1
|
Scocozza MF, Zitare UA, Cancian P, Castro MA, Martins LO, Murgida DH. Molecular basis of H 2O 2/O 2.-/ .OH discrimination during electrochemical activation of DyP peroxidases: The critical role of the distal residues. J Inorg Biochem 2025; 264:112816. [PMID: 39729891 DOI: 10.1016/j.jinorgbio.2024.112816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Here, we show that the replacement of the distal residues Asp and/or Arg of the DyP peroxidases from Bacillus subtilis and Pseudomonas putida results in functional enzymes, albeit with spectroscopically perturbed active sites. All the enzymes can be activated either by the addition of exogenous H2O2 or by in situ electrochemical generation of the reactive oxygen species (ROS) •OH, O2•- and H2O2. The latter method leads to broader and upshifted pH-activity profiles. Both WT enzymes exhibit a differential predominance of ROS involved in their electrochemical activation, which follows the order •OH > O2•- > H2O2 for BsDyP and O2•- > H2O2 > •OH for PpDyP. This ROS selectivity is preserved in mutants with unperturbed sites but is blurred out for distorted sites. The underlying molecular basis of the selectivity mechanisms is analysed through molecular dynamics simulations, which reveal distorted hydrogen bonding networks and higher throughput of the access tunnels in the variants exhibiting no selectivity. The electrochemical activation method provides superior performance for protein variants with a high prevalence of the alternative •OH and O2•- species. These results constitute a promising advance towards engineering DyPs for electrocatalytic applications.
Collapse
Affiliation(s)
- Magalí F Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ulises A Zitare
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Pablo Cancian
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - María A Castro
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
2
|
Liang C, Lin L, Xu T, Kang G, Liu ZH, Li BZ. The Pseudomonas ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts. Proc Natl Acad Sci U S A 2025; 122:e2417343122. [PMID: 39854233 DOI: 10.1073/pnas.2417343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025] Open
Abstract
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized. Moreover, it is a challenge to understand synergistic lignin degradation via a diverse array of enzymes, especially in bacterial systems. In this study, the coexpression network of the periplasmic proteome uncovers potential accessory enzymes for B-type dye-decolorizing peroxidases (DypBs) in Pseudomonas putida A514. The catalytic network of the DypBs-based multienzyme complex is characterized. DypBs couple with quinone reductases and nitroreductase to participate in quinone redox cycling. They work with superoxide dismutase to induce Fenton reaction for lignin oxidation. A synthetic enzyme cocktail (SEC), recruiting 15 enzymes, was consequently designed with four functions. It overcomes the limitation of lignin repolymerization, exhibiting a capacity comparable to that of the native periplasmic secretome. Importantly, we reveal the synergistic mechanism of a SEC-A514 cell system, which incorporates the advantages of in vitro enzyme catalysis and in vivo microbial catabolism. Chemical analysis shows that this system significantly reduces the molecular weight of lignin, substantially extends the degradation spectra for lignin functional groups, and efficiently metabolizes lignin derivatives. As a result, 25% of lignin is utilized, and its average molecular weight is reduced by 27%. Our study advances the knowledge of bacterial lignin-degrading multienzymes and provides a viable lignin degradation strategy.
Collapse
Affiliation(s)
- Congying Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guoqiang Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
3
|
Sun B, Sun H, Zhang L, Hu W, Wang X, Brennan CS, Han D, Wu G, Yi Y, Lü X. Characterization and rational engineering of a novel laccase from Geobacillus thermocatenulatus M17 for improved lignin degradation activity. Int J Biol Macromol 2024; 292:138856. [PMID: 39725103 DOI: 10.1016/j.ijbiomac.2024.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Lignin, with its complex, high-molecular-weight aromatic polymer structure and stable ether or ester bonds, greatly impedes the efficient degradation of lignocellulosic waste. Bacterial laccases have gained attention for their potential in lignocellulosic waste degradation due to their resilience in extreme conditions and ability to be produced in large quantities. In this study, a novel laccase from Geobacillus thermocatenulatus M17 was identified and expressed in E. coli BL21 (DE3). The enzymatic properties of this M17 laccase, including its tolerance to pH, temperature, metal ions, inhibitors, and organic solvents, were thoroughly investigated. The M17 laccase demonstrated optimal activity at pH 3-6 and at temperatures of 50-60 °C, with Co2+ enhancing its activity over Cu2+, and exhibited strong resistance to organic solvents. Further optimization through mutagenesis led to the engineered D217K variant. The efficiency of the engineered laccase was validated with alkali lignin and various sources of plant biomass. The degradation rate of D217K variant for alkali lignin increased significantly, rising from 66.33 % to 83.27 %. Additionally, for high-lignin-content biomass, the degradation rates improved as follows: wheat stover increased from 7.63 % to 10.29 %, switchgrass from 6.02 % to 7.00 %, and corn stalk from 4.51 % to 6.59 %. In conclusion, this study identified a new bacterial laccase and further enhanced its activity through rational engineering, suggesting its promising application in plant biomass degradation.
Collapse
Affiliation(s)
- Bohan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Huimin Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Wei Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Charles S Brennan
- STEM College, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Dandan Han
- Shaanxi Yiruikang Biotechnology Co., LTD, Xianyang 712023, Shaanxi Province, China
| | - Gang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
4
|
Gao L, Jiang F, Zhang Z, Bao T, Zhu D, Wu X. Unlocking lignin valorization and harnessing lignin-based raw materials for bio-manufacturing. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2792-x. [PMID: 39704933 DOI: 10.1007/s11427-024-2792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Lignin, an energy-rich and adaptable polymer comprising phenylpropanoid monomers utilized by plants for structural reinforcement, water conveyance, and defense mechanisms, ranks as the planet's second most prevalent biopolymer, after cellulose. Despite its prevalence, lignin is frequently underused in the process of converting biomass into fuels and chemicals. Instead, it is commonly incinerated for industrial heat due to its intricate composition and resistance to decomposition, presenting obstacles for targeted valorization. In contrast to chemical catalysts, biological enzymes show promise not only in selectively converting lignin components but also in seamlessly integrating into cellular structures, offering biocatalysis as a potentially efficient pathway for lignin enhancement. This review comprehensively summarizes cutting-edge biostrategies, ligninolytic enzymes, metabolic pathways, and lignin-degrading strains or consortia involved in lignin degradation, while critically evaluating the underlying mechanisms. Metabolic and genetic engineering play crucial roles in redirecting lignin and its derivatives towards metabolic pathways like the tricarboxylic acid cycle, opening up novel avenues for its valorization. Recent advancements in lignin valorization are scrutinized, highlighting key challenges and promising solutions. Furthermore, the review underscores the importance of innovative approaches, such as leveraging digital systems and synthetic biology, to unlock the commercial potential of lignin-derived raw materials as sustainable feedstocks. Artificial intelligence-driven technologies offer promise in overcoming current challenges and driving widespread adoption of lignin valorization, presenting an alternative to sugar-based feedstocks for bio-based manufacturing in the future. The utilization of available lignin residue for synthesis of high-value chemicals or energy, even alternative food, addresses various crises looming in the food-energy-water nexus.
Collapse
Affiliation(s)
- Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Fangting Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
5
|
Välimets S, Schwaiger L, Bennett A, Maresch D, Ludwig R, Hann S, Linde D, Ruiz-Dueñas FJ, Peterbauer C. Dye-Decolorizing Peroxidases Maintain High Stability and Turnover on Kraft Lignin and Lignocellulose Substrates. ACS OMEGA 2024; 9:45025-45034. [PMID: 39554457 PMCID: PMC11561623 DOI: 10.1021/acsomega.4c05043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
Fungal enzyme systems for the degradation of plant cell wall lignin, consisting of, among others, laccases and lignin-active peroxidases, are well characterized. Additionally, fungi and bacteria contain dye-decolorizing peroxidases (DyP), which are also capable of oxidizing and modifying lignin constituents. Studying DyP activity on lignocellulose poses challenges due to the heterogeneity of the substrate and the lack of continuous kinetic methods. In this study, we report the kinetic parameters of bacterial DyP from Amycolatopsis 75iv2 and fungal DyP from Auricularia auricula-judae on insoluble plant materials and kraft lignin by monitoring the depletion of the cosubstrate of the peroxidases with a H2O2 sensor. In the reactions with spruce, both enzymes showed similar kinetics. On kraft lignin, the catalytic rate of bacterial DyP reached 30 ± 2 s-1, whereas fungal DyP was nearly 3 times more active (81 ± 7 s-1). Importantly, the real-time measurement of H2O2 allowed the assessment of continuous activity for both enzymes, revealing a previously unreported exceptionally high stability under turnover conditions. Bacterial DyP performed 24,000 turnovers of H2O2, whereas the fungal DyP achieved 94,000 H2O2 turnovers in 1 h with a remaining activity of 40 and 80%, respectively. Using mass spectrometry, the depletion of the cosubstrate H2O2 was shown to correlate with product formation, validating the amperometric method.
