1
|
Wu L, Cao J, Fu C, Chen Z, Yin C, Lin Q, Pan H, Wang K. Lead regulation of electronic properties and local structure of palladium (111) facet for enhanced direct hydrogen peroxide synthesis. J Colloid Interface Sci 2025; 682:1205-1216. [PMID: 39673906 DOI: 10.1016/j.jcis.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Direct synthesis of hydrogen peroxide (DSHP) from oxygen (O2) and hydrogen (H2) offers a promising alternative to anthraquinone oxidation for hydrogen peroxide (H2O2) production, yet challenges remain in achieving high selectivity and productivity. In this study, palladium octahedral nanoparticles (Pd ONPs) exposing Pd(111) facets were first synthesized, followed by the introduction of lead (Pb) atoms onto these facets to construct Pb-Pd(111) surface alloy structures (Pd@Pd-Pbx ONPs) for efficient DSHP. Characterization results indicated that the introduction of Pb atoms increased the electron density of Pd atoms and significantly reduced the number of low-coordinated Pd atoms. Density functional theory (DFT) calculations confirmed that the high electron density in Pd atoms downshifted their d-band center, thereby enhancing the adsorbed O2 (O2*) and hydroperoxyl (OOH*) hydrogenation and promoting the adsorbed H2O2 (HOOH*) desorption from Pd active sites, which was a key step in the formation of H2O2. Furthermore, the different coordination environments and electronic properties of Pd atoms that were close to Pb as opposed to those that were farther away produced a unique tilted adsorption configuration for O2*, OOH*, and HOOH* on the Pd-Pb(111) surface, effectively inhibiting OO bond dissociation. As a result, the TiO2-loaded Pd@Pd-Pb4 ONPs (Pd@Pd-Pb4/TiO2) catalyst achieved an H2O2 selectivity of 80.6 % and a productivity of 6258.7 mmol gPd-1h-1 in the DSHP. This study underscores the impact of Pd catalyst surface modification on DSHP performance and provides valuable insights into the structure-performance relationship in bimetallic catalysts.
Collapse
Affiliation(s)
- Lang Wu
- School of Chemistry and Chemical Engineering, Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jianxin Cao
- School of Chemistry and Chemical Engineering, Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chengbing Fu
- School of Chemistry and Chemical Engineering, Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chaochuang Yin
- College of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Hongyan Pan
- School of Chemistry and Chemical Engineering, Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Keliang Wang
- School of Chemistry and Chemical Engineering, Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guizhou University, Guiyang, Guizhou 550025, China; Department of Brewing Engineering, Moutai Institute, Renhuai 564501, China; College of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China.
| |
Collapse
|
2
|
Vito J, Shetty M. Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67010-67027. [PMID: 38079586 PMCID: PMC11647899 DOI: 10.1021/acsami.3c11935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/13/2024]
Abstract
Zeolites, with their ordered crystalline porous structure, provide a unique opportunity to confine metal catalysts, whether single atoms (e.g., transition metal ions (TMIs)) or metal clusters, when used as a catalyst support. The confined environment has been shown to provide rate and selectivity enhancement across a variety of reactions via both steric and electronic effects, such as size exclusion and transition state stabilization. In this review, we provide a survey of various zeolite confined catalysts used for the semihydrogenation of acetylene highlighting their performance, defined by ethylene selectivity at full acetylene conversion, in relationship to the synthesis technique employed. Synthesis methods that ensure confinement with the catalyst transition metal location in the extra-framework positions are reported to have the highest selectivity to ethylene. However, the underlying molecular factors responsible for selective catalysis within confinement remain elusive due to the difficulty in deconvoluting individual effects. Through the careful use of a combination of characterization and spectroscopic methods, insights into the relationship between the properties of zeolite confined catalysts and their performance have been explored in other works for a variety of reactions. More specifically, operando spectroscopy studies have revealed the dynamic behavior of zeolite confined catalysts under various conditions implying that the structure and properties observed ex situ do not always match those of the active catalyst under reaction conditions. Applying this type of analysis to acetylene semihydrogenation, a simple gas phase reaction, can help elucidate the structure-function relationship of zeolite confined catalysts allowing for more informed design choices and consequently their application to a wider variety of more complex reactions such as the liquid phase hydrogenation of alkynols where solvent effects must also be considered in addition to those of confinement.
Collapse
Affiliation(s)
- Jenna Vito
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| | - Manish Shetty
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 100 Spence Street, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Chen H, Li L, Zhao ZJ, Yang B, Zhang Y, Liu X, Gu Q, Yu Z, Yang X, Gong J, Wang A, Zhang T. Co-infiltration and dynamic formation of Pd 3ZnC x intermetallic carbide by syngas boosting selective hydrogenation of acetylene. Nat Commun 2024; 15:9850. [PMID: 39537694 PMCID: PMC11560955 DOI: 10.1038/s41467-024-54274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Transition metal carbide shows excellent performance in selective hydrogenation of acetylene, however, the carburization of Pd-based intermetallic compounds remains infeasible. Here we report the successful synthesis of an unprecedented Pd3ZnCx intermetallic carbide, via co-infiltration of zinc and carbon in one-step carburization by syngas. Utilizing state-of-the-art in situ characterizations and theoretical calculation, we unveil the dynamic evolution of Pd3ZnCx during carburization, forming a Pd3Zn like cubic phase carbide structure. A unique transitional state (Pdt) with low content of Zn/C co-infiltration is clearly identified facilitating phase transition and sustain incorporation of carbon and zinc at elevated temperatures. The Pd3ZnCx carbide shows by far the best catalytic performance in the selective hydrogenation of acetylene with a high selectivity (>90%) even at a high H2/C2H2 ratio. Our results therefore provide a co-infiltration strategy and dynamic insights for the one-step synthesis of Pd based intermetallic carbides, towards high-performance intermetallic compound for selective hydrogenation of acetylene.
Collapse
Affiliation(s)
- Huan Chen
- School of Chemistry, Dalian University of Technology, Dalian, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhounan Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaofeng Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Tianjin Normal University, Tianjin, China.
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Tao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, China.
