• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643723)   Today's Articles (454)   Subscriber (50635)
For: Silaghi MC, Comas-Vives A, Copéret C. CO2 Activation on Ni/γ–Al2O3 Catalysts by First-Principles Calculations: From Ideal Surfaces to Supported Nanoparticles. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00822] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Number Cited by Other Article(s)
1
Krösschell R, Hensen EJ, Filot IA. Unravelling CO Activation on Flat and Stepped Co Surfaces: A Molecular Orbital Analysis. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024;128:8947-8960. [PMID: 38864004 PMCID: PMC11163463 DOI: 10.1021/acs.jpcc.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
2
De Coster V, Srinath NV, Yazdani P, Poelman H, Galvita VV. Modulation Engineering: Stimulation Design for Enhanced Kinetic Information from Modulation-Excitation Experiments on Catalytic Systems. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
3
Xu H, Guan D. Exceptional Anisotropic Noncovalent Interactions in Ultrathin Nanorods: The Terminal σ-Hole. ACS APPLIED MATERIALS & INTERFACES 2022;14:51190-51199. [PMID: 36342830 DOI: 10.1021/acsami.2c14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
4
Gao X, Cai P, Wang Z, Lv X, Kawi S. Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Top Catal 2022. [DOI: 10.1007/s11244-022-01708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
5
Chen J, Shen X, Wang Q, Wang J, Yang D, Bold T, Dai Y, Tang Y, Yang Y. CO2 methanation over γ-Al2O3 nanosheets-stabilized Ni catalysts: Effects of MnOx and MoOx additives on catalytic performance and reaction pathway. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
6
De Coster V, Srinath NV, Yazdani P, Poelman H, Galvita VV. Does CO2 Oxidize Ni Catalysts? A Quick X-ray Absorption Spectroscopy Answer. J Phys Chem Lett 2022;13:7947-7952. [PMID: 35981090 DOI: 10.1021/acs.jpclett.2c01790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
7
Zhang G, Liu M, Fan G, Zheng L, Li F. Efficient Role of Nanosheet-Like Pr2O3 Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022;14:2768-2781. [PMID: 34994552 DOI: 10.1021/acsami.1c20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
8
Cui Z, Meng S, Yi Y, Jafarzadeh A, Li S, Neyts EC, Hao Y, Li L, Zhang X, Wang X, Bogaerts A. Plasma-Catalytic Methanol Synthesis from CO2 Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
9
Yang H, Wang H, Wei L, Yang Y, Li YW, Wen XD, Jiao H. Simple mechanisms of CH4 reforming with CO2 and H2O on a supported Ni/ZrO2 catalyst. Phys Chem Chem Phys 2021;23:26392-26400. [PMID: 34792065 DOI: 10.1039/d1cp04048k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Etim UJ, Zhang C, Zhong Z. Impacts of the Catalyst Structures on CO2 Activation on Catalyst Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021;11:3265. [PMID: 34947613 PMCID: PMC8707475 DOI: 10.3390/nano11123265] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
11
Guharoy U, Reina TR, Liu J, Sun Q, Gu S, Cai Q. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
12
Kreitz B, Sargsyan K, Blöndal K, Mazeau EJ, West RH, Wehinger GD, Turek T, Goldsmith CF. Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111). JACS AU 2021;1:1656-1673. [PMID: 34723269 PMCID: PMC8549061 DOI: 10.1021/jacsau.1c00276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 05/30/2023]
13
Alam MI, Cheula R, Moroni G, Nardi L, Maestri M. Mechanistic and multiscale aspects of thermo-catalytic CO2 conversion to C1 products. Catal Sci Technol 2021;11:6601-6629. [PMID: 34745556 PMCID: PMC8521205 DOI: 10.1039/d1cy00922b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022]
14
Payard PA, Rochlitz L, Searles K, Foppa L, Leuthold B, Safonova OV, Comas-Vives A, Copéret C. Dynamics and Site Isolation: Keys to High Propane Dehydrogenation Performance of Silica-Supported PtGa Nanoparticles. JACS AU 2021;1:1445-1458. [PMID: 34604854 PMCID: PMC8479774 DOI: 10.1021/jacsau.1c00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
15
Sandoval-Bohórquez VS, Morales-Valencia EM, Castillo-Araiza CO, Ballesteros-Rueda LM, Baldovino-Medrano VG. Kinetic Assessment of the Dry Reforming of Methane over a Ni–La2O3 Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Yang H, Luo D, Gao R, Wang D, Li H, Zhao Z, Feng M, Chen Z. Reduction of N2 to NH3 by TiO2-supported Ni cluster catalysts: a DFT study. Phys Chem Chem Phys 2021;23:16707-16717. [PMID: 34037001 DOI: 10.1039/d1cp00859e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