Collapse
Affiliation(s)
- Silja Välimets
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Lorenz Schwaiger
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra Bennett
- Department
of Chemistry, Institute of Analytical Chemistry, BOKU University, Muthgasse
18, 1190 Vienna, Austria
| | - Daniel Maresch
- Core
Facility Mass-spectrometry, BOKU University, Muthgasse 11, 1190 Vienna, Austria
| | - Roland Ludwig
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- Department
of Chemistry, Institute of Analytical Chemistry, BOKU University, Muthgasse
18, 1190 Vienna, Austria
| | - Dolores Linde
- Centro
de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas
(CSIC), Ramiro de Maeztu
9, 28040 Madrid, Spain
| | - Francisco Javier Ruiz-Dueñas
- Centro
de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas
(CSIC), Ramiro de Maeztu
9, 28040 Madrid, Spain
| | - Clemens Peterbauer
- Department
of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 11, 1190 Vienna, Austria
- Doctoral
Programme BioToP – Biomolecular Technology of Proteins, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
6
|
Shrestha S, Goswami S, Banerjee D, Garcia V, Zhou E, Olmsted CN, Majumder ELW, Kumar D, Awasthi D, Mukhopadhyay A, Singer SW, Gladden JM, Simmons BA, Choudhary H. Perspective on Lignin Conversion Strategies That Enable Next Generation Biorefineries. CHEMSUSCHEM 2024; 17:e202301460. [PMID: 38669480 DOI: 10.1002/cssc.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.
Collapse
Affiliation(s)
- Shilva Shrestha
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shubhasish Goswami
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Valentina Garcia
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Elizabeth Zhou
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
| | - Charles N Olmsted
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Deepika Awasthi
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, United States
| |
Collapse
|
7
|
Klauer RR, Hansen DA, Wu D, Monteiro LMO, Solomon KV, Blenner MA. Biological Upcycling of Plastics Waste. Annu Rev Chem Biomol Eng 2024; 15:315-342. [PMID: 38621232 PMCID: PMC11575423 DOI: 10.1146/annurev-chembioeng-100522-115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plastic wastes accumulate in the environment, impacting wildlife and human health and representing a significant pool of inexpensive waste carbon that could form feedstock for the sustainable production of commodity chemicals, monomers, and specialty chemicals. Current mechanical recycling technologies are not economically attractive due to the lower-quality plastics that are produced in each iteration. Thus, the development of a plastics economy requires a solution that can deconstruct plastics and generate value from the deconstruction products. Biological systems can provide such value by allowing for the processing of mixed plastics waste streams via enzymatic specificity and using engineered metabolic pathways to produce upcycling targets. We focus on the use of biological systems for waste plastics deconstruction and upcycling. We highlight documented and predicted mechanisms through which plastics are biologically deconstructed and assimilated and provide examples of upcycled products from biological systems. Additionally, we detail current challenges in the field, including the discovery and development of microorganisms and enzymes for deconstructing non-polyethylene terephthalate plastics, the selection of appropriate target molecules to incentivize development of a plastic bioeconomy, and the selection of microbial chassis for the valorization of deconstruction products.
Collapse
Affiliation(s)
- Ross R Klauer
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - D Alex Hansen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Derek Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | | | - Kevin V Solomon
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| |
Collapse
|
8
|
Välimets S, Sun P, Virginia LJ, van Erven G, Sanders MG, Kabel MA, Peterbauer C. Characterization of Amycolatopsis 75iv2 dye-decolorizing peroxidase on O-glycosides. Appl Environ Microbiol 2024; 90:e0020524. [PMID: 38625022 PMCID: PMC11107159 DOI: 10.1128/aem.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.
Collapse
Affiliation(s)
- Silja Välimets
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Ludovika Jessica Virginia
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mark G. Sanders
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Clemens Peterbauer
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse, Vienna, Austria
- Doctoral Programme Biomolecular Technology of Proteins (BioToP), BOKU, Muthgasse, Vienna, Austria
| |
Collapse
|
9
|
Ridley RS, Conrad RE, Lindner BG, Woo S, Konstantinidis KT. Potential routes of plastics biotransformation involving novel plastizymes revealed by global multi-omic analysis of plastic associated microbes. Sci Rep 2024; 14:8798. [PMID: 38627476 PMCID: PMC11021508 DOI: 10.1038/s41598-024-59279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.
Collapse
Affiliation(s)
- Rodney S Ridley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seongwook Woo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
10
|
Fall I, Doumèche B, Abdellaoui S, Rémond C, Rakotoarivonina H, Ochs M. Paper-based electrodes as a tool for detecting ligninolytic enzymatic activities. Bioelectrochemistry 2024; 156:108609. [PMID: 37995505 DOI: 10.1016/j.bioelechem.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Lignin is the most important natural source of aromatic compounds. The valorisation of lignin into aromatics requires fractionation steps that can be catalysed by ligninolytic enzymes. However, one of the main limitations of biological lignin fractionation is the low efficiency of biocatalysts; it is therefore crucial to enhance or to identify new ligninolytic enzymes. Currently, the screening of ligninolytic activities on lignin polymers represents a technological bottenleck and hinders the characterization and the discovery of efficient ligninolytic biocatalysts. An efficient and fast method for the measurement of such enzymatic activities is therefore required. In this work, we present a new electrochemical tool based on lignin-coated paper electrodes for the detection and the characterization of ligninolytic activity. The suitability of this method is demonstrated using a catalase-peroxidase isolated from Thermobacillus xylanilyticus.
Collapse
Affiliation(s)
- Issa Fall
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
| | - Bastien Doumèche
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, ICBMS (Institut de Chimie et Biochimie Moléculaires et Supramoléculaires), F-69622, Villeurbanne, France
| | - Sofiene Abdellaoui
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, AFERE, Reims, France
| | | | - Marjorie Ochs
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, ICBMS (Institut de Chimie et Biochimie Moléculaires et Supramoléculaires), F-69622, Villeurbanne, France.
| |
Collapse
|
11
|
Pupart H, Lukk T, Väljamäe P. Dye-decolorizing peroxidase of Thermobifida halotolerance displays complex kinetics with both substrate inhibition and apparent positive cooperativity. Arch Biochem Biophys 2024; 754:109931. [PMID: 38382807 DOI: 10.1016/j.abb.2024.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) have been intensively investigated for the purpose of industrial dye decolourization and lignin degradation. Unfortunately, the characterization of these peroxidases is hampered by their non-Michaelis-Menten kinetics, exemplified by substrate inhibition and/or positive cooperativity. Although often observed, the underlying mechanisms behind the unusual kinetics of DyPs are poorly understood. Here we studied the kinetics of the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroquinones, and anthraquinone dyes by DyP from the bacterium Thermobifida halotolerans (ThDyP) and solved its crystal structure. We also provide rate equations for different kinetic mechanisms explaining the complex kinetics of heme peroxidases. Kinetic studies along with the analysis of the structure of ThDyP suggest that the substrate inhibition is caused by the non-productive binding of ABTS to the enzyme resting state. Strong irreversible inactivation of ThDyP by H2O2 in the absence of ABTS suggests that the substrate inhibition by H2O2 may be caused by the non-productive binding of H2O2 to compound I. Positive cooperativity was observed only with the oxidation of ABTS but not with the two electron-donating substrates. Although the conventional mechanism of cooperativity cannot be excluded, we propose that the oxidation of ABTS assumes the simultaneous binding of two ABTS molecules to reduce compound I to the enzyme resting state, and this causes the apparent positive cooperativity.
Collapse
Affiliation(s)
- Hegne Pupart
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b-202, 51010, Tartu, Estonia.
| |
Collapse
|
12
|
Gupta GK, Kapoor RK. Recent advances in eco-friendly technology for decontamination of pulp and paper mill industrial effluent: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:275. [PMID: 38363444 DOI: 10.1007/s10661-024-12399-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The economic development of a country directly depends upon industries. But this economic development should not be at the cost of our natural environment. A substantial amount of water is spent during paper production, creating water scarcity and generating wastewater. Therefore, the Pollution Control Board classifies this industry into red category. Water is used in different papermaking stages such as debarking, pulping or bleaching, washing, and finishing. The wastewater thus generated contains lignin and xenobiotic compounds such as resin acids, chlorinated lignin, phenols, furans, dioxins, chlorophenols, adsorbable organic halogens (AOX), extractable organic halogens (EOCs), polychlorinated biphenyls, plasticizers, and polychlorinated dibenzodioxins. Nowadays, several microorganisms are used in the detoxification of these hazardous effluents. Researchers have found that microbial degradation is the most promising treatment method to remove high biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater. Microorganisms also remove AOX toxicity, chlorinated compounds, suspended solids, color, lignin, derivatives, etc. from the pulp and paper mill effluents. But in the current scenario, mill effluents are known to deteriorate the environment and therefore it is highly desirable to deploy advanced technologies for effluent treatment. This review summarizes the eco-friendly advanced treatment technologies for effluents generated from pulp and paper mills.
