1
|
Gramüller J, Gschwind RM. An NMR Spectroscopy View on London Dispersion in Catalysis: Detection, Quantification, and Application in Ion Pair and Transition Metal Catalysis. Acc Chem Res 2023; 56:2968-2979. [PMID: 37889132 DOI: 10.1021/acs.accounts.3c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
ConspectusThe energetic contribution of London dispersion (LD) can cover a broad range from very few to hundreds of kJ mol-1 for extended interaction interfaces due to its pairwise additivity. However, for a designed and successful application of LD in chemical catalysis, there are still many obstacles and questions that remain. In principle, LD can be regarded as the attractive part of the van der Waals potential. Thus, considering the whole van der Waals potential, including the repulsive part (steric repulsion), the ideal solution to the problem in catalysis would be to design compatible interaction interfaces at exactly the correct distance. In the case of a self-assembled, flexible structure arrangement, entropic contributions and solvent interactions might be detrimental. In the case of a rigid catalyst pocket, steric hindrance might not allow for large substituents that are usually applied as dispersion energy donors (DEDs). For a working catalytic system, the following question arises: how is it possible to dissect the complex interaction interfaces in terms of energetic contributions? Usually, the energetic contribution of LD to catalysis is addressed by using calculations. However, adequately computing the correct energetic contributions can be extremely challenging for a vast conformational space with all kinds of intermolecular interactions. Thus, experimental data are essential for comparison or benchmarking.Therefore, in this Account, we describe our quest for detailed experimental data obtained via NMR spectroscopy to experimentally dissect and quantify LD in catalytic systems. In addition, we address the question of whether bulky substituents used as DEDs can be used in confined catalytic pockets. With the example of Pd phosphoramidite complexes, we show how it is possible to experimentally dissect and quantify the contribution of individual interaction areas in complicated transition metal complexes. Furthermore, a correlation between conformational rigidity and heterodimer preference clearly reveals that LD can only unfold its full potential in cases where entropic contributions are minimized. This finding can also explain the small contribution of LD in flexible and solvent-exposed molecular balances. In the field of Brønsted acid catalysis, we demonstrated that LD has a strong influence on the structures, stability, and populations of confined catalytic intermediates. LD is key for populating higher aggregates such as dimers. In addition, offsets between the experimental and computational results were observed and attributed to solvent-solute dispersion interactions. We studied the delicate interplay of attractive and repulsive interactions by adding bulky DED substituents onto a substrate, which can function as a molecular balance system. Intriguingly, the effect of LD on the free substrate was straightforwardly transferred onto the highly confined intermediates. Furthermore, this effect could even be read out in the enantioselectivities of the underlying reaction. This conceptualized a general approach regarding how LD can be used beneficially in catalysis to convert from moderate/good to excellent stereoselectivities. It showcased that bulky groups such as tert-butyl must not only be regarded as occupied volumes.
Collapse
Affiliation(s)
- Johannes Gramüller
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
2
|
Kolb B, Silva dos Santos D, Krause S, Zens A, Laschat S. Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2 E,4 E)-dienones. Beilstein J Org Chem 2023; 19:176-185. [PMID: 36814450 PMCID: PMC9940601 DOI: 10.3762/bjoc.19.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Dienones are challenging building blocks in natural product synthesis due to their high reactivity and complex synthesis. Based on previous work and own initial results, a new stereospecific sequential hydrozirconation/Pd-catalyzed acylation of enynes with acyl chlorides towards conjugated (2E,4E)-dienones is reported. We investigated a number of substrates with different alkyl and aryl substituents in the one-pot reaction and showed that regardless of the substitution pattern, the reactions lead to the stereoselective formation (≥95% (2E,4E)) of the respective dienones under mild conditions. It was found that enynes with alkyl chains gave higher yields than the corresponding aryl-substituted analogues, whereas the variation of the acyl chlorides did not affect the reaction significantly. The synthetic application is demonstrated by formation of non-natural and natural dienone-containing terpenes such as β-ionone which was available in 4 steps and 6% overall yield.