Shen M, Zhao G, Nie Q, Meng C, Sun W, Si J, Liu Y, Lu Y. Ni-Foam-Structured Ni-Al2O3 Ensemble as an Efficient Catalyst for Gas-Phase Acetone Hydrogenation to Isopropanol. ACS APPLIED MATERIALS & INTERFACES 2021;13:28334-28347. [PMID: 34121403 DOI: 10.1021/acsami.1c07084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
18
Wang X, Pan J, Wei H, Li W, Zhao J, Hu Z. CO2 activation and dissociation on In2O3(110) supported PdnPt(4-n) (n = 0-4) catalysts: a density functional theory study. Phys Chem Chem Phys 2021;23:11557-11567. [PMID: 33978017 DOI: 10.1039/d1cp01015h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
19
Morales‐García Á, Viñes F, Gomes JRB, Illas F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO 2 conversion. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
20
Galhardo TS, Braga AH, Arpini BH, Szanyi J, Gonçalves RV, Zornio BF, Miranda CR, Rossi LM. Optimizing Active Sites for High CO Selectivity during CO2 Hydrogenation over Supported Nickel Catalysts. J Am Chem Soc 2021;143:4268-4280. [PMID: 33661617 DOI: 10.1021/jacs.0c12689] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Wu C, Lin L, Liu J, Zhang J, Zhang F, Zhou T, Rui N, Yao S, Deng Y, Yang F, Xu W, Luo J, Zhao Y, Yan B, Wen XD, Rodriguez JA, Ma D. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat Commun 2020;11:5767. [PMID: 33188189 PMCID: PMC7666171 DOI: 10.1038/s41467-020-19634-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/16/2020] [Indexed: 11/26/2022]  Open
22
Zain MM, Mohammadi M, Kamiuchi N, Mohamed AR. Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0573-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
23
Kurlov A, Deeva EB, Abdala PM, Lebedev D, Tsoukalou A, Comas-Vives A, Fedorov A, Müller CR. Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nat Commun 2020;11:4920. [PMID: 33009379 PMCID: PMC7532431 DOI: 10.1038/s41467-020-18721-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]  Open
24
Sheng Z, Kim HH, Yao S, Nozaki T. Plasma-chemical promotion of catalysis for CH4 dry reforming: unveiling plasma-enabled reaction mechanisms. Phys Chem Chem Phys 2020;22:19349-19358. [PMID: 32822443 DOI: 10.1039/d0cp03127e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Solid solutions in reductive environment – A case study on improved CO2 hydrogenation to methane on cobalt based catalysts derived from ternary mixed metal oxides by modified reducibility. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
26
Ding W, Peng H, Zhong W, Mao L, Yin D. Site-specific catalytic activities to facilitate solvent-free aerobic oxidation of cyclohexylamine to cyclohexanone oxime over highly efficient Nb-modified SBA-15 catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00479k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
27
Study on the Adsorption and Activation Behaviours of Carbon Dioxide over Copper Cluster (Cu4) and Alumina-Supported Copper Catalyst (Cu4/Al2O3) by means of Density Functional Theory. J CHEM-NY 2019. [DOI: 10.1155/2019/4341056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]  Open
28
Rice PS, Hu P. Understanding supported noble metal catalysts using first-principles calculations. J Chem Phys 2019;151:180902. [PMID: 31731867 DOI: 10.1063/1.5126090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
29
Huang J, Li X, Wang X, Fang X, Wang H, Xu X. New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: Elucidating Ni and MgO roles and support effects. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
30
Lam E, Corral‐Pérez JJ, Larmier K, Noh G, Wolf P, Comas‐Vives A, Urakawa A, Copéret C. CO 2 Hydrogenation on Cu/Al 2 O 3 : Role of the Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst. Angew Chem Int Ed Engl 2019;58:13989-13996. [PMID: 31328855 DOI: 10.1002/anie.201908060] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 11/11/2022]
31
CO 2 Hydrogenation on Cu/Al 2 O 3 : Role of the Metal/Support Interface in Driving Activity and Selectivity of a Bifunctional Catalyst. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
32