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
4
|
Zhang W, Uwakwe K, Hu J, Wei Y, Zhu J, Zhou W, Ma C, Yu L, Huang R, Deng D. Ambient-condition acetylene hydrogenation to ethylene over WS 2-confined atomic Pd sites. Nat Commun 2024; 15:9457. [PMID: 39487133 PMCID: PMC11530560 DOI: 10.1038/s41467-024-53481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Ambient-condition acetylene hydrogenation to ethylene (AC-AHE) is a promising process for ethylene production with minimal additional energy input, yet remains a great challenge due to the difficulty in the coactivation of acetylene and H2 at room temperature. Herein, we report a highly efficient AC-AHE process over robust sulfur-confined atomic Pd species on tungsten sulfide surface. The catalyst exhibits over 99% acetylene conversion with a high ethylene selectivity of 70% at 25 oC, and a record space-time yield of ethylene of 1123 molC2H4 molPd-1 h-1 under ambient conditions, which is nearly four times that of the typical Pd1Ag3/Al2O3 catalyst, and exhibiting superior stability of over 500 h. We demonstrate that the confinement of Pd-S coordination induces positively-charged atomic Pdδ+, which not only facilitates C2H2 hydrogenation but also promotes C2H4 desorption, thereby enabling a high conversion of C2H2 to C2H4 at room temperature while suppressing over-hydrogenation to C2H6.
Collapse
Affiliation(s)
- Wangwang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Kelechi Uwakwe
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingting Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wei
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Juntong Zhu
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Huang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
| | - Dehui Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Li BB, Ma HY, Wang GC. Acetylene Semihydrogenation over Pd-Bi Intermetallic Compounds: A DFT Combined with Microkinetic Modeling Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19043-19050. [PMID: 39196898 DOI: 10.1021/acs.langmuir.4c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Acetylene semihydrogenation is an important process both theoretically and experimentally. Pure Pd catalysts usually suffer from limited selectivity for ethylene products and poor stability. Pd-Bi bimetallic compounds are synthesized and show not only excellent catalytic performance but also remarkable long-term stability. However, the detailed mechanism is still unclear. In this paper, the acetylene semihydrogenation mechanism on Pd(100), Pd3Bi1(100), and Pd1Bi1(100) is studied by density functional theory (DFT) calculation and microkinetic modeling. Adding Bi causes the surface d-band center (εd) to move to a lower energy, and the adsorption strength of the intermediate becomes weaker. Besides, ethylidyne (CCH3) formation becomes more difficult on the Pd-Bi alloy due to the lack of continuous surface Pd atoms. As a spectator, CCH3 deactivates the Pd and Pd-Bi alloys by a steric effect. However, the selectivity for ethylene on the Pd-Bi alloy is still high because of the weakly bonded ethylene. We found the relationship between εd and the catalysts' activity and selectivity. This study may supply some clues for the design of selective hydrogenation catalysts.
Collapse
Affiliation(s)
| | - Hong-Yan Ma
- Tianjin RenAi College, Tianjin 301636, China
| | - Gui-Chang Wang
- Frontiers Science Center for New Organic Matter, Tianjin Key Lab and Molecule-Based Material Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Ma J, Yang C, Ye X, Pan X, Nie S, Cao X, Li H, Matsumoto H, Wu L, Chen C. Circumventing the activity-selectivity trade-off via the confinement effect from induced potential barriers on the Pd nanoparticle surface. Chem Sci 2024; 15:8363-8371. [PMID: 38846393 PMCID: PMC11151836 DOI: 10.1039/d4sc00635f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
The request for both high catalytic selectivity and high catalytic activity is rather challenging, particularly for catalysis systems with the primary and side reactions having comparable energy barriers. Here in this study, we simultaneously optimized the selectivity and activity for acetylene semi-hydrogenation by rationally and continuously varying the doping ratio of Zn atoms on the surface of Pd particles in Pd/ZnO catalysts. In the reaction temperature range of 40-200 °C, the conversion of acetylene was close to ∼100%, and the selectivity for ethylene exceeded 90% (the highest ethylene selectivity, ∼98%). Experimental characterization and density functional theory calculations revealed that the Zn promoter could alter the catalyst's potential energy surface, resulting in a "confinement" effect, which effectively improves the selectivity yet without significantly impairing the catalytic activity. The mismatched impacts on activity and selectivity resulting from continuous and controllable alteration in the catalyst structure provide a promising parameter space within which the two aspects could both be optimized.
Collapse
Affiliation(s)
- Junguo Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Chongya Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian P. R. China
| | - Xue Ye
- College of Chemistry and Chemical Engineering, Yangzhou University Yangzhou P. R. China
| | - Xiaoli Pan
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian P. R. China
| | - Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xing Cao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Huinan Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| | | | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai P. R. China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing P. R. China
| |
Collapse
|
7
|
Martinez J, Mazarío J, Lopes CW, Trasobares S, Calvino Gamez JJ, Agostini G, Oña-Burgos P. Efficient Alkyne Semihydrogenation Catalysis Enabled by Synergistic Chemical and Thermal Modifications of a PdIn MOF. ACS Catal 2024; 14:4768-4785. [PMID: 38601779 PMCID: PMC11002973 DOI: 10.1021/acscatal.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Recently, there has been a growing interest in using MOF templating to synthesize heterogeneous catalysts based on metal nanoparticles on carbonaceous supports. Unlike the common approach of direct pyrolysis of PdIn-MOFs at high temperatures, this work proposes a reductive chemical treatment under mild conditions before pyrolysis (resulting in PdIn-QT). The resulting material (PdIn-QT) underwent comprehensive characterization via state-of-the-art aberration-corrected electron microscopy, N2 physisorption, X-ray absorption spectroscopy, Raman, X-ray photoelectron spectroscopy, and X-ray diffraction. These analyses have proven the existence of PdIn bimetallic nanoparticles supported on N-doped carbon. In situ DRIFT spectroscopy reveals the advantageous role of indium (In) in regulating Pd activity in alkyne semihydrogenation. Notably, incorporating a soft nucleation step before pyrolysis enhances surface area, porosity, and nitrogen content compared to direct MOF pyrolysis. The optimized material exhibits outstanding catalytic performance with 96% phenylacetylene conversion and 96% selectivity to phenylethylene in the fifth cycle under mild conditions (5 mmol phenylacetylene, 7 mg cat, 5 mL EtOH, R.T., 1 H2 bar).