Collapse
Affiliation(s)
- Benedikt Kolb
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Daniela Silva dos Santos
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sanja Krause
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
3
|
Lustosa DM, Milo A. Mechanistic Inference from Statistical Models at Different Data-Size Regimes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danilo M. Lustosa
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
4
|
Žabka M, Naviri L, Gschwind RM. Noncovalent CH–π and π–π Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matej Žabka
- Institute of Organic Chemistry Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Lavakumar Naviri
- Institute of Organic Chemistry Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| |
Collapse
|
5
|
Žabka M, Naviri L, Gschwind RM. Noncovalent CH-π and π-π Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angew Chem Int Ed Engl 2021; 60:25832-25838. [PMID: 34585835 PMCID: PMC9298319 DOI: 10.1002/anie.202106881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 11/12/2022]
Abstract
The weak noncovalent interactions and flexibility of ligands play a key role in enantioselective metal-catalyzed reactions. In transition metal complexes and their catalytic applications, the experimental assessment and the design of key interactions is as difficult as the prediction of the enantioselectivities, especially for flexible, privileged ligands such as chiral phosphoramidites. Therefore, the interligand interactions in cis-PdII L2 Cl2 phosphoramidite complexes were investigated by NMR spectroscopy and computations. We were able to induce a strong conformational preference by breaking the symmetry of the C2 -symmetric side chain of one of the ligands, and shift the equilibrium between hetero- and homocomplexes towards heterocomplexes because of interligand interactions in the cis-complexes. The modulation of aryl substituents was exploited, along with the solvent effect. The combined CH-π and π-π interactions reveal design patterns for binding and folding of chiral ligands and catalysts.
Collapse
Affiliation(s)
- Matej Žabka
- Institute of Organic ChemistryUniversität RegensburgUniversitätstrasse 3193053RegensburgGermany
| | - Lavakumar Naviri
- Institute of Organic ChemistryUniversität RegensburgUniversitätstrasse 3193053RegensburgGermany
| | - Ruth M. Gschwind
- Institute of Organic ChemistryUniversität RegensburgUniversitätstrasse 3193053RegensburgGermany
| |
Collapse
|
6
|
Gallegos LC, Luchini G, St. John PC, Kim S, Paton RS. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties. Acc Chem Res 2021; 54:827-836. [PMID: 33534534 DOI: 10.1021/acs.accounts.0c00745] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Machine-readable chemical structure representations are foundational in all attempts to harness machine learning for the prediction of reactivities, selectivities, and chemical properties directly from molecular structure. The featurization of discrete chemical structures into a continuous vector space is a critical phase undertaken before model selection, and the development of new ways to quantitatively encode molecules is an active area of research. In this Account, we highlight the application and suitability of different representations, from expert-guided "engineered" descriptors to automatically "learned" features, in different prediction tasks relevant to organic and organometallic chemistry, where differing amounts of training data are available. These tasks include statistical models of stereo- and enantioselectivity, thermochemistry, and kinetics developed using experimental and quantum chemical data.The use of expert-guided molecular descriptors provides an opportunity to incorporate chemical knowledge, domain expertise, and physical constraints into statistical modeling. In applications to stereoselective organic and organometallic catalysis, where data sets may be relatively small and 3D-geometries and conformations play an important role, mechanistically informed features can be used successfully to obtain predictive statistical models that are also chemically interpretable. We provide an overview of several recent applications of this approach to obtain quantitative models for reactivity and selectivity, where topological descriptors, quantum mechanical calculations of electronic and steric properties, along with conformational ensembles, all feature as essential ingredients of the molecular representations used.Alternatively, more flexible, general-purpose molecular representations such as attributed molecular graphs can be used with machine learning approaches to learn the complex relationship between a structure and prediction target. This approach has the potential to out-perform more traditional representation methods such as "hand-crafted" molecular descriptors, particularly as data set sizes grow. One area where this is particularly relevant is in the use of large sets of quantum mechanical data to train quantitative structure-property relationships. A general approach toward curating useful data sets and training highly accurate graph neural network models is discussed in the context of organic bond dissociation enthalpies, where this strategy outperforms regression using precomputed descriptors.Finally, we describe how graph neural network predictions can be incorporated into mechanistically informed statistical models of chemical reactivity and selectivity. Once trained, this approach avoids the expensive computational overhead associated with quantum mechanical calculations, while maintaining chemical interpretability. We illustrate examples for which fast predictions of bond dissociation enthalpy and of the identities of radicals formed through cleavage of a molecule's weakest bond are used in simple physical models of site-selectivity and reactivity.
Collapse
Affiliation(s)
- Liliana C. Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Guilian Luchini
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Peter C. St. John
- Biosciences Center, National Renewable Energy Laboratory, 15103 Denver West Parkway, Golden, Colorado 80401, United States
| | - Seonah Kim
- Biosciences Center, National Renewable Energy Laboratory, 15103 Denver West Parkway, Golden, Colorado 80401, United States
| | - Robert S. Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Gao C, Wang X, Liu J, Li X. Highly Diastereo- and Enantioselective Synthesis of Tetrahydrobenzo[b]azocines via Palladium-Catalyzed [4 + 4] Cycloaddition. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Can Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jitian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Suzhou Institute of Shandong University, no. 388 Ruoshui Road, SIP, Suzhou, Jiangsu 215123, China
| |
Collapse
|
8
|
Némethová I, Šebesta R. Are Organozirconium Reagents Applicable in Current Organic Synthesis? SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe search for mild, user-friendly, easily accessible, and robust organometallic reagents is an important feature of organometallic chemistry. Ideally, new methodologies employing organometallics should be developed with respect to practical applications in syntheses of target compounds. In this short review, we investigate if organozirconium reagents can fulfill these criteria. Organozirconium compounds are typically generated via in situ hydrozirconation of alkenes or alkynes with the Schwartz reagent. Alkyl and alkenylzirconium reagents have proven to be convenient in conjugate additions, allylic substitutions, cross-coupling reactions, and additions to carbonyls or imines. Furthermore, the Schwartz reagent itself is a useful reducing agent for polar functional groups.1 Introduction2 Synthesis and Generation of the Schwartz Reagent3 Structure and Properties of Cp2Zr(H)Cl4 Reactivity of Organozirconium Reagents4.1 Asymmetric Conjugate Addition4.2 Asymmetric Allylic Alkylations4.3 Desymmetrization Reactions4.4 Cross-Coupling Reactions4.5 1,2-Additions5 Conclusions
Collapse
Affiliation(s)
| | - Radovan Šebesta
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry
| |
Collapse
|
9
|
Vargová D, Némethová I, Šebesta R. Asymmetric copper-catalyzed conjugate additions of organometallic reagents in the syntheses of natural compounds and pharmaceuticals. Org Biomol Chem 2020; 18:3780-3796. [PMID: 32391843 DOI: 10.1039/d0ob00278j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Access to enantiopure complex molecular structures is crucial for the development of new drugs as well as agents used in crop-protection. In this regard, numerous asymmetric methods have been established. Copper-catalyzed 1,4-additions of organometallic reagents are robust C-C bond formation strategies applicable in a wide range of circumstances. This review analyses the syntheses of natural products and pharmaceutical agents, which rely on the application of asymmetric Cu-catalyzed conjugate additions of various organometallic reagents. A wide range of available organometallics, e.g. dialkylzinc, trialkylaluminum, Grignard, and organozirconium, can now be used in conjugate additions to address various synthetic challenges present in targeted natural compounds. Furthermore, efficient catalysts allow high levels of stereofidelity over a diverse array of starting Michael acceptors.
Collapse
Affiliation(s)
- Denisa Vargová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, SK-84215, Bratislava, Slovakia.
| | - Ivana Némethová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, SK-84215, Bratislava, Slovakia.
| | - Radovan Šebesta
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, SK-84215, Bratislava, Slovakia.
| |
Collapse
|
10
|
Guo Y, Harutyunyan SR. Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents. Beilstein J Org Chem 2020; 16:1006-1021. [PMID: 32509032 PMCID: PMC7237809 DOI: 10.3762/bjoc.16.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Copper-catalysed asymmetric C–C bond-forming reactions using organometallic reagents have developed into a powerful tool for the synthesis of complex molecules with single or multiple stereogenic centres over the past decades. Among the various acceptors employed in such reactions, those with a heterocyclic core are of particular importance because of the frequent occurrence of heterocyclic scaffolds in the structures of chiral natural products and bioactive molecules. Hence, this review focuses on the progress made over the past 20 years for heterocyclic acceptors.
Collapse
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
11
|
Némethová I, Vargová D, Mudráková B, Filo J, Šebesta R. Reductive alkylation of imines via asymmetric Cu-catalyzed addition of organozirconium reagents. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
13
|
Ligand Design for Asymmetric Catalysis: Combining Mechanistic and Chemoinformatics Approaches. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Kingsbury A, Brough S, McCarthy AP, Lewis W, Woodward S. Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1
H
)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alex Kingsbury
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| | - Steve Brough
- Key Organics Ltd Highfield Road Industrial Estate PL32 9RA Camelford Cornwall United Kingdom
| | - Antonio Pedrina McCarthy
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| | - William Lewis
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| |
Collapse
|
15
|
Brethomé AV, Paton RS, Fletcher SP. Retooling Asymmetric Conjugate Additions for Sterically Demanding Substrates with an Iterative Data-Driven Approach. ACS Catal 2019; 9:7179-7187. [PMID: 32064147 PMCID: PMC7011729 DOI: 10.1021/acscatal.9b01814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/27/2019] [Indexed: 12/13/2022]
Abstract
![]()
The
development of catalytic enantioselective methods is routinely
carried out using easily accessible and prototypical substrates. This
approach to reaction development often yields asymmetric methods that
perform poorly using substrates that are sterically or electronically
dissimilar to those used during the reaction optimization campaign.
