1
|
Lesko I, Sengmany S, Beltran R, Le Gall E, Léonel E. Transition Metal-Free Direct Electrochemical Carboxylation of Organic Halides Using a Sacrificial Magnesium Anode: Straightforward Synthesis of Carboxylic Acids. ChemistryOpen 2025:e202400426. [PMID: 39876650 DOI: 10.1002/open.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO2 is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable. Mechanistic investigation account for the in situ generation of a carbanionic species that is not a simple organomagnesium halide.
Collapse
Affiliation(s)
- Iryna Lesko
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Stéphane Sengmany
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | | | - Erwan Le Gall
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| | - Eric Léonel
- University Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, 94320, Thiais, France
| |
Collapse
|
2
|
Li P, Wang Y, Zhao H, Qiu Y. Electroreductive Cross-Coupling Reactions: Carboxylation, Deuteration, and Alkylation. Acc Chem Res 2024. [PMID: 39670841 DOI: 10.1021/acs.accounts.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ConspectusElectrochemistry has been used as a tool to drive chemical reactions for more than two centuries. With the help of an electrode and a power source, chemists are provided with a system whose potential can be precisely dialed in. The theoretically infinite redox range renders electrochemistry capable of oxidizing or reducing some of the most tenacious compounds. Indeed, electroreduction offers an alternative to generating highly active intermediates from electrophiles (e.g., halides, alkenes, etc.) in organic synthesis, which can be untouchable with traditional reduction methods. Meanwhile, the reductive coupling reactions are extensively utilized in both industrial and academic settings due to their ability to swiftly, accurately, and effectively construct C-C and C-X bonds, which present innovative approaches for synthesizing complex molecules. Nonetheless, its application is constrained by several inherent limitations: (a) the requirement for stoichiometric quantities of reducing agents, (b) scarce activation strategies for inert substrates with high reduction potentials, (c) incomplete mechanistic elucidation, and (d) challenges in the isolation of intermediates. The merging of electrochemistry and reductive coupling represents an attractive approach to address the above limitations in organic synthesis and has seen increasing use in the synthetic community over the past few years.Since 2020, our group has been dedicated to developing electroreductive cross-coupling reactions using readily available organic substrates with small molecules, such as organic halides, alkenes, arenes, CO2, and D2O, to construct high value-added organic products. Electroreductive chemistry is highly versatile and offers powerful reducing capacity and precise selectivity control, which has allowed us to develop three electrochemical modes in our lab: (1) An economically advantageous electrochemical direct reduction (EDR) strategy that emphasizes efficiency, achieves high atom utilization, and minimizes unnecessary atomic waste. (2) A class of electrochemical organo-mediated reduction (EOMR) methods that are capable of effectively controlling reaction intermediates and reaction pathways. This allows for precise modulation of reaction processes to enhance efficiency and selectivity. (3) The electrochemical metal-catalyzed reduction (EMCR) method that enables selective activation and functionalization of specific chemical bonds or functional groups under mild conditions, thereby reducing the occurrence of side reactions. We commenced our studies by establishing an organic-mediator-promoted electroreductive carboxylation of aryl and alkyl halides. This strategy was then employed for the arylcarboxylation of simple styrenes with aryl halides in a highly selective manner. Meanwhile, under direct electrolysis conditions, the carboxylation of arenes and epoxides with CO2 as the carboxyl source was achieved. Moreover, through the precise adjustment of the electroreductive conditions, we successfully accomplished the electroreductive deuteration of arenes, olefins, and unactivated alkyl halides, enabling the efficient and selective formation of D-labeled products. Finally, building on our previous understanding of alkyl halides, we developed a series of electrochemical alkylation reactions that enable the efficient formation of C(sp3)-C(sp3) bonds using alkyl halides.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanwei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Youai Qiu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
4
|
Liu X, Cao S, Zhang C, Jiang Y, Kong D. Integrating Umpolung and CO 2 Shuttling Strategies for the Synthesis of 12C- and 13C-α-Ketoacids from Aldehydes. Org Lett 2024; 26:8967-8972. [PMID: 39382378 DOI: 10.1021/acs.orglett.4c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The direct carboxylation of aldehydes with CO2 is rare due to the polarity mismatch between these two electrophilic substrates. To address this challenge, we propose a sequential approach for synthesizing α-ketoacids from commercially available aldehydes by integrating umpolung and CO2 shuttling strategies. This transition metal-free shuttle carboxylation method enables the transfer of CO2 from triphenylacetic acid potassium salt to thioacetal, eliminating the need for handling pressurized CO2 gas or using specialized equipment, while also enhancing the reaction's functional group tolerance. Furthermore, the use of stoichiometric or slightly excess amounts of triphenylacetic acid potassium salt as a formal CO2 donor makes it suitable for complete 13C labeling of α-ketoacids.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenchen Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Hazari N. Kinetic Studies of CO 2 Insertion into Metal-Element σ-Bonds. Acc Chem Res 2024; 57:2847-2858. [PMID: 39268567 DOI: 10.1021/acs.accounts.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