Collapse
Affiliation(s)
- Guddu Kumar Gupta
- Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajeev Kumar Kapoor
- Enzyme and Fermentation Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
13
|
Pupart H, Vastšjonok D, Lukk T, Väljamäe P. Dye-Decolorizing Peroxidase of Streptomyces coelicolor ( ScDyPB) Exists as a Dynamic Mixture of Kinetically Different Oligomers. ACS OMEGA 2024; 9:3866-3876. [PMID: 38284010 PMCID: PMC10809370 DOI: 10.1021/acsomega.3c07963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Dye-decolorizing peroxidases (DyPs) are heme-dependent enzymes that catalyze the oxidation of various substrates including environmental pollutants such as azo dyes and also lignin. DyPs often display complex non-Michaelis-Menten kinetics with substrate inhibition or positive cooperativity. Here, we performed in-depth kinetic characterization of the DyP of the bacterium Streptomyces coelicolor (ScDyPB). The activity of ScDyPB was found to be dependent on its concentration in the working stock used to initiate the reactions as well as on the pH of the working stock. Furthermore, the above-listed conditions had different effects on the oxidation of 2,2'-azino-di(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and methylhydroquinone, suggesting that different mechanisms are used in the oxidation of these substrates. The kinetics of the oxidation of ABTS were best described by the model whereby ScDyPB exists as a mixture of two kinetically different enzyme forms. Both forms obey the ping-pong kinetic mechanism, but one form is substrate-inhibited by the ABTS, whereas the other is not. Gel filtration chromatography and dynamic light scattering analyses revealed that ScDyPB exists as a complex mixture of molecules with different sizes. We propose that ScDyPB populations with low and high degrees of oligomerization have different kinetic properties. Such enzyme oligomerization-dependent modulation of the kinetic properties adds further dimension to the complexity of the kinetics of DyPs but also suggests novel possibilities for the regulation of their catalytic activity.
Collapse
Affiliation(s)
- Hegne Pupart
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 15 Akadeemia tee, Tallinn 12618, Estonia
| | - Darja Vastšjonok
- Institute
of Molecular and Cell Biology, University
of Tartu, Riia 23b-202, Tartu 51010, Estonia
| | - Tiit Lukk
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 15 Akadeemia tee, Tallinn 12618, Estonia
| | - Priit Väljamäe
- Institute
of Molecular and Cell Biology, University
of Tartu, Riia 23b-202, Tartu 51010, Estonia
| |
Collapse
|
14
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
15
|
Sethupathy S, Xie R, Liang N, Shafreen RMB, Ali MY, Zhuang Z, Zhe L, Zahoor, Yong YC, Zhu D. Evaluation of a dye-decolorizing peroxidase from Comamonas serinivorans for lignin valorization potentials. Int J Biol Macromol 2023; 253:127117. [PMID: 37774822 DOI: 10.1016/j.ijbiomac.2023.127117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Although dye-decolourising peroxidases (DyPs) are well-known for lignin degradation, a comprehensive understanding of their mechanism remains unclear. Therefore, studying the mechanism of lignin degradation by DyPs is necessary for industrial applications and enzyme engineering. In this study, a dye-decolourising peroxidase (CsDyP) gene from C. serinivorans was heterologously expressed and studied for its lignin degradation potential. Molecular docking analysis predicted the binding of 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), veratryl alcohol (VA), 2, 6-dimethylphenol (2, 6- DMP), guaiacol (GUA), and lignin to the substrate-binding pocket of CsDyP. Evaluation of the enzymatic properties showed that CsDyP requires pH 4.0 and 30 °C for optimal activity and has a high affinity for ABTS. In addition, CsDyP is stable over a wide range of temperatures and pH and can tolerate 5.0 mM organic solvents. Low NaCl concentrations promoted CsDyP activity. Further, CsDyP significantly reduced the chemical oxygen demand decolourised alkali lignin (AL) and milled wood lignin (MWL). CsDyP targets the β-O-4, CO, and CC bonds linking lignin's G, S, and H units to depolymerize and produce aromatic compounds. Overall, this study delivers valuable insights into the lignin degradation mechanism of CsDyP, which can benefit its industrial applications and lignin valorization.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongrong Xie
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nian Liang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Algappapuram, Karaikudi 630003, Tamil Nadu, India
| | - Mohamed Yassin Ali
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Zhipeng Zhuang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liang Zhe
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Barbosa C, Rodrigues CF, Lončar N, Martins LO, Todorovic S, Silveira CM. Spectroelectrochemistry for determination of the redox potential in heme enzymes: Dye-decolorizing peroxidases. BBA ADVANCES 2023; 5:100112. [PMID: 38235374 PMCID: PMC10792693 DOI: 10.1016/j.bbadva.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Dye-decolorizing peroxidases (DyPs) are heme-containing enzymes that are structurally unrelated to other peroxidases. Some DyPs show high potential for applications in biotechnology, which critically depends on the stability and redox potential (E°') of the enzyme. Here we provide a comparative analysis of UV-Vis- and surface-enhanced resonance Raman-based spectroelectrochemical methods for determination of the E°' of DyPs from two different organisms, and their variants generated targeting E°' upshift. We show that substituting the highly conserved Arginine in the distal side of the heme pocket by hydrophobic amino acid residues impacts the heme architecture and redox potential of DyPs from the two organisms in a very distinct manner. We demonstrate the advantages and drawbacks of the used spectroelectrochemical approaches, which is relevant for other heme proteins that contain multiple heme centers or spin populations.
Collapse
Affiliation(s)
- Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Carolina F. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Nikola Lončar
- Gecco Biotech, Nijenborgh 4, Groningen 9747AG, the Netherlands
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
17
|
Delprat N, Martins LO, Blum LJ, Aymard CMG, Leca-Bouvier B, Octobre G, Doumèche B. User-friendly one-step disposable signal-on bioassay for glyphosate detection in water samples. Biosens Bioelectron 2023; 241:115689. [PMID: 37716158 DOI: 10.1016/j.bios.2023.115689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The onsite detection of glyphosate requires an easy-to-handle, low-cost and disposable assay for untrained users as requested by the ASSURED guidelines. A new strategy based on the expression of fusion proteins is proposed here. A glyphosate oxidase derived from Bacillus subtilis and the 6E10 variant of the dye peroxidase from Pseudomonas putida, both fused with the carbohydrate binding module (CBM) 3a from Clostridium thermocellum, were designed and expressed, leading to GlyphOx-CBM and 6E10-CBM. Cell lysates were used to immobilise both enzymes on cotton buds' heads without any purification. The cotton buds exhibit glyphosate oxidase activity when dipped into a glyphosate-contaminated water sample containing the 6E10-CBM chromogenic substrates. The chromophore could be quantified both in the solution and on the cotton buds' heads. Photography followed by image analysis allows to detect glyphosate with a linear range of 0.25-2.5 mM and a limit of detection (LoD) of 0.12 mM. When the chromogenic substrates are replaced by luminol, the chemiluminescence reaction allows the detection of glyphosate with a linear range of 2-500 μM and a LoD of 0.45 μM. No interference was observed using glyphosate analogues (glycine, sarcosine, aminomethylphosphonic acid) or other herbicides used in a mixture. Only cysteine was found to inhibit 6E10-CBM. Two river waters spiked with glyphosate lead to recoveries of 64-131%. This work describes a very easy-to-handle and inexpensive signal-on bioassay for glyphosate detection in real surface water samples.
Collapse
Affiliation(s)
- N Delprat
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - L O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - L J Blum
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - C M G Aymard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - B Leca-Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - G Octobre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| | - B Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ICBMS, UMR, 5246, 69622, Villeurbanne, France.
| |
Collapse
|
18
|
Silva D, Sousa AC, Robalo MP, Martins LO. A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase. N Biotechnol 2023; 77:176-184. [PMID: 36563877 DOI: 10.1016/j.nbt.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lignin is the second most abundant natural polymer next to cellulose and by far the largest renewable source of aromatic compounds on the planet. Dye-decolourising peroxidases (DyPs) are biocatalysts with immense potential in lignocellulose biorefineries to valorize emerging lignin building blocks for environmentally friendly chemicals and materials. This work investigates the catalytic potential of the engineered PpDyP variant 6E10 for the oxidation of 24 syringyl, guaiacyl and hydroxybenzene lignin-phenolic derivatives. Variant 6E10 exhibited up to 100-fold higher oxidation rates at pH 8 for all the tested phenolic substrates compared to the wild-type enzyme and other acidic DyPs described in the literature. The main products of reactions were dimeric isomers with molecular weights of (2 × MWsubstrate - 2 H). Their structure depends on the substitution pattern of the aromatic ring of substrates, i.e., of the coupling possibilities of the primarily formed radicals upon enzymatic oxidation. Among the dimers identified were syringaresinol, divanillin and diapocynin, important sources of structural scaffolds exploitable in medicinal chemistry, food additives and polymers.