Collapse
Affiliation(s)
- Jordan
Santiago Martinez
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avda. de los Naranjos s/n, Valencia 46022, Spain
| | - Jaime Mazarío
- LPCNO
(Laboratoire de Physique et Chimie des Nano-Objets), Université
de Toulouse, CNRS, INSA, UPS, Toulouse 31077, France
| | - Christian Wittee Lopes
- Department
of Chemistry, Federal University of Paraná
(UFPR), Curitiba 81531-990, Brazil
| | - Susana Trasobares
- División
de Microscopía Electrónica de los Servicios Centralizados
de Investigación Científica y Tecnológica de
la Universidad de Cádiz (DME-UCA), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N Puerto Real, Cádiz 11510, Spain
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, Spain
| | - José Juan Calvino Gamez
- División
de Microscopía Electrónica de los Servicios Centralizados
de Investigación Científica y Tecnológica de
la Universidad de Cádiz (DME-UCA), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N Puerto Real, Cádiz 11510, Spain
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, Spain
| | - Giovanni Agostini
- ALBA Synchrotron
Light Facility, Carrer
de la Llum 2-26, Cerdanyola del Valles, Barcelona 08290, Spain
| | - Pascual Oña-Burgos
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avda. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
8
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
9
|
Xiong J, Mao S, Luo Q, Ning H, Lu B, Liu Y, Wang Y. Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer. Nat Commun 2024; 15:1228. [PMID: 38336938 PMCID: PMC10858237 DOI: 10.1038/s41467-024-45104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
As a crucial industrial process for the production of bulk and fine chemicals, semi-hydrogenation of alkynes faces the trade-off between activity and selectivity due to undesirable over-hydrogenation. By breaking the energy linear scaling relationships, we report an efficient additive-free WO3-based single-atom Pd catalytic system with a vertical size effect of hydrogen spillover. Hydrogen spillover induced hydrophilic polar layer (HPL) with limited thickness on WO3-based support exhibits unconventional size effect to Pd site, in which over-hydrogenation is greatly suppressed on Pd1 site due to the polar repulsive interaction between HPL and nonpolar C=C bonds, whereas this is invalid for Pd nanoparticles with higher altitudes. By further enhancing the HPL through Mo doping, activated Pd1/MoWO3 achieves recorded performance of 98.4% selectivity and 10200 h-1 activity for semi-hydrogenation of 2-methyl-3-butyn-2-ol, 26-fold increase in activity of Lindlar catalyst. This observed vertical size effect of hydrogen spillover offers broad potential in catalytic performance regulation.
Collapse
Affiliation(s)
- Jinqi Xiong
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Honghui Ning
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yanling Liu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
10
|
Lan X, Wang Y, Liu B, Kang Z, Wang T. Thermally induced intermetallic Rh 1Zn 1 nanoparticles with high phase-purity for highly selective hydrogenation of acetylene. Chem Sci 2024; 15:1758-1768. [PMID: 38303947 PMCID: PMC10829007 DOI: 10.1039/d3sc05460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Ordered M1Zn1 intermetallic phases with structurally isolated atom sites offer unique electronic and geometric structures for catalytic applications, but lack reliable industrial synthesis methods that avoid forming a disordered alloy with ill-defined composition. We developed a facile strategy for preparing well-defined M1Zn1 intermetallic nanoparticle (i-NP) catalysts from physical mixtures of monometallic M/SiO2 (M = Rh, Pd, Pt) and ZnO. The Rh1Zn1 i-NPs with structurally isolated Rh atom sites had a high intrinsic selectivity to ethylene (91%) with extremely low C4 and oligomer formation, outperforming the reported intermetallic and alloy catalysts in acetylene semihydrogenation. Further studies revealed that the M1Zn1 phases were formed in situ in a reducing atmosphere at 400 °C by a Zn atom emitting-trapping-ordering (Zn-ETO) mechanism, which ensures the high phase-purity of i-NPs. This study provides a scalable and practical solution for further exploration of Zn-based intermetallic phases and a new strategy for designing Zn-containing catalysts.
Collapse
Affiliation(s)
- Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yu Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Boyang Liu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhenyu Kang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
11
|
Sharma G, Verma R, Masuda S, Badawy KM, Singh N, Tsukuda T, Polshettiwar V. Pt-doped Ru nanoparticles loaded on 'black gold' plasmonic nanoreactors as air stable reduction catalysts. Nat Commun 2024; 15:713. [PMID: 38267414 PMCID: PMC10808126 DOI: 10.1038/s41467-024-44954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
This study introduces a plasmonic reduction catalyst, stable only in the presence of air, achieved by integrating Pt-doped Ru nanoparticles on black gold. This innovative black gold/RuPt catalyst showcases good efficiency in acetylene semi-hydrogenation, attaining over 90% selectivity with an ethene production rate of 320 mmol g-1 h-1. Its stability, evident in 100 h of operation with continuous air flow, is attributed to the synergy of co-existing metal oxide and metal phases. The catalyst's stability is further enhanced by plasmon-mediated concurrent reduction and oxidation of the active sites. Finite-difference time-domain simulations reveal a five-fold electric field intensification near the RuPt nanoparticles, crucial for activating acetylene and hydrogen. Kinetic isotope effect analysis indicates the contribution from the plasmonic non-thermal effects along with the photothermal. Spectroscopic and in-situ Fourier transform infrared studies, combined with quantum chemical calculations, elucidate the molecular reaction mechanism, emphasizing the cooperative interaction between Ru and Pt in optimizing ethene production and selectivity.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 40005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 40005, India
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Nirpendra Singh
- Department of Physics, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 40005, India.
| |
Collapse
|
12
|
Chen T, Qiu C, Zhang X, Wang H, Song J, Zhang K, Yang T, Zuo Y, Yang Y, Gao C, Xiao W, Jiang Z, Wang Y, Xiang Y, Xia D. An Ultrasmall Ordered High-Entropy Intermetallic with Multiple Active Sites for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:1174-1184. [PMID: 38153040 PMCID: PMC10785812 DOI: 10.1021/jacs.3c12649] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.