ConspectusDespite the plethora of metal catalyzed reactions for CO2 utilization that have been developed in academic laboratories, practical systems remain elusive. The understanding of the elementary steps in catalysis is a proven method to improve catalytic performance. In many catalytic cycles for CO2 utilization, the insertion of CO2 into a metal-element σ-bond, such as hydrides, alkyls, amides, or hydroxides, is a crucial step. However, despite the many demonstrations of CO2 insertion, there are a paucity of kinetic studies, and information about the reaction mechanism has been predominantly elucidated from computational investigations. In this Account, kinetic studies on CO2 insertion into late transition metal-element σ-bonds performed by my group are summarized, along with their implications for catalysis.A common pathway for CO2 insertion into a metal hydride involves a two-step mechanism. The first step is nucleophilic attack on CO2 by the hydride to generate an H-bound formate, followed by rearrangement to form an O-bound formate product. Kinetic studies on systems in which both the first and second steps are proposed to be rate-determining, known as inner-sphere and outer-sphere processes, respectively, show that insertion rates increase as (i) the ligand trans to the hydride becomes a stronger donor, (ii) the ancillary ligand becomes more electron-donating, and (iii) the Dimroth-Reichardt parameter of the solvent increases. However, the magnitude of these effects is generally smaller for inner-sphere processes because there is less buildup of charge in the key transition state. For similar reasons, the presence of Lewis acids only increases the rate of outer-sphere processes. These results suggest it may be possible to experimentally differentiate between inner- and outer-sphere processes.The insertion of CO2 into a metal-alkyl bond results in the formation of a C-C bond, which is important for the generation of fuels from CO2. For square planar Group 10 complexes, the presence of a strong donor ligand trans to the alkyl group is critical for kinetically promoting insertion. Further, the nucleophilicity of the alkyl ligand directly impacts the rate of CO2 insertion via an SE2 mechanism, as does the steric bulk of the complex, and the reaction solvent. In contrast to the relatively slow rates of insertion observed for metal alkyls, CO2 insertion is rapid for metal hydroxides and amides. Although kinetics trends could be determined for hydroxides, reactions with amides are too fast for quantitative studies.Overall, the rates of insertion correlate with the nucleophilicity of the element in the metal-element σ-bond, so amide > hydroxide > hydride > alkyl. Due to the related pathways for insertion, similar trends in ligand and solvent effects are observed for insertion into different metal-element σ-bonds. Thus, the same strategies can be used to control the rates of insertion across systems. Differences in the magnitude of solvent and ligand effects are caused by variation in the amount of charge build-up on the metal in the rate-determining transition state. Likely, given that CO2 is related to organic molecules such as aldehydes, ketones, and amides, the results described in this Account are general to a wider range of substrates.
Collapse
Affiliation(s)
- Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
7
|
Brunetti A, Garbini M, Autuori G, Zanardi C, Bertuzzi G, Bandini M. Electrochemical Synthesis of Itaconic Acid Derivatives via Chemodivergent Single and Double Carboxylation of Allenes with CO 2. Chemistry 2024; 30:e202401754. [PMID: 38923037 DOI: 10.1002/chem.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Leveraging electrochemistry, a new synthesis of non-natural derivatives of itaconic acid is proposed by utilizing carbon dioxide (CO2) as a valuable C1 synthon. An electrochemical cross-electrophile coupling between allenoates and CO2 was targeted, allowing for the synthesis of both mono- and di-carboxylation products in a catalyst- and additive-free environment (yields up to 87 %, 30 examples). Elaboration of the model mono-carboxylation product, and detailed cyclovoltammetric, as well as mechanistic analyses complete the present investigation.
Collapse
Affiliation(s)
- Andrea Brunetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Mauro Garbini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Giuseppe Autuori
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino, 155, 30170, Venezia (Mestre), Italy
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), via P. Gobetti 101, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
- Center for Chemical Catalysis, C3, Alma Mater Studiorum, Università di Bologna, via P. Gobetti, 85, 40129, Bologna, Italy
| |
Collapse
|
8
|
Pavlovic L, Carvalho B, Hopmann KH. Revisiting the Mechanism of Asymmetric Ni-Catalyzed Reductive Carbo-Carboxylation with CO 2: The Additives Affect the Product Selectivity. Chemistry 2024; 30:e202401631. [PMID: 38924598 DOI: 10.1002/chem.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The mechanistic details of the asymmetric Ni-catalyzed reductive cyclization/carboxylation of alkenes with CO2 have been revisited using DFT methods. Emphasis was put on the enantioselectivity and the mechanistic role of Lewis acid additives and in situ formed salts. Our results show that oxidative addition of the substrate is rate-limiting, with the formed Ni(II)-aryl intermediate preferring a triplet spin state. After reduction to Ni(I), enantioselective cyclization of the substrate occurs, followed by inner sphere carboxylation. Our proposed mechanism reproduces the experimentally observed enantiomeric excess and identifies critical C-H/O and C-H/N interactions that affect the selectivity. Further, our results highlight the beneficial effect of Lewis acids on CO2 insertion and suggest that in situ formed salts influence if the 5-exo or 6-endo product will be formed.
Collapse
Affiliation(s)
- Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Bjørn Carvalho
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| |
Collapse
|
9
|
Cao Z, Sun W, Zhang J, Zhuo J, Yang S, Song X, Ma Y, Lu P, Han T, Li C. Total syntheses of (-)-macrocalyxoformins A and B and (-)-ludongnin C. Nat Commun 2024; 15:6052. [PMID: 39025872 PMCID: PMC11258297 DOI: 10.1038/s41467-024-50374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and diverse molecular architectures along with broad biological activities of ent-kauranoids natural products make them an excellent testing ground for the invention of synthetic methods and strategies. Recent efforts notwithstanding, synthetic access to the highly oxidized enmein-type ent-kauranoids still presents considerable challenges to synthetic chemists. Here, we report the enantioselective total syntheses of C-19 oxygenated enmein-type ent-kauranoids, including (-)-macrocalyxoformins A and B and (-)-ludongnin C, along with discussion and study of synthetic strategies. The enabling feature in our synthesis is a devised Ni-catalyzed decarboxylative cyclization/radical-polar crossover/C-acylation cascade that forges a THF ring concomitantly with the β-keto ester group. Mechanistic studies reveal that the C-acylation process in this cascade reaction is achieved through a carboxylation followed by an in situ esterification. Biological evaluation of these synthetic natural products reveals the indispensable role of the ketone on the D ring in their anti-tumor efficacy.
Collapse
Affiliation(s)
- Zichen Cao
- School of Life Sciences, Peking University, 100871, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Wenxuan Sun
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Jingfu Zhang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Junming Zhuo
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Shaoqiang Yang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Xiaocui Song
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Panrui Lu
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Ting Han
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Chao Li
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
10
|
Chakrabortty P, Das A, Ghosh S, Mitra A, Paliwal KS, Mahalingam V, Islam MS, Yusuf K, Islam SM. Photocatalytic C(sp 3)-H and C(sp 2)-H Carboxylation of Amines with CO 2 Using a Sustainable Covalent Organic Framework/gC 3N 4 Composite. Ind Eng Chem Res 2024; 63:12413-12428. [DOI: 10.1021/acs.iecr.4c01290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Affiliation(s)
- Pekham Chakrabortty
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235 West Bengal, India
| | - Anjan Das
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Swarbhanu Ghosh
- Department of Chemistry, McGill University, Montréal, Québec H3A 0B8, Canada
| | - Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S. Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sk. Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235 West Bengal, India
| |
Collapse
|
11
|
Singh C, Kim JY, Park NJ, Kim CU, Yadav RK, Baeg JO. Solar Carboxylation Using CO 2: Interfacially Synthesized Flexible Covalent Organic Frameworks Film as a Photocatalyst for Highly Selective Solar Carboxylation of Arylamines with CO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31085-31097. [PMID: 38837183 DOI: 10.1021/acsami.4c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Carbon dioxide (CO2) conversion into value-added chemicals/fuels by utilizing solar energy is a sustainable way to mitigate our dependence on fossil fuels and stimulate a carbon-neutral economy. However, the efficient and affordable conversion of CO2 is still an ongoing challenge. Here, we report an interfacially synthesized visible-light-active Ni(II)-integrated covalent organic frameworks (TaTpBpy-Ni COFs) film as a photocatalyst for efficient CO2 conversion into carboxylic acid under ambient conditions. Notably, the TaTpBpy-Ni COFs film showed excellent photocatalytic activity for the carboxylation of various arylamines with CO2 to the corresponding arylcarboxylic acid via C-N bond activation under solar-light irradiation. Moreover, this carboxylation protocol exhibits mild reaction conditions and good functional group tolerance without the necessity of using stoichiometric metallic reductants. This work shows a benchmark example of not only the interfacially synthesized COFs film used as a photocatalyst for solar-light energy utilization but also the selective solar chemical production system of arylcarboxylic acid directly from CO2.
Collapse
Affiliation(s)
- Chandani Singh
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Jae Young Kim
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - No-Joong Park
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Chul Ung Kim
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| | - Rajesh Kumar Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh 273016, India
| | - Jin-Ook Baeg
- CO2 Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon 34114, Republic of Korea
| |
Collapse
|
12
|
Zainul R, Abdullah MN, Saeed SM, Idan AH, Ahmed Alsultany NM, Arshadi S, Behmagham F, Vessally E. Recent trends in incorporation of CO 2 into organosulfur compounds via C-S bond cleavage. RSC Adv 2024; 14:15680-15690. [PMID: 38752156 PMCID: PMC11095090 DOI: 10.1039/d4ra02405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Desulfurative functionalization of organosulfur compounds to form various carbon-carbon and carbon-heteroatom bonds has become established as a powerful tool in organic chemistry. In this context, desulfurative carboxylation of this class of compounds using carbon dioxide (CO2) as a sustainable and renewable source of carboxyl has recently been developed as an efficient option for the synthesis of carboxylic acid derivatives. The aim of this Focus Review is to summarize the major progress in this appealing research field with particular emphasis on the mechanistic features of the reactions. Literature has been surveyed until the end of February 2024, according to the data collected using SciFinder and Google Scholar engines.
Collapse
Affiliation(s)
- Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang Indonesia
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang Indonesia
| | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
| | | | | | | | - Sattar Arshadi
- Department of Chemical Engineering, University of Science and Technology of Mazandaran Behshahr Iran
| | - Farnaz Behmagham
- Department of Chemistry, Miandoab Branch, Islamic Azad University Miandoab Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-1697 Tehran Iran
| |
Collapse
|
13
|
Huang H, Alvarez-Hernandez JL, Hazari N, Mercado BQ, Uehling MR. Effect of 6,6'-Substituents on Bipyridine-Ligated Ni Catalysts for Cross-Electrophile Coupling. ACS Catal 2024; 14:6897-6914. [PMID: 38737398 PMCID: PMC11087080 DOI: 10.1021/acscatal.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A family of 4,4'-tBu2-2,2'-bipyridine (tBubpy) ligands with substituents in either the 6-position, 4,4'-tBu2-6-Me-bpy (tBubpyMe), or 6 and 6'-positions, 4,4'-tBu2-6,6'-R2-bpy (tBubpyR2; R = Me, iPr, sBu, Ph, or Mes), was synthesized. These ligands were used to prepare Ni complexes in the 0, I, and II oxidation states. We observed that the substituents in the 6 and 6'-positions of the tBubpy ligand impact the properties of the Ni complexes. For example, bulkier substituents in the 6,6'-positions of tBubpy better stabilized (tBubpyR2)NiICl species and resulted in cleaner reduction from (tBubpyR2)NiIICl2. However, bulkier substituents hindered or prevented coordination of tBubpyR2 ligands to Ni0(cod)2. In addition, by using complexes of the type (tBubpyMe)NiCl2 and (tBubpyR2)NiCl2 as precatalysts for different XEC reactions, we demonstrated that the 6 or 6,6' substituents lead to major differences in catalytic performance. Specifically, while (tBubpyMe)NiIICl2 is one of the most active catalysts reported to date for XEC and can facilitate XEC reactions at room temperature, lower turnover frequencies were observed for catalysts containing tBubpyR2 ligands. A detailed study on the catalytic intermediates (tBubpy)Ni(Ar)I and (tBubpyMe2)Ni(Ar)I revealed several factors that likely contributed to the differences in catalytic activity. For example, whereas complexes of the type (tBubpy)Ni(Ar)I are low spin and relatively stable, complexes of the type (tBubpyMe2)Ni(Ar)I are high-spin and less stable. Further, (tBubpyMe2)Ni(Ar)I captures primary and benzylic alkyl radicals more slowly than (tBubpy)Ni(Ar)I, consistent with the lower activity of the former in catalysis. Our findings will assist in the design of tailor-made ligands for Ni-catalyzed transformations.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | | | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Mycah R Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Rahway, New Jersey, 07065, USA
| |
Collapse
|
14
|
Tang S, Liu Z, Zhang J, Li B, Wang B. Copper-Catalyzed C4-selective Carboxylation of Pyridines with CO 2 via Pyridylphosphonium Salts. Angew Chem Int Ed Engl 2024; 63:e202318572. [PMID: 38308092 DOI: 10.1002/anie.202318572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Pyridine motifs are widespread pharmacophores in many drugs. Installing various substituents through pyridine C-H bond functionalization is significant for new drug design and discovery. Developments of late-stage functionalization reactions enrich the strategies for selective functionalization of pyridines. However, late-stage C-H carboxylation of pyridines is a long-standing challenge, especially selectively carboxylation with CO2 on pyridine motifs. Herein, we describe a practical method for C4-H carboxylation of pyridines via one-pot C-H phosphination and copper-catalyzed carboxylation of the resulted phosphonium salts with CO2 . The reaction is conducted under mild conditions and compatible with multiple active groups and several pyridine drugs, providing diverse valuable isonicotinic acid compounds, demonstrating the application potential of this strategy.