Iyemperumal SK, Fenton TG, Gillingham SL, Carl AD, Grimm RL, Li G, Deskins NA. The stability and oxidation of supported atomic-size Cu catalysts in reactive environments. J Chem Phys 2019. [DOI: 10.1063/1.5110300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Bruix A, Margraf JT, Andersen M, Reuter K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0298-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
34
Du P, Wen Y, Chiang FK, Yao A, Wang JQ, Kang J, Chen L, Xie G, Liu X, Qiu HJ. Corrosion Engineering To Synthesize Ultrasmall and Monodisperse Alloy Nanoparticles Stabilized in Ultrathin Cobalt (Oxy)hydroxide for Enhanced Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019;11:14745-14752. [PMID: 30932466 DOI: 10.1021/acsami.8b22268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
35
The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat Catal 2019. [DOI: 10.1038/s41929-019-0244-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
36
Millet MM, Algara-Siller G, Wrabetz S, Mazheika A, Girgsdies F, Teschner D, Seitz F, Tarasov A, Levchenko SV, Schlögl R, Frei E. Ni Single Atom Catalysts for CO2 Activation. J Am Chem Soc 2019;141:2451-2461. [PMID: 30640467 PMCID: PMC6728101 DOI: 10.1021/jacs.8b11729] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
37
Ortuño MA, López N. Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01351b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
38
Qian C, Sun W, Hung DLH, Qiu C, Makaremi M, Hari Kumar SG, Wan L, Ghoussoub M, Wood TE, Xia M, Tountas AA, Li YF, Wang L, Dong Y, Gourevich I, Singh CV, Ozin GA. Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nat Catal 2018. [DOI: 10.1038/s41929-018-0199-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
39
Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces. J Catal 2018. [DOI: 10.1016/j.jcat.2018.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
40
Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
41
DFT insight into the support effect on the adsorption and activation of key species over Co catalysts for CO2 methanation. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
42
Bal KM, Huygh S, Bogaerts A, Neyts EC. Effect of plasma-induced surface charging on catalytic processes: application to CO2activation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6595/aaa868] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
43
Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat Catal 2018. [DOI: 10.1038/s41929-017-0016-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
44
Chen K, Duan X, Fang H, Liang X, Yuan Y. Selective hydrogenation of CO2 to methanol catalyzed by Cu supported on rod-like La2O2CO3. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01998j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
45
Foppa L, Margossian T, Kim SM, Müller C, Copéret C, Larmier K, Comas-Vives A. Contrasting the Role of Ni/Al2O3 Interfaces in Water-Gas Shift and Dry Reforming of Methane. J Am Chem Soc 2017;139:17128-17139. [PMID: 29077396 DOI: 10.1021/jacs.7b08984] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
46
Roldán L, Marco Y, García-Bordejé E. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO2 Hydrogenation to CH4. CHEMSUSCHEM 2017;10:1139-1144. [PMID: 27921378 DOI: 10.1002/cssc.201601217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/17/2016] [Indexed: 06/06/2023]
47
Larmier K, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C. CO2 -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610166] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
48
Larmier K, Liao WC, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C. CO2 -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface. Angew Chem Int Ed Engl 2017;56:2318-2323. [DOI: 10.1002/anie.201610166] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 11/10/2022]
49
Comas-Vives A, Larmier K, Copéret C. Understanding surface site structures and properties by first principles calculations: an experimental point of view! Chem Commun (Camb) 2017;53:4296-4303. [DOI: 10.1039/c7cc01101f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
50
Iyemperumal SK, Deskins NA. Activation of CO2 by supported Cu clusters. Phys Chem Chem Phys 2017;19:28788-28807. [DOI: 10.1039/c7cp05718k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA