1
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. Mechanistic elucidation of O 2 production from tBuOOH in water using the Mn(II) catalyst [Mn 2(mcbpen) 2(H 2O) 2] 2+: a DFT study. Dalton Trans 2024; 53:14089-14097. [PMID: 39120522 DOI: 10.1039/d4dt01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This study employs density functional theory at the SMD/B3LYP-D3/6-311+G(2d,p),def2-TZVPP//SMD/B3LYP-D3/6-31G(d),SDD level of theory to explore the mechanistic details of O2 generation from tBuOOH, using H218O as the solvent, in the presence of the Mn(II) catalyst [Mn2(mcbpen)2(H2O)2]2+. Since this chemistry was reported to occur through the reaction of Mn(III)(μ-O)Mn(IV)-O˙ with water, we first revaluated this proposal and found that it occurs with an activation barrier greater than 36 kcal mol-1, ruling out the functioning of such a dimer as the active catalyst. Experimental evidence has shown that the oxidation of [Mn2(mcbpen)2(H2O)2]2+ by tBuOOH in H218O produces the Mn(IV) species [Mn(18O)(mcbpen)]+. Our investigations revealed a plausible mechanism for this observation in which [Mn (18O)(mcbpen)]+ acts as the active catalyst, generating the tert-butyl peroxyl radical (tBuOO˙) through its reaction with tBuOOH. In this proposed mechanism, the O-O bond is formed through the interaction of tBuOO˙ with another [Mn(18O)(mcbpen)]+, finally leading to the formation of the 16O18O product. Our findings underscore the pivotal role of [Mn(18O)(mcbpen)]+ in both generating the active species tBuOO˙ and consuming it to produce 16O18O. With activation barriers as low as about 9 kcal mol-1, these elementary steps highlight the feasibility of our proposed mechanism. Moreover, this mechanism elucidates why, experimentally, one of the oxygen atoms in the released O2 comes from water, while the other originates from tBuOOH. This research broadens our understanding of high oxidation state manganese chemistry, setting the stage for the development of more efficient Mn-based catalysts, aimed at improving processes in both renewable energy and synthetic chemistry.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australia.
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, Australia.
| |
Collapse
|
2
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. Mechanisms of Mn(V)-Oxo to Mn(IV)-Oxyl Conversion: From Closed-Cubane Photosystem II to Mn(V) Catalysts and the Role of the Entering Ligands. Chemistry 2024; 30:e202400396. [PMID: 38659321 DOI: 10.1002/chem.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystem II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling. This transition stabilizes the Mn4 dxy orbital, enabling electron transfer from the oxo ligand to the dxy orbital, converting the oxo ligand into an oxyl species. The role of the water is to coordinate with the square pyramidal structure, reducing the energy gap between the oxo and oxyl forms, thereby lowering the activation energy for O-O coupling. This mechanism applies not only to the OEC system but also to other Mn(V)-based catalysts. For other catalysts, ligands such as OH- stabilize the Mn(IV)-oxyl species better than water, improving catalyst activation for reactions like C-H bond activation. This study is the first to explain the Mn(V)-oxo to Mn(IV)-oxyl conversion, providing a new foundation for Mn-based catalyst design.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. Elucidating the catalytic mechanisms of O 2 generation by [Mn 2(μ-O) 2(terpy) 2(OH 2) 2] 3+ using DFT calculations: a focus on ClO - as oxidant. Dalton Trans 2024; 53:7580-7589. [PMID: 38616680 DOI: 10.1039/d4dt00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The experimentally reported Mn(IV)Mn(III) complex [Mn2(μ-O)2(terpy)2(OH2)2]3+ has been observed catalyzing O2 generation with oxidants like ClO- and HSO5-. Previous mechanistic studies primarily focused on O2 generation with HSO5-, concluding that Mn(IV)Mn(III) acts as a catalyst, generating a Mn(IV)Mn(IV)-oxyl species as a key intermediate responsible for O-O bond formation. This computational study employs DFT calculations to investigate whether the catalytic generation of O2 using ClO- follows the same mechanism previously identified with HSO5- as the oxidant, or if it proceeds through an alternate pathway. To this end, we explored multiple pathways using ClO- as the oxidant. Interestingly, our findings confirm that in the case of ClO- as the oxidant, similar to what was observed with HSO5-, the Mn(IV)Mn(IV)-oxyl species indeed plays a crucial role in driving the catalytic evolution of O2 with the potential formation of the binuclear complexes Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH during the reaction. These complexes are reactive in producing O2, with activation free energies of 15.9 and 14.3 kcal mol-1, respectively. However, our calculations revealed that the Mn(IV)Mn(IV)-oxyl complex is significantly more reactive in producing O2 than Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH, with a lower free energy barrier of 8.1 kcal mol-1. Consequently, even though Mn(IV)Mn(IV)-oxyl is predicted to be present in much lower concentrations than Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH, it emerges as the species acting as the active catalyst for catalytic O2 generation. This study enhances our knowledge of high oxidation state (+3 and +4) manganese chemistry, highlighting its key role in catalysis and paving the way for more efficient Mn-based catalysts with broad applications.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australia.