Collapse
Affiliation(s)
- Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Zezhao Liu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Jiakai Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 30007, China
- State Key Laboratory of Organometallic Chemistry, Institution Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
15
|
Majhi J, Molander GA. Recent Discovery, Development, and Synthetic Applications of Formic Acid Salts in Photochemistry. Angew Chem Int Ed Engl 2024; 63:e202311853. [PMID: 37812639 DOI: 10.1002/anie.202311853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The advancement of sustainable photoredox catalysis in synthetic organic chemistry has evolved immensely because of the development of versatile and cost-effective reagents. In recent years, a substantial effort has been dedicated to exploring the utility of formic acid salts in various photochemical reactions. In this context, formates have demonstrated diverse capabilities, functioning as reductants, sources of carbonyl groups, and reagents for hydrogen atom transfer. Notably, the CO2 ⋅- radical anion derived from formate exhibits strong reductant properties for cleaving both C-X and C-O bonds. Moreover, these salts play a pivotal role in carboxylation reactions, further highlighting their significance in a variety of photochemical transformations. The ability of formates to serve as reductants, carbonyl sources, and hydrogen atom transfer reagents reveal exciting possibilities in synthetic organic chemistry. This minireview highlights an array of captivating discoveries, underscoring the crucial role of formates in diverse and distinctive photochemical methods, enabling access to a wide range of value-added compounds.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Yuan PF, Yang Z, Zhang SS, Zhu CM, Yang XL, Meng QY. Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angew Chem Int Ed Engl 2023:e202313030. [PMID: 38072915 DOI: 10.1002/anie.202313030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 12/22/2023]
Abstract
Carboxylation with carbon dioxide (CO2 ) represents one notable methodology to produce carboxylic acids. In contrast to carbon-heteroatom bonds, carbon-carbon bond cleavage for carboxylation with CO2 is far more challenging due to their inherent and less favorable orbital directionality for interacting with transition metals. Here we report a photocatalytic protocol for the deconstructive carboxylation of alkenes with CO2 to generate carboxylic acids in the absence of transition metals. It is emphasized that our protocol provides carboxylic acids with obviously unchanged carbon numbers when terminal alkenes were used. To show the power of this strategy, a variety of pharmaceutically relevant applications including the modular synthesis of propionate nonsteroidal anti-inflammatory drugs and the late-stage carboxylation of bioactive molecule derivatives are demonstrated.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
| | - Zhao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Shan-Shan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Can-Ming Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Qing-Yuan Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Tang T, Tang S, Li B, Wang B. Diethylzinc-promoted carboxylation of aryl/alkenyl boronic acids with CO 2. Org Biomol Chem 2023; 21:8849-8856. [PMID: 37878021 DOI: 10.1039/d3ob01552a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The carboxylation of aryl and alkenyl boronic acids with CO2 is rarely studied and only achieved using copper salts as the catalyst in the presence of a strong base. Herein, we report a diethylzinc-promoted carboxylation of aryl or alkenyl boronic acids with carbon dioxide. The reaction does not require a transition-metal catalyst, and has simple and mild conditions and a broad substrate scope.
Collapse
Affiliation(s)
- Tingyu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
18
|
Behmagham F, Abdullah MN, Saied SM, Azeez MD, Abbass RR, Adhab AH, Vessally E. Recent progress in reductive carboxylation of C-O bonds with CO 2. RSC Adv 2023; 13:32502-32517. [PMID: 37928841 PMCID: PMC10624238 DOI: 10.1039/d3ra04073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Transformation of carbon dioxide (CO2) into value-added organic compounds has attracted increasing interest of scientific community in the last few decades, not only because CO2 is the primary greenhouse gas that drives global climate change and ocean acidification, but also because it has been regarded as a plentiful, nontoxic, nonflammable and renewable one-carbon (C1) feedstock. Among the various CO2-conversion processes, carboxylation reactions represent one of the most beautiful and attractive research topics in the field, since it offers the possibility for the construction of synthetically and biologically important carboxylic acids from various easily accessible (pseudo)halides, organosilicon, and organoboron compounds. The purpose of this review is to summarize the available literature on deoxygenative carboxylation of alcohols and their derivatives utilizing CO2 as a carboxylative reagent. Depending on the C-O compounds employed, the paper is divided into five major sections. The direct dehydroxylative carboxylation of free alcohols is discussed first. This is followed by reductive carboxylation of carboxylates, triflates, and tosylates. In the final section, the only reported example on catalytic carboxylation of fluorosulfates will be covered. Notably, special attention has been paid on the mechanistic aspects of the reactions that may provide new insights into catalyst improvement and development, which currently mainly relies on the use of transition metal catalysts.
Collapse
Affiliation(s)
- Farnaz Behmagham
- Department of Chemistry, Miandoab Branch, Islamic Azad University Miandoab Iran
| | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil Kurdistan Region Iraq
| | | | - Maha Dhurgham Azeez
- College of Pharmacy, National University of Science and Technology Dhi Qar Iraq
| | | | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
19
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
20
|
Day CS, Martin R. Comproportionation and disproportionation in nickel and copper complexes. Chem Soc Rev 2023; 52:6601-6616. [PMID: 37655600 DOI: 10.1039/d2cs00494a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Disproportionation and comproportionation reactions have become increasingly important electron transfer events in organometallic chemistry and catalysis. The renewed interest in these reactions is in part attributed to the improved understanding of first-row metals and their ability to occupy odd and even oxidation states. Disproportionation and comproportionation reactions enable metal complexes to shuttle between various oxidation states, a matter of utmost relevance for controlling the speciation and catalytic turnover. In addition, these reactions have a direct impact in the thermodynamic and kinetic stability of the corresponding metal complexes. This review covers the relevance and impact of these processes in electron transfer reactions and provides valuable information about their non-negligible influence in Ni- and Cu-catalysed transformations.
Collapse
Affiliation(s)
- Craig S Day
- The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
21
|
Giovanelli R, Lombardi L, Pedrazzani R, Monari M, Reis MC, López CS, Bertuzzi G, Bandini M. Nickel Catalyzed Carbonylation/Carboxylation Sequence via Double CO 2 Incorporation. Org Lett 2023; 25:6969-6974. [PMID: 37669466 PMCID: PMC10546374 DOI: 10.1021/acs.orglett.3c02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/07/2023]
Abstract
A carbonylation-carboxylation synthetic sequence, via double CO2 fixation, is described. The productive merger of a Ni-catalyzed cross-electrophile coupling manifold, with the use of AlCl3, triggered a cascade reaction with the formation of three consecutive C-C bonds in a single operation. This strategy traces an unprecedented synthetic route to ketones under Lewis acid assisted carbon dioxide valorization. Computational insights revealed a unique double function of AlCl3, and labeling (13CO2) experiments validate the genuine incorporation of CO2 in both functional groups.
Collapse
Affiliation(s)
- Riccardo Giovanelli
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Lorenzo Lombardi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Magda Monari
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marta Castiñeira Reis
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Giulio Bertuzzi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
22
|
Hu M, Zhang S, Qin C, Nie H, Xiong Z, Shi X, Zhao Y, Li M, Wang S, Ji F, Jiang G. Selective Electrochemical Halogenation of Functionalized Quinolone. J Org Chem 2023; 88:12958-12970. [PMID: 37620989 DOI: 10.1021/acs.joc.3c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
This work describes an effective C3-H halogenation of quinoline-4(1H)-ones under electrochemical conditions, in which potassium halides serve as both halogenating agents and electrolytes. The protocol provides expedient access to different halogenated quinoline-4(1H)-ones with unique regioselectivity, broad substrate scope, and gram-scale synthesis employing convenient, environmentally friendly electrolysis, in an undivided cell. Mechanism studies have shown that halogen radicals can promote the activation of N-H bonds in quinolones.
Collapse
Affiliation(s)
- Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Xiaoyu Shi
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yumiao Zhao
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mingzhe Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
23
|
Deziel AP, Gahlawat S, Hazari N, Hopmann KH, Mercado BQ. Comparative study of CO 2 insertion into pincer supported palladium alkyl and aryl complexes. Chem Sci 2023; 14:8164-8179. [PMID: 37538821 PMCID: PMC10395277 DOI: 10.1039/d3sc01459b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/02/2023] [Indexed: 08/05/2023] Open
Abstract
The insertion of CO2 into metal alkyl bonds is a crucial elementary step in transition metal-catalyzed processes for CO2 utilization. Here, we synthesize pincer-supported palladium complexes of the type (tBuPBP)Pd(alkyl) (tBuPBP = B(NCH2PtBu2)2C6H4-; alkyl = CH2CH3, CH2CH2CH3, CH2C6H5, and CH2-4-OMe-C6H4) and (tBuPBP)Pd(C6H5) and compare the rates of CO2 insertion into the palladium alkyl bonds to form metal carboxylate complexes. Although, the rate constant for CO2 insertion into (tBuPBP)Pd(CH2CH3) is more than double the rate constant we previously measured for insertion into the palladium methyl complex (tBuPBP)Pd(CH3), insertion into (tBuPBP)Pd(CH2CH2CH3) occurs approximately one order of magnitude slower than (tBuPBP)Pd(CH3). CO2 insertion into the benzyl complexes (tBuPBP)Pd(CH2C6H5) and (tBuPBP)Pd(CH2-4-OMe-C6H4) is significantly slower than any of the n-alkyl complexes, and CO2 does not insert into the palladium phenyl bond of (tBuPBP)Pd(C6H5). While (tBuPBP)Pd(CH2CH3) and (tBuPBP)Pd(CH2CH2CH3) are resistant to β-hydride elimination, we were unable to synthesize complexes with n-butyl, iso-propyl, and tert-butyl ligands due to β-hydride elimination and an unusual reductive coupling, which involves the formation of new C-B bonds. This reductive process also occurred for (tBuPBP)Pd(CH2C6H5) at elevated temperature and a related process involving the formation of a new H-B bond prevented the isolation of (tBuPBP)PdH. DFT calculations provide insight into the relative rates of CO2 insertion and indicate that steric factors are critical. Overall, this work is one of the first comparative studies of the rates of CO2 insertion into different metal alkyl bonds and provides fundamental information that may be important for the development of new catalysts for CO2 utilization.
Collapse
Affiliation(s)
- Anthony P Deziel
- Department of Chemistry, Yale University P. O. Box 208107 New Haven Connecticut 06520 USA
| | - Sahil Gahlawat
- Department of Chemistry, UiT The Arctic University of Norway N-9307 Tromsø Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway 9037 Tromsø Norway
| | - Nilay Hazari
- Department of Chemistry, Yale University P. O. Box 208107 New Haven Connecticut 06520 USA
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway N-9307 Tromsø Norway
| | - Brandon Q Mercado
- Department of Chemistry, Yale University P. O. Box 208107 New Haven Connecticut 06520 USA
| |
Collapse
|
24
|
Smith GC, Zhang DH, Zhang W, Soliven AH, Wuest WM. Visible-Light/Nickel-Catalyzed Carboxylation of C(sp 2) Bromides via Formate Activation. J Org Chem 2023. [PMID: 37319431 DOI: 10.1021/acs.joc.3c00895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new visible-light-driven method for the carboxylation of (hetero)aryl/vinyl bromides has been developed using catalytic 4CzIPN, nickel, phenyl triflimide, and sodium formate as a carboxylation agent. Interestingly, we found catalytic phenyl triflimide plays an essential role in promoting the reaction. While many C(sp2) carboxylation reactions require harsh reagents or gaseous carbon dioxide, we demonstrate the mild and facile construction of carboxylic acids from readily available starting materials.
Collapse
Affiliation(s)
- Gavin C Smith
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Drason H Zhang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Wanli Zhang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Abigail H Soliven
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Zhu H, Zhang Y, Ren G, Wang Y, Meng J, Fan Q, Xie Z, Le ZG. Nickel-catalyzed sulfonylative coupling of 2-chlorobenzothiazoles with sulfinates at room temperature. Chem Commun (Camb) 2023; 59:1050-1053. [PMID: 36602378 DOI: 10.1039/d2cc06107d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient nickel-catalyzed cross-coupling for the synthesis of 2-sulfonylthiazoles from readily available 2-chlorobenzothiazoles and sodium sulfinates has been developed. A variety of 2-chlorobenzothiazoles and sulfinates having a diverse range of substitution patterns can undergo the coupling process successfully at room temperature. Avoiding the use of precious catalysts and sensitive ligands, moderate to excellent yields of various 2-sulfonylthiazoles were observed.
Collapse
Affiliation(s)
- Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yingying Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Gaowen Ren
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yaoqi Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Jia Meng
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
26
|
Sutter PJ, Kang G, Vellalath S, Romo D. Zinc-mediated carboxylations of allylic and propargylic halides in flow: synthesis of β-lactones via subsequent bromolactonization. RSC Adv 2023; 13:3468-3473. [PMID: 36756578 PMCID: PMC9871729 DOI: 10.1039/d2ra07715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Zinc-mediated carboxylation of allylic halides under flow conditions delivered β,γ-unsaturated carboxylic acids and subsequent bromolactonization provides a streamlined process for the synthesis of γ-bromo-β-lactones. The described process further demonstrates the utility of organozinc reagents prepared by passage of allylic halides through a metallic zinc column integrated into a flow process. Use of a tube-in-tube reactor for efficient CO2 introduction led to improvements in conversion compared to a batch process and improved overall yields of β-lactones. The described flow process was also applied to propargylic bromides for the synthesis of allenic and propargylic acids.
Collapse
Affiliation(s)
- Patrick J. Sutter
- Department of Chemistry and Biochemistry, Baylor UniversityWaco 76798TexasUSA
| | - Guowei Kang
- Department of Chemistry and Biochemistry, Baylor University Waco 76798 Texas USA .,Department of Chemistry, The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla 92037 California USA
| | - Sreekumar Vellalath
- Department of Chemistry and Biochemistry, Baylor University Waco 76798 Texas USA
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University Waco 76798 Texas USA
| |
Collapse
|
27
|
Villo P, Shatskiy A, Kärkäs MD, Lundberg H. Electrosynthetic C-O Bond Activation in Alcohols and Alcohol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202211952. [PMID: 36278406 PMCID: PMC10107720 DOI: 10.1002/anie.202211952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/07/2022]
Abstract
Alcohols and their derivatives are ubiquitous and versatile motifs in organic synthesis. Deoxygenative transformations of these compounds are often challenging due to the thermodynamic penalty associated with the cleavage of the C-O bond. However, electrochemically driven redox events have been shown to facilitate the C-O bond cleavage in alcohols and their derivatives either through direct electron transfer or through the use of electron transfer mediators and electroactive catalysts. Herein, a comprehensive overview of preparative electrochemically mediated protocols for C-O bond activation and functionalization is detailed, including direct and indirect electrosynthetic methods, as well as photoelectrochemical strategies.