Collapse
Affiliation(s)
- Tao Chen
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chunyu Qiu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinkai Zhang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hangchao Wang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Jin Song
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Kun Zhang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tonghuan Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yuxuan Zuo
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yali Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chuan Gao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Wukun Xiao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zewen Jiang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yucheng Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Xiang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Dingguo Xia
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
13
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Tiwari G, Sharma G, Verma R, Gakhad P, Singh AK, Polshettiwar V, Jagirdar BR. Acetylene Semi-Hydrogenation at Room Temperature over Pd-Zn Nanocatalyst. Chemistry 2023; 29:e202301932. [PMID: 37632841 DOI: 10.1002/chem.202301932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 08/28/2023]
Abstract
A reaction of fundamental and commercial importance is acetylene semi-hydrogenation. Acetylene impurity in the ethylene feedstock used in the polyethylene industry poisons the Ziegler-Natta catalyst which adversely affects the polymer quality. Pd based catalysts are most often employed for converting acetylene into the main reactant, ethylene, however, it often involves a tradeoff between the conversion and the selectivity and generally requires high temperatures. In this work, bimetallic Pd-Zn nanoparticles capped by hexadecylamine (HDA) have been synthesized by co-digestive ripening of Pd and Zn nanoparticles and studied for semi-hydrogenation of acetylene. The catalyst showed a high selectivity of ~85 % towards ethylene with a high ethylene productivity to the tune of ~4341 μmol g-1 min-1 , at room temperature and atmospheric pressure. It also exhibited excellent stability with ethylene selectivity remaining greater than 85 % even after 70 h on stream. To the best of the authors' knowledge, this is the first report of room temperature acetylene semi-hydrogenation, with the catalyst effecting high amount of acetylene conversion to ethylene retaining excellent selectivity and stability among all the reported catalysts thus far. DFT calculations show that the disordered Pd-Zn nanocatalyst prepared by a low temperature route exhibits a change in the d-band center of Pd and Zn which in turn enhances the selectivity towards ethylene. TPD, XPS and a range of catalysis experiments provided in-depth insights into the reaction mechanism, indicating the key role of particle size, surface area, Pd-Zn interactions, and the capping agent.
Collapse
Affiliation(s)
- Garima Tiwari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Pooja Gakhad
- Materials Research Centre, Indian Institute of Science, Bangalore, 560 012, India
| | - Abhishek Kumar Singh
- Materials Research Centre, Indian Institute of Science, Bangalore, 560 012, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
15
|
Wei S, Liu X, Wang C, Liu X, Zhang Q, Li Z. Atomically Dispersed Pd-N 1C 3 Sites on a Nitrogen-Doped Carbon Nanosphere for Semi-hydrogenation of Acetylene. ACS NANO 2023; 17:14831-14839. [PMID: 37462225 DOI: 10.1021/acsnano.3c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Rationally designing efficient catalysts for semi-hydrogenation of acetylene is significant but challenging. Herein, Pd isolated single-atom sites (ISAS) on a covalent-organic-framework (COF)-derived nanosphere (Pd-ISAS/CN) are synthesized by a COF-absorption-pyrolysis strategy. This synthetic strategy is also applicable for Pt and Ru ISAS catalysts, demonstrating that it is a general method to synthesize noble-metal ISAS on COF-derived carbon materials. Pd-ISAS/CN exhibits outstanding reactivity and high selectivity for semi-hydrogenation of acetylene, with 92% conversion of acetylene, 80% selectivity toward ethylene at 100 °C, and corresponding activity is as high as 712 molacetylene molmetal-1 h-1. Extended X-ray absorption fine structure (EXAFS) measurement and density functional theory (DFT) calculation reveal the Pd-N1C3 sites from Pd-ISAS/CN efficiently boost the reactivity for semi-hydrogenation of acetylene. This work will bring inspiration to rationally design noble-metal-based ISAS catalysts derived from COF materials and boost catalytic performance by optimizing the coordination environment of catalytic sites.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Xingwu Liu
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001, People's Republic of China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry, Chinese Academy of Sciences Taiyuan 030001, People's Republic of China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhi Li
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
16
|
Sampei H, Saegusa K, Chishima K, Higo T, Tanaka S, Yayama Y, Nakamura M, Kimura K, Sekine Y. Quantum Annealing Boosts Prediction of Multimolecular Adsorption on Solid Surfaces Avoiding Combinatorial Explosion. JACS AU 2023; 3:991-996. [PMID: 37124301 PMCID: PMC10131206 DOI: 10.1021/jacsau.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Quantum annealing has been used to predict molecular adsorption on solid surfaces. Evaluation of adsorption, which takes place in all solid surface reactions, is a crucially important subject for study in various fields. However, predicting the most stable coordination by theoretical calculations is challenging for multimolecular adsorption because there are numerous candidates. This report presents a novel method for quick adsorption coordination searches using the quantum annealing principle without combinatorial explosion. This method exhibited much faster search and more stable molecular arrangement findings than conventional methods did, particularly in a high coverage region. We were able to complete a configurational prediction of the adsorption of 16 molecules in 2286 s (including 2154 s for preparation, only required once), whereas previously it has taken 38 601 s. This approach accelerates the tuning of adsorption behavior, especially in composite materials and large-scale modeling, which possess more combinations of molecular configurations.
Collapse
Affiliation(s)
- Hiroshi Sampei
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Koki Saegusa
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenshin Chishima
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Takuma Higo
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Shu Tanaka
- Department
of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Green
Computing System Research Organization, Waseda University, Wasedamachi-27,
Shinjuku-ku, Tokyo 162-0042, Japan
| | - Yoshihiro Yayama
- Central
Technical Research Laboratory, ENEOS Corporation, 231-0815, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 100-8162, Japan
| | - Makoto Nakamura
- Quantum
Research Center, Fujitsu Ltd., 4-1-1 Kamiodanaka, Kawasaki, Kanagawa 211-8588, Japan
| | - Koichi Kimura
- Quantum
Research Center, Fujitsu Ltd., 4-1-1 Kamiodanaka, Kawasaki, Kanagawa 211-8588, Japan
| | - Yasushi Sekine
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
17
|
Li X, Zhang Q, Xu M, Li X. Modulation of metal nanocatalysts for enhanced selectivity of chemoselective reduction and addition hydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
18
|
Kang H, Wu J, Lou B, Wang Y, Zhao Y, Liu J, Zou S, Fan J. Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene. Molecules 2023; 28:molecules28052335. [PMID: 36903580 PMCID: PMC10005703 DOI: 10.3390/molecules28052335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The rational regulation of catalyst active sites at atomic scale is a key approach to unveil the relationship between structure and catalytic performance. Herein, we reported a strategy for the controllable deposition of Bi on Pd nanocubes (Pd NCs) in the priority order from corners to edges and then to facets (Pd NCs@Bi). The spherical aberration-corrected scanning transmission electron microscopy (ac-STEM) results indicated that Bi2O3 with an amorphous structure covers the specific sites of Pd NCs. When only the corners and edges of the Pd NCs were covered, the supported Pd NCs@Bi catalyst exhibited an optimal trade-off between high conversion and selectivity in the hydrogenation of acetylene to ethylene under ethylene-rich conditions (99.7% C2H2 conversion and 94.3% C2H4 selectivity at 170 °C) with remarkable long-term stability. According to the H2-TPR and C2H4-TPD measurements, the moderate hydrogen dissociation and the weak ethylene adsorption are responsible for this excellent catalytic performance. Following these results, the selectively Bi-deposited Pd nanoparticle catalysts showed incredible acetylene hydrogenation performance, which provides a feasible perspective to design and develop highly selective hydrogenation catalysts for industrial applications.
Collapse
Affiliation(s)
- Hongquan Kang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jianzhou Wu
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baohui Lou
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yilin Zhao
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Juanjuan Liu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China
| | - Shihui Zou
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Correspondence: (S.Z.); (J.F.)
| | - Jie Fan
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
- Correspondence: (S.Z.); (J.F.)
| |
Collapse
|
19
|
Zhang SS, Yi J, Cao T, Guan JP, Sun JQ, Zhao QY, Qiu YJ, Ye CL, Xiong Y, Meng G, Chen W, Lin Z, Zhang J. Inserting Single-Atom Zn by Tannic Acid Confinement To Regulate the Selectivity of Pd Nanocatalysts for Hydrogenation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206052. [PMID: 36549675 DOI: 10.1002/smll.202206052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Precisely controlling the selectivity of nanocatalysts has always been a hot topic in heterogeneous catalysis but remains difficult owing to their complex and inhomogeneous catalytic sites. Herein, an effective strategy to regulate the chemoselectivity of Pd nanocatalysts for selective hydrogenation reactions by inserting single-atom Zn into Pd nanoparticles is reported. Taking advantage of the tannic acid coating-confinement strategy, small-sized Pd nanoparticles with inserted single-atom Zn are obtained on the O-doped carbon-coated alumina. Compared with the pure Pd nanocatalyst, the Pd nanocatalyst with single-atom Zn insertion exhibits prominent selectivity for the hydrogenation of p-iodonitrobenzene to afford the hydrodeiodination product instead of nitro hydrogenation ones. Further computational studies reveal that the single-atom Zn on Pd nanoparticles strengthens the adsorption of the nitro group to avoid its reduction and increases the d-band center of Pd atoms to facilitate the reduction of the iodo group, which leads to enhanced selectivity. This work provides new guidelines to tune the selectivity of nanocatalysts with guest single-atom sites.
Collapse
Affiliation(s)
- Sha-Sha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jun Yi
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Tai Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian-Ping Guan
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jia-Qiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Qin-Ying Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ya-Jun Qiu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Chen-Liang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhou Lin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01002, USA
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
20
|
Guo Q, Qin C, Guo J, Chen P. Selective hydrogenation of acetylene to ethylene by alkali-metal palladium complex hydrides. Chem Commun (Camb) 2023; 59:2259-2262. [PMID: 36728483 DOI: 10.1039/d2cc07080d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A series of alkali-metal palladium complex hydrides have been shown to be catalytically active and selective for partial hydrogenation of acetylene to ethylene. The complex hydrides differ in composition, structure, and catalytic function as compared to the conventional Pd metal or alloy catalysts.
Collapse
Affiliation(s)
- Qing Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chao Qin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianping Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Waldt C, Montalvo-Castro H, Almithn A, Loaiza-Orduz Á, Plaisance C, Hibbitts D. Role of Phosphorous in Transition Metal Phosphides for Selective Hydrogenolysis of Hindered C–O Bonds. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
22
|
Samadi P, Binczarski MJ, Maniukiewicz W, Pawlaczyk A, Rogowski J, Szubiakiewicz E, Szynkowska-Jozwik MI, Witonska IA. Zn Modification of Pd/TiO 2/Ti Catalyst for CO Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1216. [PMID: 36770219 PMCID: PMC9921276 DOI: 10.3390/ma16031216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The main goal of this study was to modify the activity of Pd/TiO2/Ti catalyst in the reaction of CO oxidation by the addition of Zn. Plasma electrolytic oxidation (PEO) of Ti wire was conducted to produce a uniform porous layer of TiO2. A mixture of Pd and Zn was then introduced by means of adsorption. After reduction treatment, the activity of the samples was examined by oxidation of 5% CO in a temperature range from 80-350 °C. Model catalysts with sufficient amounts of the metals for physico-chemical investigation were prepared to further investigate the reaction between Pd and Zn during CO oxidation. The structures and compositions of the samples were investigated using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). Modification of Pd/TiO2/Ti catalyst by Zn with a Pd:Zn atomic ratio of 2:1 decreased the temperature of complete CO oxidation from 220 °C for Pd/TiO2/Ti to 180 °C for Pd-Zn/TiO2/Ti. The temperature of 50% CO conversion on Pd-Zn(2:1)/TiO2/Ti was around 55 °C lower than in the reaction on monometallic Pd catalyst. The addition of Zn to the Pd catalyst lowered the binding energy of CO on the surface and improved the dissociative adsorption of oxygen, facilitating the oxidation of CO. FTIR showed that the bridging form of adsorbed CO is preferred on bimetallic systems. Analysis of the surface compositions of the samples (SEM-EDS, TOF-SIMS) showed higher amounts of oxygen on the bimetallic systems.