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, Australia.
| |
Collapse
|
4
|
Yang Z, Cui Y, Pan B, Pignatello JJ. Peroxymonosulfate Activation by Fe(III)-Picolinate Complexes for Efficient Water Treatment at Circumneutral pH: Fe(III)/Fe(IV) Cycle and Generation of Oxyl Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18918-18928. [PMID: 37061925 DOI: 10.1021/acs.est.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Improving the reactivity of Fe(III) for activating peroxymonosulfate (PMS) at circumneutral pH is critical to propel the iron-activated PMS processes toward practical wastewater treatment but is yet challenging. Here we employed the complexes of Fe(III) with the biodegradable picolinic acid (PICA) to activate PMS for degradation of selected chlorinated phenols, antibiotics, pharmaceuticals, herbicides, and industrial compounds at pH 4.0-6.0. The FeIII-PICA complexes greatly outperformed the ligand-free Fe(III) and other Fe(III) complexes of common aminopolycarboxylate ligands. In the main activation pathway, the key intermediate is a peroxymonosulfate complex, tentatively identified as PICA-FeIII-OOSO3-, which undergoes O-O homolysis or reacts with FeIII-PICA and PMS to yield FeIV=O and SO4•- without the involvement of commonly invoked Fe(II). PICA-FeIII-OOSO3- can also react directly with certain compounds (chlorophenols and sulfamethoxazole). The relative contributions of PICA-FeIII-OOSO3-, FeIV=O, and SO4•- depend on the structure of target compounds. This work sets an eligible example to enhance the reactivity of Fe(III) toward PMS activation by ligands and sheds light on the previously unrecognized role of the metal-PMS complexes in directing the catalytic cycle and decontamination as well.
Collapse
Affiliation(s)
- Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yaodan Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, PR China
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
5
|
Li M, Liao RZ. Water Oxidation Catalyzed by a Bioinspired Tetranuclear Manganese Complex: Mechanistic Study and Prediction. CHEMSUSCHEM 2022; 15:e202200187. [PMID: 35610183 DOI: 10.1002/cssc.202200187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Density functional theory calculations were utilized to elucidate the water oxidation mechanism catalyzed by polyanionic tetramanganese complex a [MnIII 3 MnIV O3 (CH3 COO)3 (A-α-SiW9 O34 )]6- . Theoretical results indicated that catalytic active species 1 (Mn4 III,III,IV,IV ) was formed after O2 formation in the first turnover. From 1, three sequential proton-coupled electron transfer (PCET) oxidations led to the MnIV -oxyl radical 4 (Mn4 IV,IV,IV,IV -O⋅). Importantly, 4 had an unusual butterfly-shaped Mn2 O2 core for the two substrate-coordinated Mn sites, which facilitated O-O bond formation via direct coupling of the oxyl radical and the adjacent MnIV -coordinated hydroxide to produce the hydroperoxide intermediate Int1 (Mn4 III,IV,IV,IV -OOH). This step had an overall energy barrier of 24.9 kcal mol-1 . Subsequent PCET oxidation of Int1 to Int2 (Mn4 III,IV,IV,IV -O2 ⋅) enabled the O2 release in a facile process. Furthermore, apart from the Si-centered complex, computational study suggested that tetramanganese polyoxometalates with Ge, P, and S could also catalyze the water oxidation process, where those bearing P and S likely present higher activities.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Wu P, Yan S, Fang W, Wang B. Molecular Mechanism of the Mononuclear Copper Complex-Catalyzed Water Oxidation from Cluster-Continuum Model Calculations. CHEMSUSCHEM 2022; 15:e202102508. [PMID: 35080143 DOI: 10.1002/cssc.202102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cluster-continuum model calculations were conducted to decipher the mechanism of water oxidation catalyzed by a mononuclear copper complex. Among various O-O bond formation mechanisms investigated in this study, the most favorable pathway involved the nucleophilic attack of OH- onto the .+ L-CuII -OH- intermediate. During such process, the initial binding of OH- to the proximity of .+ L-CuII -OH- would result in the spontaneous oxidation of OH- , leading to OH⋅ radical and CuII -OH- species. The further O-O coupling between OH⋅ radical and CuII -OH- was associated with a barrier of 14.8 kcal mol-1 , leading to the formation of H2 O2 intermediate. Notably, the formation of "CuIII -O.- " species, a widely proposed active species for O-O bond formation, was found to be thermodynamically unfavorable and could be bypassed during the catalytic reactions. On the basis the present calculations, a catalytic cycle of the mononuclear copper complex-catalyzed water oxidation was proposed.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
7
|
