCoNiSx electrocatalyst with high density of efficient active sites, yielding low OER overpotentials of 202, 255, and 323 mV at 10, 100, and 500 mA cm-2 , respectively, is developed for fast-charging Zn-air batteries with low charging voltages at 100-400 mA cm-2 . Furthermore, the fabricated 3241.8 mAh (20 mA cm-2 , 25 °C) quasi-solid Zn-air battery shows long lifetime of 500 h at -10 and 25 °C as well as 150 h at 40 °C under charging 100 mA cm-2 . The detailed characterizations combine with density functional theory calculations indicate that the defect-rich crystalline/amorphous ternary metal (oxy)hydroxide forms by the reconstruction of amorphous multi-metallic sulfide, where the electron coupling effect among multi-active sites and migration of intermediate O* from Ni site to the Fe site breaks the scaling relationship to lead to a low theoretical OER overpotential of 170 mV, accounting for the outstanding fast-charging property. This work not only provides insights into designing advanced OER catalysts by the self-reconstruction of the pre-catalyst but also pioneers a pathway for practical fast-charging Zn-air batteries.
Collapse
Affiliation(s)
- Ansheng Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Xilin Zhang
- School of Physic, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang, 453007, China
| | - Shan Gao
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Chunning Zhao
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Siyu Kuang
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Lu
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Geng Wang
- Tianjin Academy of Eco-environment Sciences, State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin, 300191, China
| | - Weifang Li
- Tianjin Academy of Eco-environment Sciences, State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin, 300191, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Haijun Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Sheng Zhang
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Weichao Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
28
|
Wang X, Zhong H, Xi S, Lee WSV, Xue J. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107956. [PMID: 35853837 DOI: 10.1002/adma.202107956] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The electron-transfer process during the oxygen evolution reaction (OER) often either proceeds solely via a metal redox chemistry (adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level). Unlike the AEM, the LOM involves oxygen redox chemistry instead of metal redox, which leads to the formation of a direct oxygen-oxygen (OO) bond. As a result, such a process is able to bypass the rate-determining step, that is, OO bonding, in AEM, which highlights the critical advantage of LOM as compared to the conventional AEM. Thus, it has been well reported that LOM-based catalysts are able to demonstrate higher OER activities as compared to AEM-based catalysts. Here, a comprehensive understanding of the oxygen redox in LOM and all documented and possible characterization techniques that can be used to identify the oxygen redox are reviewed. This review will interpret the origins of oxygen redox in the reported LOM-based electrocatalysts and the underlying science of LOM-induced surface reconstruction in transition metal oxides. Finally, perspectives on the future development of LOM electrocatalysts are also provided.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
29
|
Lv JQ, Chen X, Chang Y, Li YG, Zang HY. N, F Codoped FeOOH Nanosheets with Intercalated Carbonate Anions Rich in Oxygen Defects for Enhanced Alkaline Electrocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52877-52885. [PMID: 36383757 DOI: 10.1021/acsami.2c15158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alkaline water splitting is a highly efficient and clean technology for hydrogen energy generation. However, in alkaline solutions, most catalysts suffer from extreme instability. Herein, a cross-nanostructured N, F, and CO32- codoped iron oxyhydroxide composite (N,F-FeO(OH)-CO3-NF) rich in oxygen defects is designed for water splitting in the alkaline solution. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations show that the introduction of F and CO32- can induce electron redistribution around the active center Fe, accelerate the four-electron transfer process, and optimize the d-band center, thereby improving the efficiency and stability of HER and OER. In a 1 M KOH solution, N,F-FeO(OH)-CO3-NF only needs the overpotential of 248 mV for OER and the overpotential of 199 mV for HER to reach the current density of 10 mA·cm-2. Meanwhile, it can reach 100 mA·cm-2 current density at 1.55 V vs RHE and maintains a current density of 10 mA·cm-2 for 120 h in a two-electrode electrolytic water device. Compared with bulk hydroxides, the heteroatom and anion codoped composite hydroxides are more stable and have dual functions in the electrolyte solution. This is of great significance for designing a new stable water-splitting electrocatalyst.