Collapse
|
23
|
Song Y, Weng S, Xue F, McCue AJ, Zheng L, He Y, Feng J, Liu Y, Li D. Understanding the Role of Coordinatively Unsaturated Al 3+ Sites on Nanoshaped Al 2O 3 for Creating Uniform Ni–Cu Alloys for Selective Hydrogenation of Acetylene. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanfei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fan Xue
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Alan J. McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Lirong Zheng
- High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
ZIF-8 derived N-doped porous carbon confined ultrafine PdNi bimetallic nanoparticles for semi-hydrogenation of alkynes. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Lan X, Zhao W, Fan M, Wang B, Zhang R. Local coordination atom and metal types of single-atom catalysts to regulate catalytic performance of C2H2 selective hydrogenation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Mao S, Wang Z, Luo Q, Lu B, Wang Y. Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| |
Collapse
|
27
|
Revisiting the Semi-Hydrogenation of Phenylacetylene to Styrene over Palladium-Lead Alloyed Catalysts on Precipitated Calcium Carbonate Supports. Catalysts 2022. [DOI: 10.3390/catal13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The quest for improved heterogeneous catalysts often leads to sophisticated solutions, which are expensive and tricky to scale up industrially. Herein, the effort to upgrade the existing inorganic nonmetallic materials has seldom been prioritized by the catalysis community, which could deliver cost-effective solutions to upgrade the industrial catalysts catalog. With this philosophy in mind, we demonstrate in this work that alloyed palladium-lead (Pd-Pb) deposited on novel precipitated calcium carbonate (PCC) supports could be considered an upgraded version of the industrial Lindlar catalyst for the semi-hydrogenation of phenylacetylene to styrene. By utilizing PCC supports of variable surface areas (up to 60 m2/g) and alloyed Pd-Pb loading, supported by material characterization tools, we showcase that achieving the “active-site isolation” feature could be the most pivotal criterion to maximize semi-hydrogenated alkenes selectivity at the expense of prohibiting the complete hydrogenation to alkanes. The calcite phase of our PCC supports governs the ultimate catalysis, via complexation with uniformly distributed alloyed Pb, which may facilitate the desired “active-site isolation” feature to boost the selectivity to the preferential product. Through this work, we also advocate increasing research efforts on mineral-based inorganic nonmetallic materials to deliver novel and improved cost-effective catalytic systems.
Collapse
|
28
|
Lu C, Zeng A, Wang Y, Wang A. Enhanced Hydrogenation Activity over a Zn-Modified Cu-Based Catalyst in Acetylene Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chenyang Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, P. R. China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| |
Collapse
|
29
|
Chen L, Li XT, Ma S, Hu YF, Shang C, Liu ZP. Highly Selective Low-Temperature Acetylene Semihydrogenation Guided by Multiscale Machine Learning. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Lin Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Xiao-Tian Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Sicong Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, People’s Republic of China
| | - Yi-Fan Hu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai200433, People’s Republic of China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai200032, People’s Republic of China
| |
Collapse
|
30
|
Wang X, Chu M, Wang M, Zhong Q, Chen J, Wang Z, Cao M, Yang H, Cheng T, Chen J, Sham TK, Zhang Q. Unveiling the Local Structure and Electronic Properties of PdBi Surface Alloy for Selective Hydrogenation of Propyne. ACS NANO 2022; 16:16869-16879. [PMID: 36250595 DOI: 10.1021/acsnano.2c06834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Building a reliable relationship between the electronic structure of alloyed metallic catalysts and catalytic performance is important but remains challenging due to the interference from many entangled factors. Herein, a PdBi surface alloy structural model, by tuning the deposition rate of Bi atoms relative to the atomic interdiffusion rate at the interface, realizes a continuous modulation of the electronic structure of Pd. Using advanced X-ray characterization techniques, we provide a precise depiction of the electronic structure of the PdBi surface alloy. As a result, the PdBi catalysts show enhanced propene selectivity compared with the pure Pd catalyst in the selective hydrogenation of propyne. The prevented formation of saturated β-hydrides in the subsurface layers and weakened propene adsorption on the surface contribute to the high selectivity. Our work provides in-depth understanding of the electronic properties of surface alloy structure and underlies the study of the electronic structure-performance relationship in bimetallic catalysts.
Collapse
Affiliation(s)
- Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Mengwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Jiatang Chen
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Zhiqiang Wang
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| |
Collapse
|
31
|
Che L, Guo J, He Z, Zhang H. Evidence of rate-determining step variation along reactivity in acetylene hydrogenation: a systematic kinetic study on elementary steps, kinetically relevant(s) and active species. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
33
|
Huang F, Peng M, Chen Y, Cai X, Qin X, Wang N, Xiao D, Jin L, Wang G, Wen XD, Liu H, Ma D. Low-Temperature Acetylene Semi-Hydrogenation over the Pd 1-Cu 1 Dual-Atom Catalyst. J Am Chem Soc 2022; 144:18485-18493. [PMID: 36161870 DOI: 10.1021/jacs.2c07208] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The atomically dispersed metal catalyst or single-atom catalyst (SAC) with the utmost metal utilization efficiency shows excellent selectivity toward ethylene compared to the metal nanoparticles catalyst in the acetylene semi-hydrogenation reaction. However, these catalysts normally work at relatively high temperatures. Achieving low-temperature reactivity while preserving high selectivity remains a challenge. To improve the intrinsic reactivity of SACs, rationally tailoring the coordination environments of the first metal atom by coordinating it with a second neighboring metal atom affords an opportunity. Here, we report the fabrication of a dual-atom catalyst (DAC) that features a bonded Pd1-Cu1 atomic pair anchoring on nanodiamond graphene (ND@G). Compared to the single-atom Pd or Cu catalyst, it exhibits increased reactivity at a lower temperature, with 100% acetylene conversion and 92% ethylene selectivity at 110 °C. This work provides a strategy for designing DACs for low-temperature hydrogenation by manipulating the coordination environment of catalytic sites at the atomic level.
Collapse
Affiliation(s)
- Fei Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Mi Peng
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yunlei Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Xiangbin Cai
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HongKong SAR 999077, P. R. China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HongKong SAR 999077, P. R. China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Road, West Haven, Connecticut 06516, United States
| | - Li Jin
- SINOPEC (Beijing) Research Institute of Chemical Industry Co. Ltd., Beijing 100013, P. R. China
| | - Guoqing Wang
- SINOPEC (Beijing) Research Institute of Chemical Industry Co. Ltd., Beijing 100013, P. R. China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
34
|
Li Y, Yan K, Cao Y, Ge X, Zhou X, Yuan W, Chen D, Duan X. Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
35
|
Ge X, Dou M, Cao Y, Liu X, Yuwen Q, Zhang J, Qian G, Gong X, Zhou X, Chen L, Yuan W, Duan X. Mechanism driven design of trimer Ni 1Sb 2 site delivering superior hydrogenation selectivity to ethylene. Nat Commun 2022; 13:5534. [PMID: 36131070 PMCID: PMC9492709 DOI: 10.1038/s41467-022-33250-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022] Open
Abstract
Mechanism driven catalyst design with atomically uniform ensemble sites is an important yet challenging issue in heterogeneous catalysis associated with breaking the activity-selectivity trade-off. Herein, a trimer Ni1Sb2 site in NiSb intermetallic featuring superior selectivity is elaborated for acetylene semi-hydrogenation via a theoretical guidance with a precise synthesis strategy. The trimer Ni1Sb2 site in NiSb intermetallic is predicted to endow acetylene reactant with an adequately but not excessively strong σ-adsorption mode while ethylene product with a weak π-adsorption one, where such compromise delivers higher ethylene formation rate. An in-situ trapping of molten Sb by Ni strategy is developed to realize the construction of Ni1Sb2 site in the intermetallic P63/mmc NiSb catalysts. Such catalyst exhibits ethylene selectivity up to 93.2% at 100% of acetylene conversion, significantly prevailing over the referred Ni catalyst. These insights shed new lights on rational catalyst design by taming active sites to energetically match targeted reaction pathway. Designing atomically uniform ensemble sites for matching targeted reaction pathway is important yet challenging in heterogeneous catalysis. Here, the authors fabricate a trimer Ni1Sb2 site featuring superior selectivity for acetylene semi-hydrogenation via a mechanism-driven design strategy.