Zhao G, Yao Y, Lu W, Liu G, Guo X, Tricoli A, Zhu Y. Direct Observation of Oxygen Evolution and Surface Restructuring on Mn 2O 3 Nanocatalysts Using In Situ and Ex Situ Transmission Electron Microscopy. NANO LETTERS 2021; 21:7012-7020. [PMID: 34369791 DOI: 10.1021/acs.nanolett.1c02378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct observation of oxygen evolution reaction (OER) on catalyst surface may significantly advance the mechanistic understanding of OER catalysis. Here, we report the first real-time nanoscale observation of chemical OER on Mn2O3 nanocatalyst surface using an in situ liquid holder in a transmission electron microscope (TEM). The oxygen evolution process can be directly visualized from the development of oxygen nanobubbles around nanocatalysts. The high spatial and temporal resolution further enables us to unravel the real-time formation of a surface layer on Mn2O3, whose thickness oscillation reflects a partially reversible surface restructuring relevant to OER catalysis. Ex situ atomic-resolution TEM on the residual surface layer after OER reveals its amorphous nature with reduced Mn valence and oxygen coordination. Besides shedding light on the dynamic OER catalysis, our results also demonstrate a powerful strategy combining in situ and ex situ TEM for investigating various chemical reaction mechanisms in liquid.
Collapse
Affiliation(s)
- Guangming Zhao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yunduo Yao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wei Lu
- University Research Facility in Materials Characterization and Device Fabrication, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Guanyu Liu
- Nanotechnology Research Laboratory, Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 2601 Australia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Gorantla KR, Mallik BS. Mechanistic Insight into the O 2 Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. J Phys Chem A 2021; 125:6461-6473. [PMID: 34282907 DOI: 10.1021/acs.jpca.1c06008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mononuclear complexes ([(bztpen)Cu] (BF4)2 (bztpen = N-benzyl-N,N',N'-tris (pyridin-2-yl methyl ethylenediamine))) and ([(dbzbpen)Cu(OH2)] (BF4)2 (dbzbpen = N,N'-dibenzyl-N,N'-bis(pyridin-2-ylmethyl) ethylenediamine)) have been reported as water oxidation catalysts in basic medium (pH = 11.5). We explore the O2 evolution process catalyzed by these copper catalysts with various ligands (L) by applying the first-principles molecular dynamics simulations. First, the oxidation of catalysts to the metal-oxo intermediates [LCu(O)]2+ occurs through the proton-coupled electron transfer (PCET) process. These intermediates are involved in the oxygen-oxygen bond formation through the water-nucleophilic addition process. Here, we have considered two types of oxygen-oxygen bond formation. The first one is the transfer of the hydroxide of the water molecule to the Cu═O moiety; the proton transfer to the solvent leads to the formation of the peroxide complex ([LCu(OOH)]+). The other is the formation of the hydrogen peroxide complex ([LCu(HOOH)]2+) by the transfer of proton and hydroxide of the water molecule to the metal-oxo intermediate. The formation of the peroxide complex requires less activation free energy than hydrogen peroxide formation for both catalysts. We found two transition states in the well-tempered metadynamics simulations: one for proton transfer and another for hydroxide transfer. In both cases, the proton transfer requires higher free energy. Following the formation of the oxygen-oxygen bond, we study the release of the dioxygen molecule. The formed peroxide and hydrogen peroxide complexes are converted into the superoxide complex ([LCu(OO)]2+) through the transfer of proton, electron, and PCET processes. The superoxide complex releases an oxygen molecule upon the addition of a water molecule. The free energy of activation for the release of the dioxygen molecule is lesser than that of the oxygen-oxygen bond formation. When we observe the entire water oxidation process, the oxygen-oxygen bond formation is the rate-determining step. We calculated the rates of reaction by using the Eyring equation and found them to be close to the experimental values.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
9
|
Li H, Zhao Z, Qian J, Pan B. Are Free Radicals the Primary Reactive Species in Co(II)-Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)-Peroxymonosulfate Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6397-6406. [PMID: 33882668 DOI: 10.1021/acs.est.1c02015] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The catalytic activation of peroxymonosulfate (PMS) is under intensive investigation with potentials as an alternative advanced oxidation process (AOP) in wastewater treatment. Among all catalysts examined, Co(II) exhibits the highest reactivity for the activation of PMS, following the conventional Fenton-like mechanism, in which free radicals (i.e., sulfate radicals and hydroxyl radicals) are reckoned as the reactive species. Herein, we report that the primary reactive species (PRS) is proposed to be a Co(II)-PMS complex (Co(II)-OOSO3-), while free radicals and Co(III) species act as the secondary reactive species (SRS) that play a minor role in the Co(II)/PMS process. This Co(II)-OOSO3- exhibits several intriguing properties including ability to conduct both one-electron-transfer and oxygen-atom-transfer reactions with selected molecules, both nucleophilic and electrophilic in nature, and strongly pH-dependent reactivity. This study provides novel insights into the chemical nature of the Co(II)-catalyzed PMS activation process.