Consequently, expanding the scope of previously optimized catalytic
asymmetric reactions to include more challenging substrates is decidedly
nontrivial. Here, we address this challenge through the development
of a systematic workflow to broaden the applicability and reliability
of asymmetric conjugate additions to substrates conventionally regarded
as sterically and electronically demanding. The copper-catalyzed asymmetric
conjugate addition of alkylzirconium nucleophiles to form tertiary
centers, although successful for linear alkyl chains, fails for more
sterically demanding linear α,β-unsaturated ketones. Key
to adapting this method to obtain high enantioselectivity was the
synthesis of modified phosphoramidite ligands, designed using quantitative
structure–selectivity relationships (QSSRs). Iterative rounds
of model construction and ligand synthesis were executed in parallel
to evaluate the performance of 20 chiral ligands. The copper-catalyzed
asymmetric addition is now more broadly applicable, even tolerating
linear enones bearing tert-butyl β-substituents.
The presence of common functional groups is tolerated in both nucleophiles
and electrophiles, giving up to 99% yield and 95% ee across 20 examples.
Collapse
Affiliation(s)
- Alexandre V. Brethomé
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert S. Paton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen P. Fletcher
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
16
|
Chen H, Zhang T, Shan C, Liu S, Song Q, Bai R, Lan Y. Mechanism of Brønsted-Base-Mediated Borylation of Propynols: A DFT Study. Org Lett 2019; 21:4924-4928. [DOI: 10.1021/acs.orglett.9b01180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Haohua Chen
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Chunhui Shan
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Song Liu
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, Xiamen 361021, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Fang C, Fantin M, Pan X, de Fiebre K, Coote ML, Matyjaszewski K, Liu P. Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP). J Am Chem Soc 2019; 141:7486-7497. [PMID: 30977644 PMCID: PMC6634993 DOI: 10.1021/jacs.9b02158] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Copper-catalyzed atom transfer radical polymerization (Cu-ATRP) is one of the most widely used controlled radical polymerization techniques. Notwithstanding the extensive mechanistic studies in the literature, the transition states of the activation/deactivation of the growing polymer chain, a key equilibrium in Cu-ATRP, have not been investigated computationally. Therefore, the understanding of the origin of ligand and initiator effects on the rates of activation/deactivation is still limited. Here, we present the first computational analysis of Cu-ATRP activation transition states to reveal factors that affect the rates of activation and deactivation. The Br atom transfer between the polymer chain and the Cu catalyst occurs through an unusual bent geometry that involves pronounced interactions between the polymer chain end and the ancillary ligand on the Cu catalyst. Therefore, the rates of activation/deactivation are determined by both the electronic properties of the Cu catalyst and the ligand-initiator steric repulsions. In addition, our calculations revealed the important role of ligand backbone flexibility on the activation. These theoretical analyses led to the identification of three chemically meaningful descriptors, namely HOMO energy of the catalyst ( EHOMO), percent buried volume ( Vbur%), and distortion energy of the catalyst (Δ Edist), to describe the electronic, steric, and flexibility effects on reactivity, respectively. A robust and simple predictive model for ligand effect on reactivity is thereby established by correlating these three descriptors with experimental activation rate constants using multivariate linear regression. Validation using a structurally diverse set of ligands revealed the average error is less than ±2 kcal/mol compared to the experimentally derived activation energies. The same approach was also applied to develop a predictive model for reactivity of different alkyl halide initiators using R-X bond dissociation energy (BDE) and Cu-X halogenophilicity as descriptors.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Xiangcheng Pan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Kurt de Fiebre
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States
| |
Collapse
|
18
|
Wu C, Qin X, Moeljadi AMP, Hirao H, Zhou JS. Copper-Catalyzed Asymmetric Arylation of N-Heteroaryl Aldimines: Elementary Step of a 1,4-Insertion. Angew Chem Int Ed Engl 2019; 58:2705-2709. [PMID: 30648341 DOI: 10.1002/anie.201812646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Copper complexes of monodentate phosphoramidites efficiently promote asymmetric arylation of N-azaaryl aldimines with arylboroxines. DFT calculations and experiments support an elementary step of 1,4-insertion in the reaction pathway, a step in which an aryl-copper species adds directly across four atoms of C=N-C=N in the N-azaaryl aldimines.