Collapse
Affiliation(s)
- Jia-Qi Lv
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Xinyu Chen
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Yingfei Chang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Yang-Guang Li
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| |
Collapse
|
30
|
Raeisi‐Kheirabadi N, Nezamzadeh‐Ejhieh A. The Experimental Design Approach in Square‐Wave Voltammetric Determination of Tamoxifen by NiO‐CPE**. ChemistrySelect 2022. [DOI: 10.1002/slct.202203788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Neda Raeisi‐Kheirabadi
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| | - Alireza Nezamzadeh‐Ejhieh
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| |
Collapse
|
31
|
Chang H, Cong S, Wang L, Wang C. Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc-Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213834. [PMID: 36364610 PMCID: PMC9657497 DOI: 10.3390/nano12213834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 05/14/2023]
Abstract
Zinc-air batteries (ZABs) have several advantages, including high energy density, cheap price and stable performances with good application prospects in the field of power batteries. The charging and discharging reactions for the air cathode of ZABs are the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, which play an important role in the whole performance of ZAB. Due to the cost and limited reserves of highly active precious metal catalysts, it is crucial to design alternative efficient and stable dual-functional non-precious metal catalysts. In the present review, we present a systematic summary of the recent progress in the use of transition metal-based electrocatalysts as alternatives to precious metals for the positive poles of ZAB air. Combined with state-of-the-art in situ characterization technologies, a deep understanding of the catalytic mechanism of OER/ORR provided unique insights into the precise design of excellent synthetic non-precious metal catalysts from the perspective of atomic structure. This review further shows that the hybrid electric battery is a new strategy to improve the efficiency of the hybrid electric battery, which could be available to alleviate the problem of resource shortage. Finally, the challenges and research trends for the future development of ZABs were clearly proposed.
Collapse
Affiliation(s)
- Haiyang Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Shanshan Cong
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
- Correspondence: (L.W.); or (C.W.)
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
- Correspondence: (L.W.); or (C.W.)
| |
Collapse
|
32
|
Liang Z, Qi T, Liu H, Wang L, Li Q. Zero-valent bimetallic catalyst/absorbent for simultaneous facilitation of MgSO 3 oxidation and arsenic uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157147. [PMID: 35798112 DOI: 10.1016/j.scitotenv.2022.157147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Cobalt (Co)-based catalysts can efficiently reduce the heat waste from sulfate concentration by enhancing sulfite oxidation during wet flue gas desulfurization system. However, arsenic (As) can poison such catalysts and migrate into the sulfate by-products, resulting in severe secondary pollution. In this study, a zero-valent Co/iron (Fe)-based nanoparticle (NZV-Co2Fe1) was fabricated and applied as a bifunctional catalyst/adsorbent. The catalytic stability of the Co-based catalyst was enhanced by the introduction of Fe because the poisonous effect of As was substantially suppressed because of the high adsorption capacity of Fe for As. Compared with the noncatalytic benchmark, the presence of 0.5 g/L NZV-Co2Fe1 can increase the rate of MgSO3 oxidation by approximately 12-fold even at a high concentration of As (2.5 mg/L). The Langmuir model was fitted to the As adsorption isotherms, indicating that As uptake is a single-layer adsorption process. The pseudo-second-order kinetic model indicated that As was removed through chemisorption. The oxidation pathway of As(III) involves reactive radicals (mainly OH, SO4- and SO5-) and ligand-to-metal charge transfer between SO32- and Co2+. The availability of MgSO3 improved the removal efficiency at high concentrations of As(III) (1 mg/L). These results indicate that using NZV-Co2Fe1 as a catalyst to purify the by-products of flue gas desulfurization can effectively prevent secondary pollution.
Collapse
Affiliation(s)
- Zhengwei Liang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tieyue Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hui Liu
- School of Foreign Languages, North China Electric Power University, Beijing 102206, PR China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qiangwei Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
33
|
Battiato S, Bruno L, Pellegrino AL, Terrasi A, Mirabella S. ×Optimized electroless deposition of NiCoP electrocalysts for enhanced water splitting. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
34
|
Liu J, Duan S, Shi H, Wang T, Yang X, Huang Y, Wu G, Li Q. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew Chem Int Ed Engl 2022; 61:e202210753. [DOI: 10.1002/anie.202210753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jianyun Liu
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 China
| | - Shuo Duan
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Hao Shi
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Gang Wu
- Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
35
|
Facile Synthesis of FeCoNiCuIr High Entropy Alloy Nanoparticles for Efficient Oxygen Evolution Electrocatalysis. Catalysts 2022. [DOI: 10.3390/catal12091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The lack of an efficient and stable electrocatalyst for oxygen evolution reaction (OER) greatly hinders the development of various electrochemical energy conversion and storage techniques. In this study, we report a facile synthesis of FeCoNiCuIr high-entropy alloy nanoparticles (HEA NPs) by a one-step heat-up method. The involvement of glucose made the NPs grow uniformly and increased the valence of Ir. The resulting FeCoNiCuIr NPs exhibit excellent OER performance in alkaline solution, with a low overpotential of 360 mV to achieve a current density of 10 mA cm−2 at a Tafel slope of as low as 70.1 mV dec‒1. In addition, high stability has also been observed, which remained at 94.2% of the current density after 10 h constant electrolysis, with a constant current of 10 mA cm‒2. The high electrocatalytic activity and stability are ascribed to the cocktail effect and synergistic effect between the constituent elements. Our work holds the potential to be extended to the design and synthesis of high-performance electrocatalysts.
Collapse
|
36
|
Li R, Wu R, Li Z, Wang J, Liu X, Wen Y, Chiang FK, Chen SW, Chan KC, Lu Z. Boosting Oxygen-Evolving Activity via Atom-Stepped Interfaces Architected with Kinetic Frustration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206890. [PMID: 36101917 DOI: 10.1002/adma.202206890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
A highly active interface is extremely critical for the catalytic efficiency of an electrocatalyst; however, facilely tailoring its atomic packing characteristics remains challenging. Herein, a simple yet effective strategy is reported to obtain copious high-energy atomic steps at the interface via controlling the solidification behavior of glass-forming metallic liquids. By adjusting the chemical composition and cooling rate, highly faceted FeNi3 nanocrystals are in situ formed in an FeNiB metallic glass (MG) matrix, leading to the creation of order/disorder interfaces. Benefiting from the catalytically active and stable atomic steps at the jagged interfaces, the resultant free-standing FeNi3 nanocrystal/MG composite exhibits a low oxygen-evolving overpotential of 214 mV at 10 mA cm-2 , a small Tafel slope of 32.4 mV dec-1 , and good stability in alkaline media, outperforming most state-of-the-art catalysts. This approach is based on the manipulation of nucleation and crystal growth of the solid-solution nanophases (e.g., FeNi3 ) in glass-forming liquids, so that the highly stepped interface architecture can be obtained due to the kinetic frustration effect in MGs upon undercooling. It is envisaged that the atomic-level stepped interface engineering via the physical metallurgy method can be easily extended to other MG systems, providing a new and generic paradigm for designing efficient yet cost-effective electrocatalysts.