Collapse
Affiliation(s)
- Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Zihao Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Yamanoi Y, Nakae T, Nishihara H. Bio-organic-inorganic hybrid soft materials: photoelectric conversion systems based on photosystem I and II with molecular wires. CHEM LETT 2021. [DOI: 10.1246/cl.210111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshinori Yamanoi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toyotaka Nakae
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Nishihara
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| |
Collapse
|
11
|
Yang QQ, Jiang X, Yang B, Wang Y, Tung CH, Wu LZ. Amphiphilic Oxo-Bridged Ruthenium "Green Dimer" for Water Oxidation. iScience 2020; 23:100969. [PMID: 32200095 PMCID: PMC7090326 DOI: 10.1016/j.isci.2020.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 11/24/2022] Open
Abstract
In 1982, an oxo-bridged dinuclear ruthenium(III) complex, known as “blue dimer,” was discovered to be active for water oxidation. In this work, a new amphiphilic ruthenium “green dimer” 2, obtained from an amphiphilic mononuclear Ru(bda) (N-OTEG) (L1) (1; N-OTEG = 4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-pyridine; L1 = vinylpyridine) is reported. An array of mechanistic studies identifies “green dimer” 2 as a mixed valence of RuII-O-RuIII oxo-bridged structure. Bearing the same bda2- and amphiphilic axial ligands, monomer 1 and green dimer 2 can be reversibly converted by ascorbic acid and oxygen, respectively, in aqueous solution. More importantly, the oxo-bridged “green dimer” 2 was found to take water nucleophilic attack for oxygen evolution, in contrast to monomer 1 via radical coupling pathway for O-O bond formation. This is the first report of an amphiphilic oxo-bridged catalyst, which possesses a new oxygen evolution pathway of Ru-bda catalysts. Green dimer (RuII-O-RuIII), referring to “blue dimer” of RuIII-O-RuIII, is disclosed The first amphiphilic μ-oxido-bridged catalyst is reported active for water oxidation The oxo-bridged “green dimer” 2 takes water nucleophilic attack for O-O bond formation This is the first Ru-bda catalyst, which possesses a new oxygen evolution pathway
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
12
|
Li YY, Gimbert C, Llobet A, Siegbahn PEM, Liao RZ. Quantum Chemical Study of the Mechanism of Water Oxidation Catalyzed by a Heterotrinuclear Ru 2 Mn Complex. CHEMSUSCHEM 2019; 12:1101-1110. [PMID: 30604589 DOI: 10.1002/cssc.201802395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The heterotrinuclear complex A {[RuII (H2 O)(tpy)]2 (μ-[MnII (H2 O)2 (bpp)2 ])}4+ [tpy=2,2':6',2''-terpyridine, bpp=3,5-bis(2-pyridyl)pyrazolate] was found to catalyze water oxidation both electrochemically and photochemically with [Ru(bpy)3 ]3+ (bpy=2,2'-bipyridine) as the photosensitizer and Na2 S2 O8 as the electron acceptor in neutral phosphate buffer. The mechanism of water oxidation catalyzed by this unprecedented trinuclear complex was studied by density functional calculations. The calculations showed that a series of oxidation and deprotonation events take place from A, leading to the formation of complex 1 (formal oxidation state of Ru1IV MnIII Ru2III ), which is the starting species for the catalytic cycle. Three sequential oxidations of 1 result in the generation of the catalytically competing species 4 (formal oxidation state of Ru1IV MnV Ru2IV ), which triggers the O-O bond formation. The direct coupling of two adjacent oxo ligands bound to Ru and Mn leads to the production of a superoxide intermediate Int1. This step was calculated to have a barrier of 7.2 kcal mol-1 at the B3LYP*-D3 level. Subsequent O2 release from Int1 turns out to be quite facile. Other possible pathways were found to be much less favorable, including water nucleophilic attack, the coupling of an oxo and a hydroxide, and the direct coupling pathway at a lower oxidation state (RuIV MnIV RuIV ).