Collapse
Affiliation(s)
- Chunlin Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, SPMS-CBC-06-06, Singapore, 637371, Singapore
| | - Xurong Qin
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, SPMS-CBC-06-06, Singapore, 637371, Singapore
| | | | - Hajime Hirao
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jianrong Steve Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, SPMS-CBC-06-06, Singapore, 637371, Singapore
| |
Collapse
|
19
|
Wu C, Qin X, Moeljadi AMP, Hirao H, Zhou JS. Copper‐Catalyzed Asymmetric Arylation of
N
‐Heteroaryl Aldimines: Elementary Step of a 1,4‐Insertion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chunlin Wu
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link, SPMS-CBC-06-06 Singapore 637371 Singapore
| | - Xurong Qin
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link, SPMS-CBC-06-06 Singapore 637371 Singapore
| | | | - Hajime Hirao
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong China
| | - Jianrong Steve Zhou
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link, SPMS-CBC-06-06 Singapore 637371 Singapore
| |
Collapse
|
20
|
Brethomé AV, Fletcher SP, Paton RS. Conformational Effects on Physical-Organic Descriptors: The Case of Sterimol Steric Parameters. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04043] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alexandre V. Brethomé
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephen P. Fletcher
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert S. Paton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
21
|
Comparing quantitative prediction methods for the discovery of small-molecule chiral catalysts. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0040-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Pinheiro DLJ, de Castro PP, Amarante GW. Recent Developments and Synthetic Applications of Nucleophilic Zirconocene Complexes from Schwartz's Reagent. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danielle L. J. Pinheiro
- Department of Chemistry; Federal University of Juiz de Fora; Cidade Universitária 36036-900 São Pedro, Juiz de Fora Minas Gerais Brazil
| | - Pedro P. de Castro
- Department of Chemistry; Federal University of Juiz de Fora; Cidade Universitária 36036-900 São Pedro, Juiz de Fora Minas Gerais Brazil
| | - Giovanni W. Amarante
- Department of Chemistry; Federal University of Juiz de Fora; Cidade Universitária 36036-900 São Pedro, Juiz de Fora Minas Gerais Brazil
| |
Collapse
|
23
|
Guan Y, Ingman VM, Rooks BJ, Wheeler SE. AARON: An Automated Reaction Optimizer for New Catalysts. J Chem Theory Comput 2018; 14:5249-5261. [DOI: 10.1021/acs.jctc.8b00578] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yanfei Guan
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Victoria M. Ingman
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Benjamin J. Rooks
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Ardkhean R, Mortimore M, Paton RS, Fletcher SP. Formation of quaternary centres by copper catalysed asymmetric conjugate addition to β-substituted cyclopentenones with the aid of a quantitative structure-selectivity relationship. Chem Sci 2018; 9:2628-2632. [PMID: 29675255 PMCID: PMC5892328 DOI: 10.1039/c7sc05304e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/02/2018] [Indexed: 12/24/2022] Open
Abstract
A new asymmetric conjugate addition method was developed for β-substituted cyclopentenones to form quaternary centres using alkylzirconocene nucleophiles giving up to 97% yield and 92% ee.
A new asymmetric conjugate addition method was developed for β-substituted cyclopentenones to form quaternary centres using alkylzirconocene nucleophiles giving up to 97% yield and 92% ee. Key to the reaction's success was the design of suitable phosphoramidite ligands which was aided by a linear quantitative structure–selectivity relationship (QSSR). QSSR models were created from the ligand screening data (a total of 36 ligands) which revealed important electronic and steric requirements and led to the synthesis of more enantioselective ligands. DFT calculations of competing transition structures enable the interpretation of the electronic and steric terms present in the QSSR models.
Collapse
Affiliation(s)
- Ruchuta Ardkhean
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Mike Mortimore
- Vertex Pharmaceuticals (Europe) Ltd , 86-88 Jubilee Avenue, Milton Park , Abingdon , Oxfordshire OX14 4RW , UK
| | - Robert S Paton
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Stephen P Fletcher
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| |
Collapse
|