Collapse
Affiliation(s)
- Piret Villo
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| |
Collapse
|
28
|
Ansari TN, Sharma S, Hazra S, Hicks F, Leahy DK, Handa S. Trichloromethyl Carbanion in Aqueous Micelles: Mechanistic Insights and Access to Carboxylic Acids from (Hetero)aryl Halides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tharique N. Ansari
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Sudripet Sharma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Susanta Hazra
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Frederick Hicks
- Process Chemistry Development, Takeda Pharmaceuticals International, Cambridge, Massachusetts 02139, USA
| | - David K. Leahy
- Process Chemistry Development, Takeda Pharmaceuticals International, Cambridge, Massachusetts 02139, USA
| | - Sachin Handa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
29
|
Kuznetsov NY, Maximov AL, Beletskaya IP. Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Vadivelu P, Ganesan K. Density Functional Theory Study on [Ni 0(1,10-Phenanthroline)]-Catalyzed Reductive Carboxylation of Alkyl and Aryl Halides with CO 2: Effect of the Lewis Acid and β-H Elimination Side Reaction in the Crucial CO 2 Insertion Step. Inorg Chem 2022; 61:19463-19474. [DOI: 10.1021/acs.inorgchem.2c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Prabha Vadivelu
- Department of Chemistry, Central University of Tamil Nadu, Neelakudi, Thiruvarur610 005, India
| | - Krithika Ganesan
- Department of Chemistry, Central University of Tamil Nadu, Neelakudi, Thiruvarur610 005, India
| |
Collapse
|
31
|
Tang S, Zhao X, Yang L, Li B, Wang B. Copper‐Catalyzed Carboxylation of Aryl Thianthrenium Salts with CO
2. Angew Chem Int Ed Engl 2022; 61:e202212975. [DOI: 10.1002/anie.202212975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Xiaobo Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Lidong Yang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 30007 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
32
|
Zhang ZF, Su MD. Theoretical Study of Reaction Mechanisms of Carbon Dioxide with E–CH 2–Z-Type Frustrated Lewis Pairs (E = C–Pb; Z = N–Bi). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung80708, Taiwan
| |
Collapse
|
33
|
Li D, Wei L, Qi C, Xiong W, Liu H, Jiang H. Palladium-Catalyzed Carbonylation of Aryl Bromides with Carbon Dioxide To Access Aryl Carboxylic Acids under Mild Conditions. J Org Chem 2022; 88:5205-5211. [PMID: 36288555 DOI: 10.1021/acs.joc.2c01808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed direct carbonylation of aryl bromides with carbon dioxide as the carbonyl source has been developed by using Pd(dba)2/DPEPhos as the catalyst under mild reaction conditions, providing an efficient route to a variety of aryl carboxylic acids in moderate to high yields. The methods have many advantages such as the use of a simple palladium catalyst system, wide substrate scope, good functional group tolerance, high yields, and easy scalability.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hongjian Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
34
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue X, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022; 61:e202210201. [DOI: 10.1002/anie.202210201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Deng Pan
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Kangping Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
35
|
Rzayev J, Zhang Z, Durand N, Soulé JF. Upgrading Carbazolyl-Derived Phosphine Ligands Using Rh I-Catalyzed P III-Directed C-H Bond Alkylation for Catalytic CO 2-Fixation Reactions. Org Lett 2022; 24:6755-6760. [PMID: 36083787 DOI: 10.1021/acs.orglett.2c02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an Rh(I)-catalyzed C-H bond alkylation of PhenCarPhos [N-(2-(diphenylphosphaneyl)phenyl)carbazole] and some congener phosphine ligands with alkenes. The C-H bond functionalization occurred exclusively at the C1 position of the carbazolyl unit because the trivalent phosphine acts as a directing group. This protocol provides straightforward access to a large library of C1-alkyl substituted PhenCarPhos, which outperformed common commercial or unfunctionalized phosphines and their precursors in the Pd-catalyzed carbon dioxide-fixation reactions with propargylic amines.
Collapse
Affiliation(s)
- Javid Rzayev
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Zhuan Zhang
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Natacha Durand
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
36
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue XS, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Zhiwei Zhao
- Nankai University College of Chemistry CHINA
| | - Deng Pan
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | | | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | | | - Xiao-Song Xue
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
37
|
Nandi S, Jana R. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shantanu Nandi
- Indian Institute of Chemical Biology CSIR Organic and Medicinal Chemistry Division 4 Raja S C Mullick RoadJadavpur 700032 Kolkata INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR Chemistry Division 4, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
38
|
Luo H, Ren J, Sun Y, Liu Y, Zhou F, Shi G, Zhou J. Recent advances in chemical fixation of CO2 based on flow chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Wang S, Feng T, Wang Y, Qiu Y. Recent Advances in Electrocarboxylation with CO2. Chem Asian J 2022; 17:e202200543. [DOI: 10.1002/asia.202200543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Siyi Wang
- China University of Mining and Technology School of Chemical Engineering & Technology CHINA
| | - Tian Feng
- Nankai University College of Chemistry CHINA
| | - Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
40
|
Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
A highly regio- and stereoselective Pd-catalyzed electrocarboxylation of Baylis-Hillman acetates: An interesting switchable regioselectivity based on electrode material. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Charboneau DJ, Hazari N, Huang H, Uehling MR, Zultanski SL. Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. J Org Chem 2022; 87:7589-7609. [PMID: 35671350 PMCID: PMC9335070 DOI: 10.1021/acs.joc.2c00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many contemporary organic transformations, such as Ni-catalyzed cross-electrophile coupling (XEC), require a reductant. Typically, heterogeneous reductants, such as Zn0 or Mn0, are used as the electron source in these reactions. Although heterogeneous reductants are highly practical for preparative-scale batch reactions, they can lead to complications in performing reactions on process scale and are not easily compatible with modern applications, such as flow chemistry. In principle, homogeneous organic reductants can address some of the challenges associated with heterogeneous reductants and also provide greater control of the reductant strength, which can lead to new reactivity. Nevertheless, homogeneous organic reductants have rarely been used in XEC. In this Perspective, we summarize recent progress in the use of homogeneous organic electron donors in Ni-catalyzed XEC and related reactions, discuss potential synthetic and mechanistic benefits, describe the limitations that inhibit their implementation, and outline challenges that need to be solved in order for homogeneous organic reductants to be widely utilized in synthetic chemistry. Although our focus is on XEC, our discussion of the strengths and weaknesses of different methods for introducing electrons is general to other reductive transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
43
|
CeO2-ZrO2 Solid Solution Catalyzed and Moderate Acidic–Basic Sites Dominated Cycloaddition of CO2 with Epoxides: Halogen-Free Synthesis of Cyclic Carbonates. Catalysts 2022. [DOI: 10.3390/catal12060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
For the production of cyclic carbonates from the cycloaddition of CO2 with epoxides, halogen pollution and product purity are two of the most common problems due to the usage of homogeneous halogen-containing catalysts such as ammonium salt and alkali metal halide. Hence, the development of a novel, halogen-free and efficient catalyst for the synthesis of high-purity cyclic carbonates is significant. Here, a series of acid–base bifunctional Ce1-xZrxO2 nanorods were successfully prepared. The Ce1-xZrxO2 nanorods could catalyze the cycloaddition of CO2 with epoxides efficiently without any halogen addition. Especially for the Ce0.7Zr0.3O2 catalyst, a conversion of 96% with 100% 1,2-butylene carbonate selectivity was achieved. The excellent catalytic performance of Ce1-xZrxO2 nanorods is attributed to the formation of the CeO2-ZrO2 solid solution, which contributes to abundant moderate acidic–basic active sites on the catalyst surface. It is the synergistic effect of moderate acidic–basic sites that dominates the conversion of CO2 with epoxides, which will supply important references for the synthesis of efficient metal oxide catalyst for the cycloaddition of CO2 with epoxides.