Collapse
Affiliation(s)
- Rui Li
- Institute of Clean Energy, Yangtze River Delta Research Insitute, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruoyu Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhibin Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiongjun Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuren Wen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fu-Kuo Chiang
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, China
| | - Shi-Wei Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan R. O. C
| | - K C Chan
- Department of Industrial and Systems Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Zhaoping Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
37
|
Liu J, Duan S, Shi H, Wang T, Yang X, Huang Y, Wu G, Li Q. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianyun Liu
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Shuo Duan
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Hao Shi
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Tanyuan Wang
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Xiaoxuan Yang
- State University of New York at Buffalo: University at Buffalo Department of Chemical and Biological Engineering UNITED STATES
| | - Yunhui Huang
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Gang Wu
- State University of New York at Buffalo: University at Buffalo Department of Chemical and Biological Engineering 309 Furnas Hall 14260 Buffalo UNITED STATES
| | - Qing Li
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| |
Collapse
|
38
|
Sagar P, Yogesh K, Syed A, Marraiki N, Elgorban AM, Zaghloul NSS, Ashoka S. Studies on the effect of crystalline Fe2O3 on OER performance of amorphous NiOOH electrodeposited on stainless steel substrate. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Guan SJ, Zhang P, Ji SJ, Cao Y, Suen NT. Function of Internal and External Fe in a Ni-Based Precatalyst System Toward Oxygen Evolution Reaction. Inorg Chem 2022; 61:12772-12780. [PMID: 35929738 DOI: 10.1021/acs.inorgchem.2c01867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that the "iron" impurity will influence the oxygen evolution reaction (OER) in an alkaline electrolyte, especially for the Ni-based electrocatalyst. Many research studies have investigated the function of Fe in the OER active phase, such as M(OH)2/MOOH (M = Ni and/or Fe), while, surprisingly, very few studies have examined the function of Fe in the "precatalyst" system. Accordingly, in this work, the Ni3-xFexP (x = 0, 0.5, 1) series as an Ni-based precatalyst was employed to inspect the function of internal and external Fe in the Ni-based precatalyst system. It was realized that the sample with internal Fe (i.e., Ni2.5Fe0.5P and Ni2FeP) exhibits efficient OER activity compared to that of the Fe-free one (i.e., Ni3P) owing to the large amount of active M(OH)2/MOOH formed on the surface. This indicates that the internal Fe in the present system may have the ability to facilitate the phase transformation; it was later rationalized from electronic structural calculations that the d band center of the internal Fe (middle transition metal) and Ni (late transition metal) holds the key for this observation. Adding excessive ferrous chloride tetrahydrate (FeCl2·4H2O) as the external Fe in the electrolyte will greatly improve the OER performances for Ni3P; nevertheless, that the OER activity of Ni2FeP is still much superior than that of Ni3P corroborates the fact that the Fe impurity is not the only reason for the elevated OER activity of Ni2FeP and that internal Fe is also critical to the phase transformation as well as OER performance.
Collapse
Affiliation(s)
- Si-Jia Guan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Peng Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Shen-Jing Ji
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yu Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
40
|
Rational design and facile synthesis of Ni-Co-Fe ternary LDH porous sheets for high-performance aqueous asymmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Villalobos J, Morales DM, Antipin D, Schuck G, Golnak R, Xiao J, Risch M. Stabilization of a Mn-Co Oxide During Oxygen Evolution in Alkaline Media. ChemElectroChem 2022; 9:e202200482. [PMID: 35915742 PMCID: PMC9328349 DOI: 10.1002/celc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Improving the stability of electrocatalysts for the oxygen evolution reaction (OER) through materials design has received less attention than improving their catalytic activity. We explored the effects of Mn addition to a cobalt oxide for stabilizing the catalyst by comparing single phase CoOx and (Co0.7Mn0.3)Ox films electrodeposited in alkaline solution. The obtained disordered films were classified as layered oxides using X-ray absorption spectroscopy (XAS). The CoOx films showed a constant decrease in the catalytic activity during cycling, confirmed by oxygen detection, while that of (Co0.7Mn0.3)Ox remained constant within error as measured by electrochemical metrics. These trends were rationalized based on XAS analysis of the metal oxidation states, which were Co2.7+ and Mn3.7+ in the bulk and similar near the surface of (Co0.7Mn0.3)Ox, before and after cycling. Thus, Mn in (Co0.7Mn0.3)Ox successfully stabilized the bulk catalyst material and its surface activity during OER cycling. The development of stabilization approaches is essential to extend the durability of OER catalysts.
Collapse
Affiliation(s)
- Javier Villalobos
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Dulce M. Morales
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Denis Antipin
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Götz Schuck
- Abteilung Struktur und Dynamik von EnergiematerialienHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| | - Ronny Golnak
- Department of Highly Sensitive X-ray SpectroscopyHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 15Berlin12489Germany
| | - Jie Xiao
- Department of Highly Sensitive X-ray SpectroscopyHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Straße 15Berlin12489Germany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner Platz 1Berlin14109Germany
| |
Collapse
|
42
|
Nguyen QT, Robert F, Colliere V, Lecante P, Philippot K, Esvan J, Tran PD, Amiens C. Synthesis of NiFeOx nanocatalysts from metal-organic precursors for the oxygen evolution reaction. Dalton Trans 2022; 51:11457-11466. [PMID: 35822914 DOI: 10.1039/d2dt01370c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of hydrogen from a renewable source that is water requires the development of sustainable catalytic processes. This implies, among others, developing efficient catalytic materials from abundant and low-cost resources and investigating their performance, especially in the oxidation of water as this half-reaction is the bottleneck of the water splitting process. For this purpose, NiFe-based nanoparticles with sizes ca. 3-4 nm have been synthesized by an organometallic approach and characterized by complementary techniques (WAXS, TEM, STEM-HAADF, EDX, XPS, and ATR-FTIR). They display a Ni core and a mixed Ni-Fe oxide shell. Once deposited onto FTO electrodes, they have been assessed in the electrocatalytic oxygen evolution reaction under alkaline conditions. Three different Ni/Fe ratios (2/1, 1/1 and 1/9) have been studied in comparison with their monometallic counterparts. The Ni2Fe1 nanocatalyst displayed the lowest overpotential (320 mV at j = 10 mA cm-2) as well as excellent stability over 16 h.
Collapse
Affiliation(s)
- Quyen T Nguyen
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France.,University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Francois Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Vincent Colliere
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Pierre Lecante
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue J. Marvig, 31055 Toulouse, France
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Jérome Esvan
- CIRIMAT, Université de Toulouse, CNRS-INPT-UPS, 4 Allée Emile Monso, BP 44362, 31030 Toulouse, France
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
43
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
44
|
Xu S, Huang Q, Xue J, Yang Y, Mao L, Huang S, Qian J. Morphologically Controlled Metal-Organic Framework-Derived FeNi Oxides for Efficient Water Oxidation. Inorg Chem 2022; 61:8909-8919. [PMID: 35656800 DOI: 10.1021/acs.inorgchem.2c01035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complex oxygen evolution reaction (OER) is recognized as the most studied and explored electrochemical conversion, which plays a crucial role in energy-related applications. In this work, a series of metal-organic framework (MOF)-derived FeNi oxides from a barrel-shaped Ni-based BMM-10 precursor are conveniently obtained to show an excellent OER performance. Under mild Fe(III) etching, a type of core-shell Fe0.5-BMM-10 can be well preserved and the coordination bond of the middle frame structure is decomposed. Furthermore, the Fex-BMM-10-T series is successfully synthesized with a well-preserved morphology compared to precursors after direct oxidation. Finally, followed by initial electrochemical activation, the decomposition of FeNi oxides generates active Fe-doped nickel oxyhydroxides for efficient water oxidation. The improved OER performance stems from the high specific surface area and abundant exposed active centers, as well as the significant synergistic effect between iron and nickel, which is further verified by the theoretical calculation. This approach can be extended to precisely adjust the morphology of MOFs and their derivatives that can result in superior electrocatalytic properties in terms of energy conversion and storage applications.