Collapse
Affiliation(s)
- Diogo Silva
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal
| | - Ana Catarina Sousa
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Paula Robalo
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Lígia O Martins
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
19
|
Lee S, Kang M, Jung CD, Bae JH, Lee JY, Park YK, Joo JC, Kim H, Sohn JH, Sung BH. Development of novel recombinant peroxidase secretion system from Pseudomonas putida for lignin valorisation. BIORESOURCE TECHNOLOGY 2023; 388:129779. [PMID: 37739186 DOI: 10.1016/j.biortech.2023.129779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Pseudomonas putida is a promising strain for lignin valorisation. However, there is a dearth of stable and efficient systems for secreting enzymes to enhance the process. Therefore, a novel secretion system for recombinant lignin-depolymerising peroxidase was developed. By adopting a flagellar type III secretion system, P. putida KT-M2, a secretory host strain, was constructed and an optimal secretion signal fusion partner was identified. Application of the dye-decolourising peroxidase of P. putida to this system resulted in efficient oxidation activity of the cell-free supernatant against various chemicals, including lignin model compounds. This peroxidase-secreting strain was examined to confirm its lignin utilisation capability, resulting in the efficient assimilation of various lignin substrates with 2.6-fold higher growth than that of the wild-type strain after 72 h of cultivation. Finally, this novel system will lead efficient bacterial lignin breakdown and utilization through enzyme secretion, paving the way for sustainable lignin-consolidated bioprocessing.
Collapse
Affiliation(s)
- Siseon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Minsik Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Chan-Duck Jung
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Bae
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Hoyong Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
20
|
Li C, Jin X, Yang F, Zhao J, Wang S, Sun Q, Li L, Liu L. Microbacterium nymphoidis sp. nov. and Microbacterium festucae sp. nov., two novel species with high plant-promoting potential isolated from wetland plants in China. Int J Syst Evol Microbiol 2023; 73. [PMID: 37917000 DOI: 10.1099/ijsem.0.006121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Two novel plant growth-promoting, rod-shaped, Gram-positive and non-motile rhizobacteria, W1NT and W2RT, were isolated from wetland plants Festuca elata and Nymphoides peltatum, respectively, in China. The results of the 16S rRNA sequence alignment analysis showed that they were related to Microbacterium, with the highest similarity to Microbacterium ketosireducens (98.7 %) and Microbacterium laevaniformans (98.5 %) for strain W1NT, and to Microbacterium terricola (98.1 %) and Microbacterium marinum (98.0 %) for strain W2RT. Phylogenetic analyses based on 16S rRNA gene sequences and 92 conserved concatenated proteins suggested that the two strains belong to the genus Microbacterium and were placed in two separate novel phylogenetic clades. The genome sizes of the two strains were 3.2 and 3.7 Mb, and the G+C contents were 71.7 and 68.5 mol%, respectively. The comparative genome results showed that the average nucleotide identity values between W1NT and W2RT and other species ranged from 73.5 to 83.6 %, and the digital DNA-DNA hybridization values ranged from 19.7 to 26.8 %. These two strains show physiological and biochemical features that differ from those of closely related species. Rhamnose, galactose and glucose were present in the characteristic sugar fractions of strains W1NT and W2RT. The peptidoglycan of strains W1NT and W2RT contained the amino acids ornithine, alanine and aspartic acid. C15 : 0 anteiso, C17 : 0 anteiso and C16 : 0 iso were the predominant cellular fatty acids in W1NT and W2RT. Phosphatidylglycerol and diphosphatidylglycerol are major polar lipid components. Strain W1NT not only formed bacterial biofilms but also had the ability to solubilize phosphorus and produce indole-3-acetic acid. Strain W2RT had siderophore-producing and lignin-degrading properties. Based on their genetic and phenotypic characteristics, strains W1NT and W2RT were classified as novel bacteria in the genus Microbacterium and designated as Microbacterium festucae sp. nov. (type strain W1NT=ACCC 61807T=GDMCC 1.2966T=JCM 35339T) and Microbacterium nymphoidis sp. nov. (type strain W2RT=ACCC 61808T=GDMCC 1.2967T=JCM 35340T).
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, PR China
| | - Xiaoqian Jin
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
- Rizhao Garden and Sanitation Group Co., Ltd., Rizhao, Shandong, PR China
| | - Fu Yang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Jiayi Zhao
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Siyu Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Qiwu Sun
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Lubin Li
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| | - Lei Liu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, PR China
| |
Collapse
|
21
|
Scocozza M, Vieyra F, Battaglini F, Martins LO, Murgida DH. Electrochemical Actuation of a DyP Peroxidase: A Facile Method for Drastic Improvement of the Catalytic Performance. ACS Catal 2023; 13:7437-7449. [PMID: 37288089 PMCID: PMC10243304 DOI: 10.1021/acscatal.3c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Dye decolorizing peroxidases (DyP) have attracted interest for applications such as dye-containing wastewater remediation and biomass processing. So far, efforts to improve operational pH ranges, activities, and stabilities have focused on site-directed mutagenesis and directed evolution strategies. Here, we show that the performance of the DyP from Bacillus subtilis can be drastically boosted without the need for complex molecular biology procedures by simply activating the enzyme electrochemically in the absence of externally added H2O2. Under these conditions, the enzyme shows specific activities toward a variety of chemically different substrates that are significantly higher than in its canonical operation. Moreover, it presents much broader pH activity profiles with the maxima shifted toward neutral to alkaline. We also show that the enzyme can be successfully immobilized on biocompatible electrodes. When actuated electrochemically, the enzymatic electrodes have two orders of magnitude higher turnover numbers than with the standard H2O2-dependent operation and preserve about 30% of the initial electrocatalytic activity after 5 days of operation-storage cycles.
Collapse
Affiliation(s)
- Magalí
F. Scocozza
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Francisco Vieyra
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando Battaglini
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Ligia O. Martins
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto
de Química Física de Los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad
de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
22
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
23
|
Silva D, Rodrigues F, Lorena C, Borges PT, Martins LO. Biocatalysis for biorefineries: The case of dye-decolorizing peroxidases. Biotechnol Adv 2023; 65:108153. [PMID: 37044267 DOI: 10.1016/j.biotechadv.2023.108153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Dye-decolorizing Peroxidases (DyPs) are heme-containing enzymes in fungi and bacteria that catalyze the reduction of hydrogen peroxide to water with concomitant oxidation of various substrates, including anthraquinone dyes, lignin-related phenolic and non-phenolic compounds, and metal ions. Investigation of DyPs has shed new light on peroxidases, one of the most extensively studied families of oxidoreductases; still, details of their microbial physiological role and catalytic mechanisms remain to be fully disclosed. They display a distinctive ferredoxin-like fold encompassing anti-parallel β-sheets and α-helices, and long conserved loops surround the heme pocket with a role in catalysis and stability. A tunnel routes H2O2 to the heme pocket, whereas binding sites for the reducing substrates are in cavities near the heme or close to distal aromatic residues at the surface. Variations in reactions, the role of catalytic residues, and mechanisms were observed among different classes of DyP. They were hypothetically related to the presence or absence of distal H2O molecules in the heme pocket. The engineering of DyPs for improved properties directed their biotechnological applications, primarily centered on treating textile effluents and degradation of other hazardous pollutants, to fields such as biosensors and valorization of lignin, the most abundant renewable aromatic polymer. In this review, we track recent research contributions that furthered our understanding of the activity, stability, and structural properties of DyPs and their biotechnological applications. Overall, the study of DyP-type peroxidases has significant implications for environmental sustainability and the development of new bio-based products and materials with improved end-of-life options via biodegradation and chemical recyclability, fostering the transition to a sustainable bio-based industry in the circular economy realm.