Collapse
|
44
|
Huang W, Lin J, Deng F, Zhong H. Photocatalytic carboxylation with CO2: a review of recent studies. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Huang
- Jinggangshan University School of Chemistry and Chemical Engineering CHINA
| | - Junyue Lin
- Jinggangshan University School of Chemistry and Chemical Engineering CHINA
| | - Fei Deng
- Jinggangshan University School of Chemistry and Chemical Engineering CHINA
| | - Hong Zhong
- Jinggangshan University College of Chemistry and Chemical Engineering Number 28Xueyuan RoadQingyuan District 343009 Jian City, Jiangxi province CHINA
| |
Collapse
|
45
|
Preparation and properties of novel hetero-halogen complexes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Fan Z, Yi Y, Xi C. Recent Advances in Light‐Induced Carboxylation of Organic (Pseudo)Halides with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yaping Yi
- Tsinghua University Chemistry 100084 Beijing CHINA
| | - Chanjuan Xi
- Tsinghua University Department of Chemistry zhongguancui 100084 Beijing CHINA
| |
Collapse
|
47
|
Hölscher M, Kemper G, Jenthra S, Bolm C, Leitner W. Factors Governing the Catalytic Insertion of CO
2
into Arenes – A DFT Case Study for Pd and Pt Phosphane Sulfonamido Complexes. Chemistry 2022; 28:e202104375. [PMID: 35188311 PMCID: PMC9310616 DOI: 10.1002/chem.202104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/06/2022]
Abstract
The potential of Pd/Pt complexes for catalytic carboxylation of arenes with CO2 is investigated by means of computational chemistry. Recently we reported that the bis[(2‐methoxyphenyl)phosphino]‐benzenesulfonamido palladium complex 1 inserts CO2 reversibly in its Pd−C(aryl) bond generating carboxylato complex 2. In the present work we study how geometric and electronic factors of various ligands and substrates influence the overall activation barrier (energy span, ES) of a potential catalytic cycle for arene carboxylation comprising this elementary step. The tendency of the key intermediates to dimerize and thus deactivating the potential catalysts is examined as well as the role of the base, which inevitably is needed to stabilize the reaction product. We show that Pd and Pt complexes I(Pd)‐L16‐S1 and I(Pt)‐L16‐S1 do not dimerize, enable the computation of complete catalytic cycles, and show interestingly low ES values of 26.8 and 24.5 kcal/mol, respectively.
Collapse
Affiliation(s)
- Markus Hölscher
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Gregor Kemper
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Sangeth Jenthra
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Carsten Bolm
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim a. d. Ruhr Germany
| |
Collapse
|
48
|
Saini S, Das RS, Kumar A, Jain SL. Photocatalytic C–H Carboxylation of 1,3-Dicarbonyl Compounds with Carbon Dioxide Promoted by Nickel(II)-Sensitized α-Fe 2O 3 Nanoparticles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sandhya Saini
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Ranjita S. Das
- Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Anupama Kumar
- Visvesvaraya National Institute of Technology (VNIT), Nagpur 440010, India
| | - Suman L. Jain
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| |
Collapse
|
49
|
You Y, Mita T. Recent Advances in the Catalytic Umpolung Carboxylation of Allylic Alcohol Derivatives with Carbon Dioxide. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yong You
- Institute for Advanced Study Chengdu University Chengdu 610106 P. R. China
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10 Nishi 8, Kita-ku, Sapporo Hokkaido 060-0810 Japan
| | - Tsuyoshi Mita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21 Nishi 10, Kita-ku, Sapporo Hokkaido 001-0021 Japan
- JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project Kita 10 Nishi 8, Kita-ku, Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
50
|
Lombardi L, Cerveri A, Ceccon L, Pedrazzani R, Monari M, Bertuzzi G, Bandini M. Merging C-C σ-bond activation of cyclobutanones with CO 2 fixation via Ni-catalysis. Chem Commun (Camb) 2022; 58:4071-4074. [PMID: 35262541 DOI: 10.1039/d2cc00149g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A carboxylative Ni-catalyzed tandem C-C σ-bond activation of cyclobutanones followed by CO2-electrophilic trapping is documented as a direct route to synthetically valuable 3-indanone-1-acetic acids. The protocol shows an adequate functional group tolerance and useful chemical outcomes (yield up to 76%) when AlCl3 is adopted as an additive. Manipulations of the targeted cyclic scaffolds and a mechanistic proposal based on experimental evidence complete the investigation.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Alessandro Cerveri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy.
| | - Leonardo Ceccon
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy.
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, via Selmi 2, Bologna 40126, Italy. .,Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|