Collapse
Affiliation(s)
- Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Qi Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Jinhang Xue
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Yuandong Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P. R. China
| |
Collapse
|
45
|
Cheng H, Zhou H, Zhuang Y, Chen B, Chen J, Yuan A. An integrated optimization of composition and pore structure boosting electrocatalytic oxygen evolution of Prussian blue analogue derivatives. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Wu L, Liu YG, Zhao H, Wang Z, Zhu B, Zhang X, He P, Liu Y, Yang T. MOF-Derived Long Spindle-like Carbon-Coated Ternary Transition-Metal-Oxide Composite for Lithium Storage. ACS OMEGA 2022; 7:16837-16846. [PMID: 35601342 PMCID: PMC9118374 DOI: 10.1021/acsomega.2c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Fe3O4 is a promising alternative for next-generation lithium-ion batteries (LIBs). However, its poor cycle stability due to the large volume effect during cycling and poor conductivity hinders its application. Herein, we have successfully designed and prepared a carbon-coated ternary transition-metal-oxide composite (noted as (FeCoNi)3O4@C), which is derived from FeCoNi-MOF-74 (denoted as FeCoNi-211-24). (FeCoNi)3O4@C perfectly inherited the long spindle-shaped precursor structure, and (FeCoNi)3O4 particles grew in situ on the precursor surface. The ordered particles and the carbon-coated structure inhibited the agglomeration of particles, improving the material's cycle stability and conductivity. Therefore, the electrode exhibited excellent electrochemical performance. Specifically, (FeCoNi)3O4@C-700 presented excellent initial discharge capacity (763.1 mAh g-1 at 0.2 A g-1), high initial coulombic efficiency (73.8%), excellent rate capability, and cycle stability (634.6 mAh g-1 at 0.5 A g-1 after 505 cycles). This study provides a novel idea for developing anode materials for LIBs.
Collapse
Affiliation(s)
- Liming Wu
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Yan-gai Liu
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Hang Zhao
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Zekun Wang
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Bing Zhu
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Xi Zhang
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Peijie He
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Yicen Liu
- School
of Materials Science and Technology, Beijing Key Laboratory of Materials,
Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory
of Mineral Materials, China University of
Geosciences, Beijing 100083, People’s Republic
of China
| | - Tao Yang
- College
of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
47
|
Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution. Catalysts 2022. [DOI: 10.3390/catal12050490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coatings consisting of cobalt, nickel and iron (Co-Ni-Fe) oxides were electrophoretically deposited on AISI 304-type stainless steel using aqueous suspensions without any binder. The synthesis of Co-Ni-Fe oxides was carried out by the thermal decomposition of metal nitrates with various molar ratios at 673 K. Structural and morphological analysis confirmed that the deposited coatings were mainly composed of spinel-type oxides with predominantly round-shaped particles. The prepared electrodes were examined for their electrocatalytic performance in oxygen generation under alkaline conditions. Various electrochemical techniques indicated the influence of iron content on the electrochemical activity of Co-Ni-Fe oxides, with the calculated values of the Tafel constant being in the range of 52–59 mV dec−1. Long-term oxygen generation for 24 h at 1.0 V revealed very good mechanical and electrocatalytic stability of the prepared electrodes, since they were able to maintain up to 98% of their initial activity.
Collapse
|
48
|
Chang H, Liang Z, Wang L, Wang C. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. NANOSCALE 2022; 14:5639-5656. [PMID: 35333268 DOI: 10.1039/d2nr00522k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a clean and renewable energy carrier, hydrogen (H2) has become an attractive alternative to dwindling fossil fuels. The key to realizing hydrogen-based energy systems is to develop efficient and economical hydrogen production methods. The water electrolysis technique has the advantages of cleanliness, sustainability, and high efficiency, which can be applied to large-scale hydrogen production. However, the electrocatalytic oxygen evolution reaction (OER) at the anode plays a decisive role in the efficiency of hydrogen evolution during water splitting. Generally, noble metal catalysts (such as ruthenium and iridium) are considered to exhibit the best OER performance; however, they exhibit disadvantages such as high costs, limited reserves, and poor stability. Therefore, the research on highly efficient non-noble metal catalysts that can replace their noble metal counterparts has always been important. This review presents the recent advances in the preparation of high-performance OER electrocatalysts by regulating the electronic structure of 3d transition metals. First, we introduce the reaction mechanism of water splitting and the OER, which reveals the high requirement of the complex four-electron process of the OER. Second, the electron transfer mode and development progress of highly active transition metal electrocatalysts are used to summarize the research situation of transition metal OER catalysts in water splitting. Finally, the future development direction and challenges of transition metal catalysts are prospected based on the current research progress.