Collapse
Affiliation(s)
- Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Carolina Gimbert
- Institute of Chemical Research of Catalonia (ICIQ-BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ-BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
13
|
Ghosh T, Maayan G. Efficient Homogeneous Electrocatalytic Water Oxidation by a Manganese Cluster with an Overpotential of Only 74 mV. Angew Chem Int Ed Engl 2019; 58:2785-2790. [DOI: 10.1002/anie.201813895] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Totan Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
14
|
N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn
2
O
2
Dimer Competent for Catalytic Oxygen Evolution. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Ghosh T, Maayan G. Efficient Homogeneous Electrocatalytic Water Oxidation by a Manganese Cluster with an Overpotential of Only 74 mV. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Totan Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
16
|
Liao RZ, Masaoka S, Siegbahn PEM. Metal Oxidation States for the O–O Bond Formation in the Water Oxidation Catalyzed by a Pentanuclear Iron Complex. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medic, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shigeyuki Masaoka
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
17
|
Haschke S, Mader M, Schlicht S, Roberts AM, Angeles-Boza AM, Barth JAC, Bachmann J. Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface. Nat Commun 2018; 9:4565. [PMID: 30385759 PMCID: PMC6212532 DOI: 10.1038/s41467-018-07031-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022] Open
Abstract
Understanding the mechanism of water oxidation to dioxygen represents the bottleneck towards the design of efficient energy storage schemes based on water splitting. The investigation of kinetic isotope effects has long been established for mechanistic studies of various such reactions. However, so far natural isotope abundance determination of O2 produced at solid electrode surfaces has not been applied. Here, we demonstrate that such measurements are possible. Moreover, they are experimentally simple and sufficiently accurate to observe significant effects. Our measured kinetic isotope effects depend strongly on the electrode material and on the applied electrode potential. They suggest that in the case of iron oxide as the electrode material, the oxygen evolution reaction occurs via a rate-determining O−O bond formation via nucleophilic water attack on a ferryl unit. Understanding reaction mechanisms is crucial for catalyst design. Here, natural-abundance isotope quantifications of O2 yield mechanistically significant reaction kinetic isotope effects for water oxidation over metal oxide electrodes, the bottleneck step of water electrolysis.
Collapse
Affiliation(s)
- Sandra Haschke
- Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, 91058, Erlangen, Germany
| | - Michael Mader
- Department für Geographie und Geowissenschaften, GeoZentrum NordBayern, Applied Geology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054, Erlangen, Germany
| | - Stefanie Schlicht
- Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, 91058, Erlangen, Germany
| | - André M Roberts
- Department für Geographie und Geowissenschaften, GeoZentrum NordBayern, Applied Geology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054, Erlangen, Germany
| | - Alfredo M Angeles-Boza
- Department of Chemistry and Institute of Materials Science, University of Connecticut, 55 North Eagleville Rd., Storrs, CT, 06269, USA.
| | - Johannes A C Barth
- Department für Geographie und Geowissenschaften, GeoZentrum NordBayern, Applied Geology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 5, 91054, Erlangen, Germany.
| | - Julien Bachmann
- Department of Chemistry and Pharmacy, Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, 91058, Erlangen, Germany. .,Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg, Russian Federation, 198504.