Collapse
Affiliation(s)
- Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - F Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Constança Lorena
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
24
|
Cagide C, Marizcurrena JJ, Vallés D, Alvarez B, Castro-Sowinski S. A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain. Appl Microbiol Biotechnol 2023; 107:1707-1724. [PMID: 36773063 DOI: 10.1007/s00253-023-12405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
DyP (dye-decolorizing peroxidase) enzymes are hemeproteins that catalyze the H2O2-dependent oxidation of various molecules and also carry out lignin degradation, albeit with low activity. We identified a dyp gene in the genome of an Antarctic cold-tolerant microbe (Pseudomonas sp. AU10) that codes for a class B DyP. The recombinant protein (rDyP-AU10) was produced using Escherichia coli as a host and purified. We found that rDyP-AU10 is mainly produced as a dimer and has characteristics that resemble psychrophilic enzymes, such as high activity at low temperatures (20 °C) when using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 as substrates, thermo-instability, low content of arginine, and a catalytic pocket surface larger than the DyPs from some mesophilic and thermophilic microbes. We also report the steady-state kinetic parameters of rDyP-AU10 for ABTS, hydroquinone, and ascorbate. Stopped-flow kinetics revealed that Compound I is formed with a rate constant of (2.07 ± 0.09) × 106 M-1 s-1 at pH 5 and that this is the predominant species during turnover. The enzyme decolors dyes and modifies kraft lignin, suggesting that this enzyme may have potential use in bioremediation and in the cellulose and biofuel industries. KEY POINTS: • An Antarctic Pseudomonas strain produces a dye-decolorizing peroxidase. • The recombinant enzyme (rDyP-AU10) was produced in E. coli and purified. • rDyP-AU10 showed high activity at low temperatures. • rDyP-AU10 is potentially useful for biotechnological applications.
Collapse
Affiliation(s)
- Célica Cagide
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Diego Vallés
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
25
|
Sun LJ, Yuan H, Xu JK, Luo J, Lang JJ, Wen GB, Tan X, Lin YW. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin. Biochemistry 2023; 62:369-377. [PMID: 34665595 DOI: 10.1021/acs.biochem.1c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design of functional metalloenzymes is attractive for the biosynthesis of biologically important compounds, such as phenoxazinones and phenazines catalyzed by native phenoxazinone synthase (PHS). To design functional heme enzymes, we used myoglobin (Mb) as a model protein and introduced an artificial CXXC motif into the heme distal pocket by F46C and L49C mutations, which forms a de novo disulfide bond, as confirmed by the X-ray crystal structure. We further introduced a catalytic Tyr43 into the heme distal pocket and found that the F43Y/F46C/L49C Mb triple mutant and the previously designed F43Y/F46S Mb exhibit PHS-like activity (80-98% yields in 5-15 min), with the catalytic efficiency exceeding those of natural metalloenzymes, including o-aminophenol oxidase, laccase, and dye-decolorizing peroxidase. Moreover, we showed that the oxidative coupling product of 1,6-disulfonic-2,7-diaminophenazine is a potential pH indicator, with the orange-magenta color change at pH 4-5 (pKa = 4.40). Therefore, this study indicates that functional heme enzymes can be rationally designed by structural modifications of Mb, exhibiting the functionality of the native PHS for green biosynthesis.
Collapse
Affiliation(s)
- Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Luo
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Jia-Jia Lang
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang 421001, China.,Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
26
|
Li J, Dong C, Sen B, Lai Q, Gong L, Wang G, Shao Z. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158714. [PMID: 36113801 DOI: 10.1016/j.scitotenv.2022.158714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A large amount of terrigenous organic matter (TOM) is constantly transported to the deep sea. However, relatively little is known about the microbial mineralization of TOM therein. Our recent in situ enrichment experiments revealed that Vibrio is especially enriched as one of the predominant taxa in the cultures amended with natural plant materials in the deep sea. Yet their role in the mineralization of plant-derived TOM in the deep sea remains largely unknown. Here we isolated Vibrio strains representing dominant members of the enrichments and verified their potential to degrade lignin and xylan. The isolated strains were closely related to Vibrio harveyi, V. alginolyticus, V. diabolicus, and V. parahaemolyticus. Extracellular enzyme assays, and genome and transcriptome analyses revealed diverse peroxidases, including lignin peroxidase (LiP), catalase-peroxidase (KatG), and decolorizing peroxidase (DyP), which played an important role in the depolymerization and oxidation of lignin. Superoxide dismutase was found to likely promote lignin oxidation by supplying H2O2 to LiP, DyP, and KatG. Interestingly, these deep-sea Vibrio strains could oxidize lignin and hydrolyze xylan not only through aerobic pathway, but also through anaerobic pathway. Genome analysis revealed multiple anaerobic respiratory mechanisms, including the reductions of nitrate, arsenate, tetrathionate, and dimethyl sulfoxide. The strains showed the potential to anaerobically reduce sulfite and metal oxides of iron and manganese, in contrast the non-deep-sea Vibrio strains were not retrieved of genes involved in reduction of metal oxides. This is the first report about the lignin oxidation mechanisms in Vibrio and their role in TOM mineralization in anoxic and oxic environments of the marginal sea.
Collapse
Affiliation(s)
- Jianyang Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
27
|
Periplasmic expression of Pseudomonas fluorescens peroxidase Dyp1B and site-directed mutant Dyp1B enzymes enhances polymeric lignin degradation activity in Pseudomonas putida KT2440. Enzyme Microb Technol 2023; 162:110147. [DOI: 10.1016/j.enzmictec.2022.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
28
|
Ren J, Li X, Zhang W, Li Z, Wang Q, Li S, Wang S, Li H. Evaluation of application potential of dye-decolorizing peroxidase from Bacillus amyloliquefaciens in bioremediation of paper and pulp mill effluent. Front Microbiol 2022; 13:1031853. [PMID: 36338047 PMCID: PMC9634487 DOI: 10.3389/fmicb.2022.1031853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Pulp and paper mill effluent is rich in recalcitrant and toxic pollutants compounds and causes pollution. To find an efficient biocatalyst for the treatment of effluent, a dye-decolorizing peroxidase from Bacillus amyloliquefaciens MN-13, which is capable of degrading lignin, was used for the bioremediation of paper and pulp mill effluent. The dye-decolorizing peroxidase from Bacillus amyloliquefaciens (BaDyP) exhibited high-redox potential to 2, 2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) ammonium salt (ABTS), veratryl alcohol, Mn2+, reactive blue 19, reactive black 5 and lignin dimer guaiacylglycerol-beta-guaiacyl ether (GGE). When GGE was used as substrate, BaDyP broke β-O-4 bond of GGE and then oxidize Cα to generate vanillin. The Km values for ABTS and veratryl alcohol were 2.19 mm and 0.07 mm, respectively. The Vmax for ABTS and veratryl alcohol were 1.8 mm/min and 14.12 mm/min, respectively. The BaDyP-mediated treatment of pulp and paper mill effluent led to significant reduction of chemical oxygen demand (COD) and color. When 5% (v/v) of effluent was treated with BaDyP for 12 h at 30°C and pH 2, the removal of COD, color, and lignin was achieved at 82.7, 80.2, and 78.20%, respectively. In detoxification assay, the seeds of Vigna unguiculata grown in treated effluent showed a significant increase in germination rate from 66.7% (untreated effluent) to 90%, and in radicle length from 0.68 cm (untreated effluent) to 1.26 cm, respectively. In the meanwhile, the inhibition of Escherichia coli and Bacillus subtilis by the treated effluent reduced significantly as compared to untreated effluent, indicating high detoxification performance of BaDyP for the treatment of pulp and paper mill effluent. The findings suggest that BaDyP is a potential catalyst for bioremediation of pulp and paper mill effluent, as it is effective in substantial lowering of pollutants load as well as reduces COD, color, and toxicity of effluent.
Collapse
Affiliation(s)
- Jing Ren
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaodan Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Weitao Zhang
- Hebei Animal Husbandry General Station, Shijiazhuang, Hebei, China
| | - Zhuofan Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Quan Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- *Correspondence: Quan Wang,
| | - Shuna Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
| | - Shuxiang Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
| | - Hongya Li
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hongya Li,
| |
Collapse
|
29
|
Borges PT, Silva D, Silva TF, Brissos V, Cañellas M, Lucas MF, Masgrau L, Melo EP, Machuqueiro M, Frazão C, Martins LO. Unveiling molecular details behind improved activity at neutral to alkaline pH of an engineered DyP-type peroxidase. Comput Struct Biotechnol J 2022; 20:3899-3910. [PMID: 35950185 PMCID: PMC9334217 DOI: 10.1016/j.csbj.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
DyP-type peroxidases (DyPs) are microbial enzymes that catalyze the oxidation of a wide range of substrates, including synthetic dyes, lignin-derived compounds, and metals, such as Mn2+ and Fe2+, and have enormous biotechnological potential in biorefineries. However, many questions on the molecular basis of enzyme function and stability remain unanswered. In this work, high-resolution structures of PpDyP wild-type and two engineered variants (6E10 and 29E4) generated by directed evolution were obtained. The X-ray crystal structures revealed the typical ferredoxin-like folds, with three heme access pathways, two tunnels, and one cavity, limited by three long loops including catalytic residues. Variant 6E10 displays significantly increased loops' flexibility that favors function over stability: despite the considerably higher catalytic efficiency, this variant shows poorer protein stability compared to wild-type and 29E4 variants. Constant-pH MD simulations revealed a more positively charged microenvironment near the heme pocket of variant 6E10, particularly in the neutral to alkaline pH range. This microenvironment affects enzyme activity by modulating the pK a of essential residues in the heme vicinity and should account for variant 6E10 improved activity at pH 7-8 compared to the wild-type and 29E4 that show optimal enzymatic activity close to pH 4. Our findings shed light on the structure-function relationships of DyPs at the molecular level, including their pH-dependent conformational plasticity. These are essential for understanding and engineering the catalytic properties of DyPs for future biotechnological applications.