Collapse
Affiliation(s)
- Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mingying Dou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Yuwen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
36
|
Semi-Hydrogenation of Acetylene to Ethylene Catalyzed by Bimetallic CuNi/ZSM-12 Catalysts. Catalysts 2022. [DOI: 10.3390/catal12091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work is to develop a low-cost and high-performance catalyst for the selective catalytic hydrogenation of acetylene to ethylene. Non-precious metals Cu and Ni were selected as active ingredients for this study. Using ZSM-12 as a carrier, Cu-Ni bimetallic catalysts of CuNix/ZSM-12 (x = 5, 7, 9, 11) with different Ni/Cu ratios were prepared by incipient wetness impregnation method. The total Cu and Ni loading were 2 wt%. Under the optimal reaction conditions, the acetylene conversion was 100%, and the ethylene selectivity was 82.48%. The CuNi7/ZSM-12 prepared in this work exhibits good performance in the semi-hydrogenation of acetylene to ethylene with low cost and has potential for industrial application.
Collapse
|
37
|
Cao X, Tong R, Tang S, Jang BWL, Mirjalili A, Li J, Guo X, Zhang J, Hu J, Meng X. Design of Pd-Zn Bimetal MOF Nanosheets and MOF-Derived Pd 3.9Zn 6.1/CNS Catalyst for Selective Hydrogenation of Acetylene under Simulated Front-End Conditions. Molecules 2022; 27:5736. [PMID: 36080499 PMCID: PMC9457924 DOI: 10.3390/molecules27175736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Novel zinc-palladium-porphyrin bimetal metal-organic framework (MOF) nanosheets were directly synthesized by coordination chelation between Zn(II) and Pd(II) tetra(4-carboxyphenyl)porphin (TCPP(Pd)) using a solvothermal method. Furthermore, a serial of carbon nanosheets supported Pd-Zn intermetallics (Pd-Zn-ins/CNS) with different Pd: Zn atomic ratios were obtained by one-step carbonization under different temperature using the prepared Zn-TCPP(Pd) MOF nanosheets as precursor. In the carbonization process, Pd-Zn-ins went through the transformation from PdZn (650 °C) to Pd3.9Zn6.1 (~950 °C) then to Pd3.9Zn6.1/Pd (1000 °C) with the temperature increasing. The synthesized Pd-Zn-ins/CNS were further employed as catalysts for selective hydrogenation of acetylene. Pd3.9Zn6.1 showed the best catalytic performance compared with other Pd-Zn intermetallic forms.
Collapse
Affiliation(s)
- Xinxiang Cao
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Ruijian Tong
- School of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Siye Tang
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Ben W. -L. Jang
- Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
| | - Arash Mirjalili
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Jiayi Li
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Xining Guo
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Jingyi Zhang
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Jiaxue Hu
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Xin Meng
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
38
|
Zhang W, Zhang X, Wang J, Ghosh A, Zhu J, LiBretto NJ, Zhang G, Datye AK, Liu W, Miller JT. Bismuth-Modulated Surface Structural Evolution of Pd 3Bi Intermetallic Alloy Catalysts for Selective Propane Dehydrogenation and Acetylene Semihydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenqing Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaoben Zhang
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Arnab Ghosh
- Department of Chemical & Biological Engineering & Center for Micro-engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Nicole J. LiBretto
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Abhaya K. Datye
- Department of Chemical & Biological Engineering & Center for Micro-engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Liu
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Single-atom catalysts for thermochemical gas-phase reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
42
|
Zhu Y, Jian C, Xue R, Zhang W, Guo R, Gao Y, Chen DL, Zhang F, Zhu W, Wang FF. Theoretical understanding on all-solid frustrated Lewis pair sites of C 2N anchored by single metal atom. J Chem Phys 2022; 157:054704. [DOI: 10.1063/5.0100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designing all-solid heterogeneous catalysts with frustrated Lewis pairs (FLPs) has aroused great attentions recently because of its appealing low dissociation energy for H2 molecule and thus a promotion of hydrogenation reaction is expected. The sterically encumbered Lewis acid (metal site) and base (nitrogen site) in the cavity of single transition metal atom doped M/C2N sheet makes it potential candidate with FLP, while a comprehensive understanding of its intrinsic property and reactivity is still required. Calculations show that the complete dissociation of H2 molecule into two H* at the N sites requires two steps, i.e., heterolytic cleavage of H2 molecule and the transfer of H* from metal site to N site, which are highly related to the acidity of the metal site. The Ni/C2N and Pd/C2N, which outperform over the other 8 transition metal atom (M) anchored M/C2N candidates, possess low energy barriers for the complete dissociation of H2 molecule, with values of only 0.30 and 0.20 eV, respectively. Furthermore, both Ni/C2N and Pd/C2N catalysts can achieve semi-hydrogenation of C2H2 into C2H4, with overall barriers of 0.81 and 0.75 eV, respectively, lower than many reported catalysts. It is speculated that M/C2N catalysts with intrinsic FLPs may also find applications in other important hydrogenation reaction.