| |
Collapse
|
18
|
Nesterova OV, Nesterov DS, Vranovičová B, Boča R, Pombeiro AJL. Heterometallic Cu IIFe III and Cu IIMn III alkoxo-bridged complexes revealing a rare hexanuclear M 6(μ-X) 7(μ 3-X) 2 molecular core. Dalton Trans 2018; 47:10941-10952. [PMID: 30019733 DOI: 10.1039/c8dt02290a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel hexanuclear complexes [Cu4Fe2(OH)(Piv)4(tBuDea)4Cl]·0.5CH3CN (1) and [Cu4Mn2(OH)(Piv)4(tBuDea)4Cl] (2) were prepared through one-pot self-assembly reactions of copper powder and iron(ii) or manganese(ii) chloride with N-tert-butyldiethanolamine (H2tBuDea) and pivalic acid (HPiv) in acetonitrile. Crystallographic studies revealed the uncommon molecular core type M6(μ-X)7(μ3-X)2 in 1 and 2, which can be viewed as a combination of two trimetallic M3(μ-X)2(μ3-X) fragments joined by three bridging atoms. The analysis and classification of the hexanuclear complexes having a M3(μ-X)2(μ3-X) moiety as a core forming fragment using data from the Cambridge Structural Database (CSD) were performed. Variable-temperature (1.8-300 K) magnetic susceptibility measurements of 1 showed a decrease of the effective magnetic moment value at low temperature, indicative of antiferromagnetic coupling between the magnetic centres (JFe-Cu/hc = -6.9 cm-1, JCu-Cu/hc = -4.1 cm-1, JFe-Fe/hc = -24.2 cm-1). Complex 1 acts as a catalyst in the reaction of mild oxidation of cyclohexane with H2O2, showing the yields of products, cyclohexanol and cyclohexanone, up to 17% using pyrazinecarboxylic acid as a promoter. In the oxidation of cis-1,2-dimethylcyclohexane with m-chloroperoxybenzoic acid (m-CPBA), 70% of retention of stereoconfiguration was observed for tertiary alcohols. Compound 1 also catalyses the amidation of cyclohexane with benzamide. In all three catalytic reactions the by-products were investigated in detail and discussed.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
19
|
Rudshteyn B, Fisher KJ, Lant HMC, Yang KR, Mercado BQ, Brudvig GW, Crabtree RH, Batista VS. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02466] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Benjamin Rudshteyn
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Katherine J. Fisher
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Hannah M. C. Lant
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Ke R. Yang
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Gary W. Brudvig
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Robert H. Crabtree
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S. Batista
- Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Schilling M, Luber S. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges. Front Chem 2018; 6:100. [PMID: 29721491 PMCID: PMC5915471 DOI: 10.3389/fchem.2018.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.
Collapse
Affiliation(s)
- Mauro Schilling
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| |
Collapse
|
21
|
Wilson AJ, Jain PK. Structural Dynamics of the Oxygen-Evolving Complex of Photosystem II in Water-Splitting Action. J Am Chem Soc 2018; 140:5853-5859. [PMID: 29649874 DOI: 10.1021/jacs.8b02620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxygenic photosynthesis in nature occurs via water splitting catalyzed by the oxygen-evolving complex (OEC) of photosystem II. To split water, the OEC cycles through a sequence of oxidation states (S i, i = 0-4), the structural mechanism of which is not fully understood under physiological conditions. We monitored the OEC in visible-light-driven water-splitting action by using in situ, aqueous-environment surface-enhanced Raman scattering (SERS). In the unexplored low-frequency region of SERS, we found dynamic vibrational signatures of water binding and splitting. Specific snapshots in the dynamic SERS correspond to intermediate states in the catalytic cycle, as determined by density functional theory and isotopologue comparisons. We assign the previously ambiguous protonation configuration of the S0-S3 states and propose a structural mechanism of the OEC's catalytic cycle. The findings address unresolved questions about photosynthetic water splitting and introduce spatially resolved, low-frequency SERS as a chemically sensitive tool for interrogating homogeneous catalysis in operando.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Prashant K Jain
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Materials Research Lab , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
22
|
Bhat GA, Rajendran A, Murugavel R. Dinuclear Manganese(II), Cobalt(II), and Nickel(II) Aryl Phosphates Incorporating 4′-Chloro-2,2′:6′,2′′-Terpyridine Coligands - Efficient Catalysts for Alcohol Oxidation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gulzar A. Bhat
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai India
| | - Antony Rajendran
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai India
| | - Ramaswamy Murugavel
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Mumbai India
| |
Collapse
|
23
|
Zhang L, Chen J, Fan T, Shen K, Jiang M, Li Y. A high-valent di-μ-oxo dimanganese complex covalently anchored in a metal–organic framework as a highly efficient and recoverable water oxidation catalyst. Chem Commun (Camb) 2018; 54:4188-4191. [DOI: 10.1039/c8cc00258d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic homogeneous catalyst is successfully anchored inside MOFs, exhibiting high activity and reliable durability in the water oxidation reaction.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Junying Chen
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Ting Fan
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Kui Shen
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Miao Jiang
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
24
|
Schneider TW, Hren MT, Ertem MZ, Angeles-Boza AM. [RuII(tpy)(bpy)Cl]+-Catalyzed reduction of carbon dioxide. Mechanistic insights by carbon-13 kinetic isotope effects. Chem Commun (Camb) 2018; 54:8518-8521. [DOI: 10.1039/c8cc03009j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
13C kinetic isotope effect determinations combined with DFT calculations provide insight on the CO2 reduction reaction catalyzed by a ruthenium complex.
Collapse
Affiliation(s)
| | - M. T. Hren
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - M. Z. Ertem
- Chemistry Division
- Energy & Photon Sciences Directorate
- Brookhaven National Laboratory
- Upton
- USA
| | - A. M. Angeles-Boza
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
- Institute of Materials Science
| |
Collapse
|
25
|
Liao RZ, Siegbahn PEM. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. CHEMSUSCHEM 2017; 10:4236-4263. [PMID: 28875583 DOI: 10.1002/cssc.201701374] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The design of efficient and robust water oxidation catalysts has proven challenging in the development of artificial photosynthetic systems for solar energy harnessing and storage. Tremendous progress has been made in the development of homogeneous transition-metal complexes capable of mediating water oxidation. To improve the efficiency of the catalyst and to design new catalysts, a detailed mechanistic understanding is necessary. Quantum chemical modeling calculations have been successfully used to complement the experimental techniques to suggest a catalytic mechanism and identify all stationary points, including transition states for both O-O bond formation and O2 release. In this review, recent progress in the applications of quantum chemical methods for the modeling of homogeneous water oxidation catalysis, covering various transition metals, including manganese, iron, cobalt, nickel, copper, ruthenium, and iridium, is discussed.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
26
|
Li YY, Ye K, Siegbahn PEM, Liao RZ. Mechanism of Water Oxidation Catalyzed by a Mononuclear Manganese Complex. CHEMSUSCHEM 2017; 10:903-911. [PMID: 27925413 DOI: 10.1002/cssc.201601538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/01/2016] [Indexed: 06/06/2023]
Abstract
The design and synthesis of biomimetic Mn complexes to catalyze oxygen evolution is a very appealing goal because water oxidation in nature employs a Mn complex. Recently, the mononuclear Mn complex [LMnII (H2 O)2 ]2+ [1, L=Py2 N(tBu)2 , Py=pyridyl] was reported to catalyze water oxidation electrochemically at an applied potential of 1.23 V at pH 12.2 in aqueous solution. Density functional calculations were performed to elucidate the mechanism of water oxidation promoted by this catalyst. The calculations showed that 1 can lose two protons and one electron readily to produce [LMnIII (OH)2 ]+ (2), which then undergoes two sequential proton-coupled electron-transfer processes to afford [LMnV OO]+ (4). The O-O bond formation can occur through direct coupling of the two oxido ligands or through nucleophilic attack of water. These two mechanisms have similar barriers of approximately 17 kcal mol-1 . The further oxidation of 4 to generate [LMnVI OO]2+ (5), which enables O-O bond formation, has a much higher barrier. In addition, ligand degradation by C-H activation has a similar barrier to that for the O-O bond formation, and this explains the relatively low turnover number of this catalyst.
Collapse
Affiliation(s)
- Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ke Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
27
|
A DFT/B3LYP study of the mechanisms of the O 2 formation reaction catalyzed by the [(terpy)(H 2O)Mn III(O) 2Mn IV(OH 2)(terpy)](NO 3) 3 complex: A paradigm for photosystem II. J Inorg Biochem 2017; 171:52-66. [PMID: 28365435 DOI: 10.1016/j.jinorgbio.2017.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/28/2017] [Accepted: 02/17/2017] [Indexed: 11/20/2022]
Abstract
We present a theoretical study of the reaction pathway for dioxygen molecular formation catalyzed by the [(terpy)(H2O)MnIII(O)2MnIV(OH2) (terpy)](NO3)3 (terpy=2,2':6',2″-terpyridine) complex based on DFT-B3LYP calculations. In the initial state of the reaction, a partial oxido radical (0.44 spins) is formed ligated to Mn. This radical is involved in a nucleophylic attack by bulk water in the OO bond reaction formation step, in which the oxido fractional unpaired electron is delocalized toward the outermost Mn of the μ-oxo bridge, instead of the ligated Mn center. The reaction then follows with a series of proton-coupled electron transfer steps, in which the oxidation state, as well as the bond strength of the OO moiety increase, while the OOMn(1) bond gets weaker until O2 is released. In this model, basic acetate ions from the buffer solution capture protons in the proton-transfer steps. In each step there is reduction of the OOMn(1) binding strength, with concomitant increase of the OO bond strength, which culminates with the release of O2 in the last step. This last step is entropy driven, while formation of hydroperoxide and superoxide moieties is enthalpy driven. According with experiments, the rate-limiting step is the double oxidation of Mn(IV,III) or peroxymonosulfate binding, which occur prior to the OO bond formation step. This supports our findings that the barriers of all intermediate steps are below the experimental barrier of 19-21kcal/mol. The implications of these findings for understanding photosynthetic water-splitting catalysis are also discussed.