Collapse
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tomás F.D. Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marina Cañellas
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | | | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain,Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eduardo P. Melo
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Miguel Machuqueiro
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal,Corresponding author.
| |
Collapse
|
30
|
Yayci A, Bachmann N, Dirks T, Hofmann E, Bandow JE. Characterization of three novel DyP-type peroxidases from Streptomyces chartreusis NRRL 3882. J Appl Microbiol 2022; 133:2417-2429. [PMID: 35808848 DOI: 10.1111/jam.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
AIMS Actinobacteria are known to produce extracellular enzymes including DyPs. We set out to identify and characterize novel peroxidases from Streptomyces chartreusis NRRL 3882, because S. chartreusis belongs to the small group of actinobacteria with three different DyPs. METHODS AND RESULTS The genome of the actinomycete Streptomyces chartreusis NRRL 3882 was mined for novel DyP-type peroxidases. Three genes encoding for DyP-type peroxidases were cloned and overexpressed in Escherichia coli. Subsequent characterization of the recombinant proteins included examination of operating conditions such as pH, temperature, and H2 O2 concentrations, as well as substrate spectrum. Despite their high sequence similarity, the enzymes named SCDYP1-SCDYP3 presented distinct preferences regarding their operating conditions. They showed great divergence in H2 O2 tolerance and stability, with SCDYP2 being most active at concentrations above 50 mmol l-1 . Moreover, SCDYP1 and SCDYP3 preferred acidic pH (typical for DyP-type peroxidases) whereas SCDYP2 was most active at pH 8. CONCLUSIONS Regarding the function of DyPs in nature, these results suggest that availability of different DyP variants with complementary activity profiles in one organism might convey evolutionary benefits. SIGNIFICANCE AND IMPACT OF STUDY DyP-type peroxidases are able to degrade xenobiotic compounds and thus can be applied in biocatalysis and bioremediation. However, the native function of DyPs and the benefits for their producers largely remain to be elucidated.
Collapse
Affiliation(s)
- Abdulkadir Yayci
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Nathalie Bachmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| |
Collapse
|
31
|
Analysis of carbohydrate-active enzymes and sugar transporters in Penicillium echinulatum: A genome-wide comparative study of the fungal lignocellulolytic system. Gene 2022; 822:146345. [PMID: 35189252 DOI: 10.1016/j.gene.2022.146345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Penicillium echinulatum 2HH is an ascomycete well known for its production of cellulolytic enzymes. Understanding lignocellulolytic and sugar uptake systems is essential to obtain efficient fungi strains for the production of bioethanol. In this study we performed a genome-wide functional annotation of carbohydrate-active enzymes and sugar transporters involved in the lignocellulolytic system of P. echinulatum 2HH and S1M29 strains (wildtype and mutant, respectively) and eleven related fungi. Additionally, signal peptide and orthology prediction were carried out. We encountered a diverse assortment of cellulolytic enzymes in P. echinulatum, especially in terms of β-glucosidases and endoglucanases. Other enzymes required for the breakdown of cellulosic biomass were also found, including cellobiohydrolases, lytic cellulose monooxygenases and cellobiose dehydrogenases. The S1M29 mutant, which is known to produce an increased cellulase activity, and the 2HH wild type strain of P. echinulatum did not show significant differences between their enzymatic repertoire. Nevertheless, we unveiled an amino acid substitution for a predicted intracellular β-glucosidase of the mutant, which might contribute to hyperexpression of cellulases through a cellodextrin induction pathway. Most of the P. echinulatum enzymes presented orthologs in P. oxalicum 114-2, supporting the presence of highly similar cellulolytic mechanisms and a close phylogenetic relationship between these fungi. A phylogenetic analysis of intracellular β-glucosidases and sugar transporters allowed us to identify several proteins potentially involved in the accumulation of intracellular cellodextrins. These may prove valuable targets in the genetic engineering of P. echinulatum focused on industrial cellulases production. Our study marks an important step in characterizing and understanding the molecular mechanisms employed by P. echinulatum in the enzymatic hydrolysis of lignocellulosic biomass.
Collapse
|
32
|
Zhu D, Qaria MA, Zhu B, Sun J, Yang B. Extremophiles and extremozymes in lignin bioprocessing. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 157:112069. [DOI: 10.1016/j.rser.2021.112069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
33
|
Mahanty A, Giri S, Kar A, Ghosh S. Biocatalytic pretreatment of rice straw by ligninolytic enzymes produced by newly isolated <i>Micrococcus unnanensis</i> strain B4 for downstream cellulolytic saccharification. J GEN APPL MICROBIOL 2022; 68:184-192. [DOI: 10.2323/jgam.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ayan Mahanty
- Department of Biotechnology, University of North Bengal
| | | | - Akas Kar
- Department of Biotechnology, University of North Bengal
| | - Shilpi Ghosh
- Department of Biotechnology, University of North Bengal
| |
Collapse
|
34
|
Guo WJ, Xu JK, Wu ST, Gao SQ, Wen GB, Tan X, Lin YW. Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. Int J Mol Sci 2021; 23:ijms23010413. [PMID: 35008837 PMCID: PMC8745427 DOI: 10.3390/ijms23010413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
The treatment of environmental pollutants such as synthetic dyes and lignin has received much attention, especially for biotechnological treatments using both native and artificial metalloenzymes. In this study, we designed and engineered an efficient peroxidase using the O2 carrier myoglobin (Mb) as a protein scaffold by four mutations (F43Y/T67R/P88W/F138W), which combines the key structural features of natural peroxidases such as the presence of a conserved His-Arg pair and Tyr/Trp residues close to the heme active center. Kinetic studies revealed that the quadruple mutant exhibits considerably enhanced peroxidase activity, with the catalytic efficiency (kcat/Km) comparable to that of the most efficient natural enzyme, horseradish peroxidase (HRP). Moreover, the designed enzyme can effectively decolorize a variety of synthetic organic dyes and catalyze the bioconversion of lignin, such as Kraft lignin and a model compound, guaiacylglycerol-β-guaiacyl ether (GGE). As analyzed by HPLC and ESI-MS, we identified several bioconversion products of GGE, as produced via bond cleavage followed by dimerization or trimerization, which illustrates the mechanism for lignin bioconversion. This study indicates that the designed enzyme could be exploited for the decolorization of textile wastewater contaminated with various dyes, as well as for the bioconversion of lignin to produce more value-added products.
Collapse
Affiliation(s)
- Wen-Jie Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Jia-Kun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China;
| | - Sheng-Tao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
| | - Shu-Qin Gao
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Ge-Bo Wen
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China;
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (W.-J.G.); (S.-T.W.)
- Key Laboratory of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China; (S.-Q.G.); (G.-B.W.)
- Correspondence: ; Tel.: +86-734-8282375
| |
Collapse
|
35
|
Bilal M, Qamar SA, Yadav V, Cheng H, Khan M, Adil SF, Taherzadeh MJ, Iqbal HM. Exploring the potential of ligninolytic armory for lignin valorization – A way forward for sustainable and cleaner production. JOURNAL OF CLEANER PRODUCTION 2021. [DOI: 10.1016/j.jclepro.2021.129420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Scocozza MF, Martins LO, Murgida DH. Direct Electrochemical Generation of Catalytically Competent Oxyferryl Species of Classes I and P Dye Decolorizing Peroxidases. Int J Mol Sci 2021; 22:12532. [PMID: 34830413 PMCID: PMC8653965 DOI: 10.3390/ijms222212532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
This work introduces a novel way to obtain catalytically competent oxyferryl species for two different dye-decolorizing peroxidases (DyPs) in the absence of H2O2 or any other peroxide by simply applying a reductive electrochemical potential under aerobic conditions. UV-vis and resonance Raman spectroscopies show that this method yields long-lived compounds II and I for the DyPs from Bacillus subtilis (BsDyP; Class I) and Pseudomonas putida (PpDyP; Class P), respectively. Both electrochemically generated high valent intermediates are able to oxidize ABTS at both acidic and alkaline pH. Interestingly, the electrocatalytic efficiencies obtained at pH 7.6 are very similar to the values recorded for regular catalytic ABTS/H2O2 assays at the optimal pH of the enzymes, ca. 3.7. These findings pave the way for the design of DyP-based electrocatalytic reactors operable in an extended pH range without the need of harmful reagents such as H2O2.
Collapse
Affiliation(s)
- Magalí F. Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| | - Daniel H. Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
37
|
Cajnko MM, Oblak J, Grilc M, Likozar B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics. BIORESOURCE TECHNOLOGY 2021; 340:125655. [PMID: 34388661 DOI: 10.1016/j.biortech.2021.125655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Lignin is a wasted renewable source of biomass-derived value-added chemicals. However, due to its material resistance to degradation, it remains highly underutilized. In order to develop new, catalysed and more environment friendly reaction processes for lignin valorization, science has turned a selective concentrated attention to microbial enzymes. This present work looks at the enzymes involved with the main reference focus on the different elementary mechanisms of action/conversion rate kinetics. Pathways, like with laccases/peroxidases, employ radicals, which more readily result in polymerization than de-polymerization. The β-etherase system interaction of proteins targets β-O-4 ether covalent bond, which targets lower molecular weight product species. Enzymatic activity is influenced by a wide variety of different factors which need to be considered in order to obtain the best functionality and synthesis yields.
Collapse
Affiliation(s)
- Miša Mojca Cajnko
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Jošt Oblak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, NIC, Hajdrihova, 19, SI-1001 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Yang C, Ma L, Wang X, Xing Y, Lü X. A Novel Polyphenol Oxidoreductase OhLac from Ochrobactrum sp. J10 for Lignin Degradation. Front Microbiol 2021; 12:694166. [PMID: 34671322 PMCID: PMC8521193 DOI: 10.3389/fmicb.2021.694166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying the enzymes involved in lignin degradation by bacteria is important in studying lignin valorization to produce renewable chemical products. In this paper, the catalytic oxidation of lignin by a novel multi-copper polyphenol oxidoreductase (OhLac) from the lignin degrader Ochrobactrum sp. J10 was explored. Following its expression, reconstitution, and purification, a recombinant enzyme OhLac was obtained. The OhLac enzyme was characterized kinetically against a range of substrates, including ABTS, guaiacol, and 2,6-DMP. Moreover, the effects of pH, temperature, and Cu2+ on OhLac activity and stability were determined. Gas chromatography-mass spectrometer (GC-MS) results indicated that the β-aryl ether lignin model compound guaiacylglycerol-β-guaiacyl ether (GGE) was oxidized by OhLac to generate guaiacol and vanillic acid. Molecular docking analysis of GGE and OhLac was then used to examine the significant amino residues and hydrogen bonding sites in the substrate–enzyme interaction. Altogether, we were able to investigate the mechanisms involved in lignin degradation. The breakdown of the lignocellulose materials wheat straw, corn stalk, and switchgrass by the recombinant OhLac was observed over 3 days, and the degradation results revealed that OhLac plays a key role in lignin degradation.
Collapse
Affiliation(s)
- Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingling Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuqi Xing
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Rodrigues CF, Borges PT, Scocozza MF, Silva D, Taborda A, Brissos V, Frazão C, Martins LO. Loops around the Heme Pocket Have a Critical Role in the Function and Stability of BsDyP from Bacillus subtilis. Int J Mol Sci 2021; 22:ijms221910862. [PMID: 34639208 PMCID: PMC8509576 DOI: 10.3390/ijms221910862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
Bacillus subtilis BsDyP belongs to class I of the dye-decolorizing peroxidase (DyP) family of enzymes and is an interesting biocatalyst due to its high redox potential, broad substrate spectrum and thermostability. This work reports the optimization of BsDyP using directed evolution for improved oxidation of 2,6-dimethoxyphenol, a model lignin-derived phenolic. After three rounds of evolution, one variant was identified displaying 7-fold higher catalytic rates and higher production yields as compared to the wild-type enzyme. The analysis of X-ray structures of the wild type and the evolved variant showed that the heme pocket is delimited by three long conserved loop regions and a small α helix where, incidentally, the mutations were inserted in the course of evolution. One loop in the proximal side of the heme pocket becomes more flexible in the evolved variant and the size of the active site cavity is increased, as well as the width of its mouth, resulting in an enhanced exposure of the heme to solvent. These conformational changes have a positive functional role in facilitating electron transfer from the substrate to the enzyme. However, they concomitantly resulted in decreasing the enzyme’s overall stability by 2 kcal mol−1, indicating a trade-off between functionality and stability. Furthermore, the evolved variant exhibited slightly reduced thermal stability compared to the wild type. The obtained data indicate that understanding the role of loops close to the heme pocket in the catalysis and stability of DyPs is critical for the development of new and more powerful biocatalysts: loops can be modulated for tuning important DyP properties such as activity, specificity and stability.
Collapse
Affiliation(s)
- Carolina F. Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Magali F. Scocozza
- Instituto de Química Física de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET—Universidad de Buenos Aires, Buenos Aires 148EHA, Argentina;
| | - Diogo Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - André Taborda
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av da República, 2780-157 Oeiras, Portugal; (C.F.R.); (P.T.B.); (D.S.); (A.T.); (V.B.); (C.F.)
- Correspondence:
| |
Collapse
|
40
|
Characterization of Two Hydrogen Peroxide Resistant Peroxidases from Rhodococcus opacus 1CP. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dye-decolorizing peroxidases (DyP) are a family of heme-dependent enzymes present on a broad spectrum of microorganisms. While the natural function of these enzymes is not fully understood, their capacity to degrade highly contaminant pigments such as azo dyes or anthraquinones make them excellent candidates for applications in bioremediation and organic synthesis. In this work, two novel DyP peroxidases from the organism Rhodococcus opacus 1CP (DypA and DypB) were cloned and expressed in Escherichia coli. The enzymes were purified and biochemically characterized. The activities of the two DyPs via 2,2′-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid] (ABTS) assay and against Reactive Blue 5 were assessed and optimized. Results showed varying trends for DypA and DypB. Remarkably, these enzymes presented a particularly high tolerance towards H2O2, retaining its activities at about 10 mM H2O2 for DypA and about 4.9 mM H2O2 for DypB.
Collapse
|
41
|
Zuccarello L, Barbosa C, Galdino E, Lončar N, Silveira CM, Fraaije MW, Todorovic S. SERR Spectroelectrochemistry as a Guide for Rational Design of DyP-Based Bioelectronics Devices. Int J Mol Sci 2021; 22:7998. [PMID: 34360763 PMCID: PMC8348443 DOI: 10.3390/ijms22157998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Immobilised dye-decolorizing peroxidases (DyPs) are promising biocatalysts for the development of biotechnological devices such as biosensors for the detection of H2O2. To this end, these enzymes have to preserve native, solution properties upon immobilisation on the electrode surface. In this work, DyPs from Cellulomonas bogoriensis (CboDyP), Streptomyces coelicolor (ScoDyP) and Thermobifida fusca (TfuDyP) are immobilised on biocompatible silver electrodes functionalized with alkanethiols. Their structural, redox and catalytic properties upon immobilisation are evaluated by surface-enhanced resonance Raman (SERR) spectroelectrochemistry and cyclic voltammetry. Among the studied electrode/DyP constructs, only CboDyP shows preserved native structure upon attachment to the electrode. However, a comparison of the redox potentials of the enzyme in solution and immobilised states reveals a large discrepancy, and the enzyme shows no electrocatalytic activity in the presence of H2O2. While some immobilised DyPs outperform existing peroxidase-based biosensors, others fail to fulfil the essential requirements that guarantee their applicability in the immobilised state. The capacity of SERR spectroelectrochemistry for fast screening of the performance of immobilised heme enzymes places it in the front-line of experimental approaches that can advance the search for promising DyP candidates.