Collapse
Affiliation(s)
| | | | | | | | - Rou Guo
- Zhejiang Normal University, China
| | | | | | | | | | | |
Collapse
|
43
|
Ma J, Xing F, Nakaya Y, Shimizu KI, Furukawa S. Nickel-Based High-Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022; 61:e202200889. [PMID: 35470948 DOI: 10.1002/anie.202200889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/07/2022]
Abstract
Acetylene semihydrogenation is a key technology for producing polymer-grade ethylene from crude ethylene. Ni-based catalysts are promising alternatives to noble-metals for this process. However, achieving high catalytic activity and selectivity remains a big challenge. We report a novel catalyst design based on high-entropy intermetallics (HEI), which provide thermally stable isolated Ni without excess counterpart metals and achieve exceptionally high performance. Intermetallic NiGa was multi-metalized to a (NiFeCu)(GaGe), where the Ni and Ga sites were partially substituted with Fe/Cu and Ge, respectively, without altering the parent CsCl-type structure. The NiFeCuGaGe/SiO2 HEI catalyst completely inhibited ethylene overhydrogenation even at complete acetylene conversion, and exhibited five-times higher activity than other 3d-transition-metal-based catalysts. The DFT study showed that the surface energy decreased by multi-metallization, which drastically weakened ethylene adsorption.
Collapse
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
44
|
Defective ZnO Nanoflowers Decorated by Ultra-Fine Pd Clusters for Low-Concentration CH4 Sensing: Controllable Preparation and Sensing Mechanism Analysis. COATINGS 2022. [DOI: 10.3390/coatings12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To detect low concentration of CH4 is indeed meaningful in industrial manufacturing, such as the petrochemical industry and natural gas catalysis, but it is not easy to detect low concentration of CH4 due to its high symmetrical and stable structure. In this work, defect-rich ZnO1−x nanoflowers (NFs) were synthesized by a two-step route so as to obtain defect-enhanced gas-sensing performance, namely hydrothermal synthesis followed by H2 treatment. In order to achieve low-concentration detection of CH4, the ultra-thin Pd clusters’ (Cs, diameter about 1–2 nm) sensitizer was synthesized and decorated onto the surface of ZnO1−x NFs. It is found that Pd Cs-2/ZnO1−x gas sensors show enhanced gas-sensing properties to CH4, even at ppm concentration level. At its optimal working temperature of 260 °C, the gas response to 50 ppm CH4 can reach 5.0 with good gas selectivity; the response and recovery time is only 16.2 and 13.8 s, respectively. In the Results, we discussed the CH4 gas-sensing mechanism deeply. Overall, it is very necessary to detect low-concentration methane safely. It is possible for further safe detection of low-concentration methane gas in the future.
Collapse
|
45
|
Guo Y, Huang Y, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q, Su Y, Li L, Jiang Q, Cui YT, Li L, Li R, Qiao B, Zhang T. Photo-thermo semi-hydrogenation of acetylene on Pd 1/TiO 2 single-atom catalyst. Nat Commun 2022; 13:2648. [PMID: 35551203 PMCID: PMC9098498 DOI: 10.1038/s41467-022-30291-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Supported Pd catalysts have attracted most attention due to their superior intrinsic activity but often suffer from low selectivity. Pd single-atom catalysts (SACs) are promising to significantly improve the selectivity, but the activity needs to be improved and the feasible preparation of Pd SACs remains a grand challenge. Here, we report a simple strategy to construct Pd1/TiO2 SACs by selectively encapsulating the co-existed small amount of Pd nanoclusters/nanoparticles based on their different strong metal-support interaction (SMSI) occurrence conditions. In addition, photo-thermo catalysis has been applied to this process where a much-improved catalytic activity was obtained. Detailed characterization combined with DFT calculation suggests that photo-induced electrons transferred from TiO2 to the adjacent Pd atoms facilitate the activation of acetylene. This work offers an opportunity to develop highly stable Pd SACs for efficient catalytic semi-hydrogenation process. Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Here the authors develop highly stable Pd1/TiO2 single-atom catalyst for photo-thermo semi-hydrogenation of acetylene.
Collapse
Affiliation(s)
- Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zeng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohcin Akri
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ming Shi
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qinghe Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Tao Cui
- SANKA High Technology Co. Ltd. 90-1, Tatsuno, Hyogo, Japan
| | - Lei Li
- Synchrotron Radiation Research Center, Hyogo Science and Technology Association, Hyogo, Japan
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
46
|
Ma J, Xing F, Nakaya Y, Shimizu K, Furukawa S. Nickel‐Based High‐Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Yuki Nakaya
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Ken‐ichi Shimizu
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Shinya Furukawa
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Department of Research Promotion Japan Science and Technology Agency Chiyoda Tokyo 102-0076 Japan
| |
Collapse
|
47
|
Zhu H, Zhao H, Ma H, Li B, Kou J, Li J, Gao M, Zeng G, Fang J, Dong Z. Ultrafine PdZn bimetallic nanoparticles anchored on Sulfur-doped mesoporous carbon for the partial hydrogenation of alkynols. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Zhu K, Ma J, Chen L, Wu F, Xu X, Xu M, Ye W, Wang Y, Gao P, Xiong Y. Unraveling the Role of Interfacial Water Structure in Electrochemical Semihydrogenation of Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kaili Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jun Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xudong Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
49
|
Gou G, Che C, Wen H, Qin J, Cao X, Han W, Zhang F, Long Y, Ma J. θ-Al2O3/FeO1.25 possessing a special ring complex of FeII---HO===FeIII for the efficient catalytic semi-hydrogenation of acetylene under front–end conditions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Luo Q, Wang H, Wang L, Xiao FS. Alloyed PdCu Nanoparticles within Siliceous Zeolite Crystals for Catalytic Semihydrogenation. ACS MATERIALS AU 2022; 2:313-320. [PMID: 36855384 PMCID: PMC9888633 DOI: 10.1021/acsmaterialsau.1c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective hydrogenation of acetylene to ethylene is an industrially important process to purify the raw ethylene stream for producing high-grade polyethylene. The supported Pd catalyst exhibits superior activity for acetylene hydrogenation but suffers from poor ethylene selectivity because of the easy overhydrogenation to produce ethane. Here, we report that the PdCu alloy nanoparticles within siliceous zeolite crystals effectively tuned Pd-catalyzed overhydrogenation into semihydrogenation. This catalyst displayed an ethylene selectivity of 92.9% with a full conversion of acetylene. Mechanism studies reveal that the zeolite fixation stabilized the alloyed structure, where the electron-enriched Pd surface benefits the rapid ethylene desorption to hinder the deep hydrogenation. This work provides an efficient strategy for a rational design of bimetallic metal catalysts for selective hydrogenations.
Collapse
|