Collapse
|
28
|
Guo Y, Li H, He LL, Zhao DX, Gong LD, Yang ZZ. The open-cubane oxo–oxyl coupling mechanism dominates photosynthetic oxygen evolution: a comprehensive DFT investigation on O–O bond formation in the S4state. Phys Chem Chem Phys 2017; 19:13909-13923. [DOI: 10.1039/c7cp01617d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How is O2created in nature? Comprehensive DFT investigations determine the dominance of the open-cubane oxo–oxyl coupling mechanism over alternative possibilities.
Collapse
Affiliation(s)
- Yu Guo
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Hui Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Lan-Lan He
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| |
Collapse
|
29
|
Michaelos TK, Lant HMC, Sharninghausen LS, Craig SM, Menges FS, Mercado BQ, Brudvig GW, Crabtree RH. Catalytic Oxygen Evolution from Manganese Complexes with an Oxidation‐Resistant N,N,O‐Donor Ligand. Chempluschem 2016; 81:1129-1132. [DOI: 10.1002/cplu.201600353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Thoe K. Michaelos
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Hannah M. C. Lant
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | | | - Stephanie M. Craig
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Fabian S. Menges
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Gary W. Brudvig
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Robert H. Crabtree
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| |
Collapse
|
30
|
Hodel FH, Luber S. Redox-Inert Cations Enhancing Water Oxidation Activity: The Crucial Role of Flexibility. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01218] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian H. Hodel
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
31
|
Schneider TW, Ertem MZ, Muckerman JT, Angeles-Boza AM. Mechanism of Photocatalytic Reduction of CO2 by Re(bpy)(CO)3Cl from Differences in Carbon Isotope Discrimination. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01208] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Taylor W. Schneider
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Building 555A, Upton, New York 11973, United States
| | - James T. Muckerman
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Building 555A, Upton, New York 11973, United States
| | - Alfredo M. Angeles-Boza
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
32
|
Materna KL, Rudshteyn B, Brennan BJ, Kane MH, Bloomfield AJ, Huang DL, Shopov DY, Batista VS, Crabtree RH, Brudvig GW. Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01101] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kelly L. Materna
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Bradley J. Brennan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Morgan H. Kane
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Aaron J. Bloomfield
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Daria L. Huang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Dimitar Y. Shopov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Robert H. Crabtree
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Energy Sciences
Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
33
|
Hodel FH, Luber S. What Influences the Water Oxidation Activity of a Bioinspired Molecular CoII4O4 Cubane? An In-Depth Exploration of Catalytic Pathways. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02507] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian H. Hodel
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
34
|
Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem Rev 2016; 116:2886-936. [PMID: 26812090 DOI: 10.1021/acs.chemrev.5b00340] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
Collapse
Affiliation(s)
| | - Gernot Renger
- Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin , Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg , Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku , 20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières , C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University , Okayama 700-8530, Japan.,Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences , Botanicheskaya Street 35, Moscow 127276, Russia.,Institute of Basic Biological Problems, Russian Academy of Sciences , Pushchino, Moscow Region 142290, Russia.,Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University , Leninskie Gory 1-12, Moscow 119991, Russia
| |
Collapse
|
35
|
Rahaman H, Barman K, Jasimuddin S, Ghosh SK. Hybrid Mn3O4–NiO nanocomposites as efficient photoelectrocatalysts towards water splitting under neutral pH conditions. RSC Adv 2016. [DOI: 10.1039/c6ra22499g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual oxide Mn3O4–NiO nanocomposites synthesised by seed-mediated epitaxial growth have been exploited as electrocatalysts towards water splitting at an applied overpotential of 280 mV under neutral pH conditions.
Collapse
Affiliation(s)
| | - Koushik Barman
- Department of Chemistry
- Assam University
- Silchar-788011
- India
| | - Sk. Jasimuddin
- Department of Chemistry
- Assam University
- Silchar-788011
- India
| | | |
Collapse
|
36
|
Kärkäs MD, Åkermark B. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Trans 2016; 45:14421-61. [DOI: 10.1039/c6dt00809g] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catalysts for the oxidation of water are a vital component of solar energy to fuel conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu.
Collapse
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Björn Åkermark
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|