Collapse
Affiliation(s)
- Lidia Zuccarello
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Edilson Galdino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Nikola Lončar
- Gecco Biotech, Nijenborgh 4, 9747AG Groningen, The Netherlands;
| | - Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| | - Marco W. Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands;
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (L.Z.); (C.B.); (E.G.); (C.M.S.)
| |
Collapse
|
42
|
Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145988. [PMID: 33684751 DOI: 10.1016/j.scitotenv.2021.145988] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Building 221, DK-2800 Lyngby, Denmark.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
43
|
Li L, Wang T, Chen T, Huang W, Zhang Y, Jia R, He C. Revealing two important tryptophan residues with completely different roles in a dye-decolorizing peroxidase from Irpex lacteus F17. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:128. [PMID: 34059116 PMCID: PMC8165797 DOI: 10.1186/s13068-021-01978-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/19/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Dye-decolorizing peroxidases (DyPs) represent a novel family of heme peroxidases that use H2O2 as the final electron acceptor to catalyze the oxidation of various organic compounds. A DyP from Irpex lacteus F17 (Il-DyP4, corresponding to GenBank MG209114), obtained by heterologous expression, exhibits a high catalytic efficiency for phenolic compounds and a strong decolorizing ability toward various synthetic dyes. However, the enzyme structure and the catalytic residues involved in substrate oxidation remain poorly understood. RESULTS Here, we obtained a high-resolution structure (2.0 Å, PDB: 7D8M) of Il‑DyP4 with α-helices, anti-parallel β-sheets and one ferric heme cofactor sandwiched between two domains. The crystal structure of Il‑DyP4 revealed two heme access channels leading from the enzyme molecular surface to its heme region, and also showed four conserved amino acid residues forming the pocket for the conversion of hydrogen peroxide into the water molecule. In addition, we found that Trp264 and Trp380, were two important residues with different roles in Il‑DyP4, by using site-directed mutagenesis and an electron paramagnetic resonance (EPR) study. Trp264 is a noncatalytic residue that mainly is used for maintaining the normal spatial conformation of the heme region and the high-spin state of heme Fe3+ of Il‑DyP4, while Trp380 serves as the surface-exposed radical-forming residue that is closely related to the oxidation of substrates including not only bulky dyes, but also simple phenols. CONCLUSIONS This study is important for better understanding the catalytic properties of fungal DyPs and their structure-function relationships.
Collapse
Affiliation(s)
- Liuqing Li
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Tao Wang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Taohua Chen
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Wenhan Huang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Yinliang Zhang
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Rong Jia
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| | - Chao He
- School of Life Science, Economic and Technology Development Zone, Anhui University, 111 jiulong Road, Hefei, Anhui, PR China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
44
|
de Eugenio LI, Peces-Pérez R, Linde D, Prieto A, Barriuso J, Ruiz-Dueñas FJ, Martínez MJ. Characterization of a Dye-Decolorizing Peroxidase from Irpex lacteus Expressed in Escherichia coli: An Enzyme with Wide Substrate Specificity Able to Transform Lignosulfonates. J Fungi (Basel) 2021; 7:325. [PMID: 33922393 PMCID: PMC8145141 DOI: 10.3390/jof7050325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
A dye-decolorizing peroxidase (DyP) from Irpex lacteus was cloned and heterologously expressed as inclusion bodies in Escherichia coli. The protein was purified in one chromatographic step after its in vitro activation. It was active on ABTS, 2,6-dimethoxyphenol (DMP), and anthraquinoid and azo dyes as reported for other fungal DyPs, but it was also able to oxidize Mn2+ (as manganese peroxidases and versatile peroxidases) and veratryl alcohol (VA) (as lignin peroxidases and versatile peroxidases). This corroborated that I. lacteus DyPs are the only enzymes able to oxidize high redox potential dyes, VA and Mn+2. Phylogenetic analysis grouped this enzyme with other type D-DyPs from basidiomycetes. In addition to its interest for dye decolorization, the results of the transformation of softwood and hardwood lignosulfonates suggest a putative biological role of this enzyme in the degradation of phenolic lignin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; (L.I.d.E.); (R.P.-P.); (D.L.); (A.P.); (J.B.); (F.J.R.-D.)
| |
Collapse
|
45
|
Shrestha R, Jia K, Khadka S, Eltis LD, Li P. Mechanistic Insights into DyPB from Rhodococcus jostii RHA1 Via Kinetic Characterization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ruben Shrestha
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kaimin Jia
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Samiksha Khadka
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
46
|
Markel U, Sauer DF, Wittwer M, Schiffels J, Cui H, Davari MD, Kröckert KW, Herres-Pawlis S, Okuda J, Schwaneberg U. Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Daniel F. Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Malte Wittwer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Konstantin W. Kröckert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
47
|
Yaguchi AL, Lee SJ, Blenner MA. Synthetic Biology towards Engineering Microbial Lignin Biotransformation. Trends Biotechnol 2021; 39:1037-1064. [PMID: 33712323 DOI: 10.1016/j.tibtech.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023]
Abstract
Lignin is the second most abundant biopolymer on earth and is a major source of aromatic compounds; however, it is vastly underutilized owing to its heterogeneous and recalcitrant nature. Microorganisms have evolved efficient mechanisms that overcome these challenges to depolymerize lignin and funnel complex mixtures of lignin-derived monomers to central metabolites. This review summarizes recent synthetic biology efforts to enhance lignin depolymerization and aromatic catabolism in bacterial and fungal hosts for the production of both natural and novel bioproducts. We also highlight difficulties in engineering complex phenotypes and discuss the outlook for the future of lignin biological valorization.
Collapse
Affiliation(s)
- Allison L Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Stephen J Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA; Current address: Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
48
|
Comparing Ligninolytic Capabilities of Bacterial and Fungal Dye-Decolorizing Peroxidases and Class-II Peroxidase-Catalases. Int J Mol Sci 2021; 22:ijms22052629. [PMID: 33807844 PMCID: PMC7961821 DOI: 10.3390/ijms22052629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
We aim to clarify the ligninolytic capabilities of dye-decolorizing peroxidases (DyPs) from bacteria and fungi, compared to fungal lignin peroxidase (LiP) and versatile peroxidase (VP). With this purpose, DyPs from Amycolatopsis sp., Thermomonospora curvata, and Auricularia auricula-judae, VP from Pleurotus eryngii, and LiP from Phanerochaete chrysosporium were produced, and their kinetic constants and reduction potentials determined. Sharp differences were found in the oxidation of nonphenolic simple (veratryl alcohol, VA) and dimeric (veratrylglycerol-β- guaiacyl ether, VGE) lignin model compounds, with LiP showing the highest catalytic efficiencies (around 15 and 200 s−1·mM−1 for VGE and VA, respectively), while the efficiency of the A. auricula-judae DyP was 1–3 orders of magnitude lower, and no activity was detected with the bacterial DyPs. VP and LiP also showed the highest reduction potential (1.28–1.33 V) in the rate-limiting step of the catalytic cycle (i.e., compound-II reduction to resting enzyme), estimated by stopped-flow measurements at the equilibrium, while the T. curvata DyP showed the lowest value (1.23 V). We conclude that, when using realistic enzyme doses, only fungal LiP and VP, and in much lower extent fungal DyP, oxidize nonphenolic aromatics and, therefore, have the capability to act on the main moiety of the native lignin macromolecule.
Collapse
|
49
|
Abstract
Heme proteins take part in a number of fundamental biological processes, including oxygen transport and storage, electron transfer, catalysis and signal transduction. The redox chemistry of the heme iron and the biochemical diversity of heme proteins have led to the development of a plethora of biotechnological applications. This work focuses on biosensing devices based on heme proteins, in which they are electronically coupled to an electrode and their activity is determined through the measurement of catalytic currents in the presence of substrate, i.e., the target analyte of the biosensor. After an overview of the main concepts of amperometric biosensors, we address transduction schemes, protein immobilization strategies, and the performance of devices that explore reactions of heme biocatalysts, including peroxidase, cytochrome P450, catalase, nitrite reductase, cytochrome c oxidase, cytochrome c and derived microperoxidases, hemoglobin, and myoglobin. We further discuss how structural information about immobilized heme proteins can lead to rational design of biosensing devices, ensuring insights into their efficiency and long-term stability.
Collapse
|
50
|
Monokaryotic Pleurotus sapidus Strains with Intraspecific Variability of an Alkene Cleaving DyP-Type Peroxidase Activity as a Result of Gene Mutation and Differential Gene Expression. Int J Mol Sci 2021; 22:ijms22031363. [PMID: 33573012 PMCID: PMC7866418 DOI: 10.3390/ijms22031363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
The basidiomycete Pleurotus sapidus produced a dye-decolorizing peroxidase (PsaPOX) with alkene cleavage activity, implying potential as a biocatalyst for the fragrance and flavor industry. To increase the activity, a daughter-generation of 101 basidiospore-derived monokaryons (MK) was used. After a pre-selection according to the growth rate, the activity analysis revealed a stable intraspecific variability of the strains regarding peroxidase and alkene cleavage activity of PsaPOX. Ten monokaryons reached activities up to 2.6-fold higher than the dikaryon, with MK16 showing the highest activity. Analysis of the PsaPOX gene identified three different enzyme variants. These were co-responsible for the observed differences in activities between strains as verified by heterologous expression in Komagataella phaffii. The mutation S371H in enzyme variant PsaPOX_high caused an activity increase alongside a higher protein stability, while the eleven mutations in variant PsaPOX_low resulted in an activity decrease, which was partially based on a shift of the pH optimum from 3.5 to 3.0. Transcriptional analysis revealed the increased expression of PsaPOX in MK16 as reason for the higher PsaPOX activity in comparison to other strains producing the same PsaPOX variant. Thus, different expression profiles, as well as enzyme variants, were identified as crucial factors for the intraspecific variability of the PsaPOX activity in the monokaryons.
Collapse
|