Collapse
Affiliation(s)
- Haiyang Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
49
|
Riesgo-Gonzalez V, Bhattacharjee S, Dong X, Hall DS, Andrei V, Bond AD, Grey CP, Reisner E, Wright DS. Single-Source Deposition of Mixed-Metal Oxide Films Containing Zirconium and 3d Transition Metals for (Photo)electrocatalytic Water Oxidation. Inorg Chem 2022; 61:6223-6233. [PMID: 35412823 PMCID: PMC9098167 DOI: 10.1021/acs.inorgchem.2c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fabrication of mixed-metal oxide films holds promise for the development of practical photoelectrochemical catalyst coatings but currently presents challenges in terms of homogeneity, cost, and scalability. We report a straightforward and versatile approach to produce catalytically active zirconium-based films for electrochemical and photoelectrochemical water oxidation. The mixed-metal oxide catalyst films are derived from novel single-source precursor oxide cage compounds containing Zr with first-row transition metals such as Co, Fe, and Cu. The Zr-based film doped with Co on fluorine-doped tin oxide (FTO)-coated glass exhibits the highest electrocatalytic O2 evolution performance in an alkaline medium and an operational stability above 18 h. The deposition of this film onto a BiVO4 photoanode significantly enhances its photoelectrochemical activity toward solar water oxidation, lowering the onset potential by 0.12-0.21 V vs reversible hydrogen electrode (RHE) and improving the maximum photocurrent density by ∼50% to 2.41 mA cm-2 for the CoZr-coated BiVO4 photoanodes compared to that for bare BiVO4.
Collapse
Affiliation(s)
- Victor Riesgo-Gonzalez
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Subhajit Bhattacharjee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Xinsheng Dong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - David S Hall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Dominic S Wright
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| |
Collapse
|
50
|
Choi YH. VO2 as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. NANOMATERIALS 2022; 12:nano12060939. [PMID: 35335752 PMCID: PMC8951100 DOI: 10.3390/nano12060939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Herein, we report high electrocatalytic activity of monoclinic VO2 (M1 phase) for the oxygen evolution reaction (OER) for the first time. The single-phase VO2 (M1) nanoparticles are prepared in the form of uniformly covering the surface of individual carbon fibers constituting a carbon fiber paper (CFP). The VO2 nanoparticles reveal the metal-insulator phase transition at ca. 65 °C (heating) and 62 °C (cooling) with low thermal hysteresis, indicating a high concentration of structural defect which is considered a grain boundary among VO2 nanoparticles with some particle coalescence. Consequently, the VO2/CFP shows a high electrocatalytic OER activity with the lowest η10 (350 mV) and Tafel slope (46 mV/dec) values in a 1 M aqueous solution of KOH as compared to those of the vacuum annealed V2O5 and the hydrothermally grown VO2 (M1), α-V2O5, and γ′-V2O5. The catalytically active site is considered V4+ components and V4+/5+ redox couples in VO2. The oxidation state of V4+ is revealed to be more favorable to the OER catalysis compared to that of V5+ in vanadium oxide through comparative studies. Furthermore, the amount of V5+ component is found to be increased on the surface of VO2 catalyst during the OER, giving rise to the performance degradation. This work suggests V4+ and its redox couple as a novel active component for the OER in metal-oxide electrocatalysts.
Collapse
Affiliation(s)
- Yun-Hyuk Choi
- School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan 38430, Korea
| |
Collapse
|