1
|
Li Y, Xu CQ, Chen C, Zhang Y, Liu S, Zhuang Z, Zhang Y, Zhang Q, Li Z, Chen Z, Zheng L, Cheong WC, Wu K, Jiang G, Xiao H, Lian C, Wang D, Peng Q, Li J, Li Y. Carbon-Boosted and Nitrogen-Stabilized Isolated Single-Atom Sites for Direct Dehydrogenation of Lower Alkanes. J Am Chem Soc 2024. [PMID: 39031766 DOI: 10.1021/jacs.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shoujie Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaoyuan Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Qiyang Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Weng-Chon Cheong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Konglin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Lian
- Beijing Single-Atom Catalysis Technology Co., Ltd., Beijing 100094, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Zhai Z, Zhang B, Wang Y, Liu G. Fine-tuned local coordination environment of Pt-N in nanocarbons for efficient propane dehydrogenation. Phys Chem Chem Phys 2024; 26:3263-3273. [PMID: 38196379 DOI: 10.1039/d3cp04215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Based on the disturbance of electronic density, nitrogen-doped nanocarbons show promising properties to anchor metal clusters. However, precisely regulating the coordination mode between N species and the active site remains challenging. Herein, we rationally designed three N types (graphitic N, pyridinic N and pyrrolic N) in nanocarbons to anchor Pt clusters for the benchmark propane dehydrogenation. The specific activity of the pyridinic-N-doped catalyst was 147.54 molC3H6 molPt-1 h-1 at 550 °C, which was 1.3 times higher than those of graphitic- and pyrrolic-N-doped catalysts. Unlike the regular tetrahedron Pt cluster in the graphitic-N catalyst or the distorted three-layered Pt cluster in the pyrrolic-N catalyst, the Pt cluster in the pyridinic-N catalyst was an inverted tetrahedron, which increased the contact degree without geometric repulsion towards C-H bond scission. The geometric parameters of detached H and C atoms in the methylene group for the pyridinic N catalyst was decreased to strengthen the C-H bond scission. After CH3CHCH3* adsorption, the Bader charge of the Pt active site also became highly positive, which tailored the d-band center closer to the Fermi level and provided more vacant orbitals for C-H bond breakage. Therefore, pyridinic N in nanocarbons is promising to anchor small-sized Pt for alkane dehydrogenation in terms of geometric and electronic effects.
Collapse
Affiliation(s)
- Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yutong Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| |
Collapse
|
3
|
Li H, Li P, Guo Y, Jin Z. Electrochemical Probing the Site Reactivity in Iron Single-Atom Catalysts for Electrocatalytic Nitrate Reduction to Ammonia. Anal Chem 2024; 96:997-1002. [PMID: 38176015 DOI: 10.1021/acs.analchem.3c05095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Single-atom catalysts (SACs), specifically iron single atoms dispersed on nitrogen-doped carbon (Fe-NC), have shown promising potential in the electrocatalytic reduction of nitrate to ammonia (NitRR), but there is a lack of understanding of their intrinsic activity. The conventional measurements often overlook the intrinsic performance of SACs, leading to significant underestimation. This study presents an in situ electrochemical probing protocol, using two poisoning molecules (SCN- and NO2-), to characterize the reactivity of Fe sites in Fe-NC SACs for NitRR. The technique aids in quantifying the yield rate of ammonia on Fe sites and the active site number. The findings reveal the intrinsic turnover frequency (TOF) based on the number and ammonia yield rate of Fe sites, challenging the current understanding of SACs' inherent performances. This unique approach holds considerable potential for determining the intrinsic activity of other SACs in complex reactions, opening new avenues for the exploration of electrocatalytic processes.
Collapse
Affiliation(s)
- Hongmei Li
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yong Guo
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| |
Collapse
|
4
|
Bates JS, Martinez JJ, Hall MN, Al-Omari AA, Murphy E, Zeng Y, Luo F, Primbs M, Menga D, Bibent N, Sougrati MT, Wagner FE, Atanassov P, Wu G, Strasser P, Fellinger TP, Jaouen F, Root TW, Stahl SS. Chemical Kinetic Method for Active-Site Quantification in Fe-N-C Catalysts and Correlation with Molecular Probe and Spectroscopic Site-Counting Methods. J Am Chem Soc 2023; 145:26222-26237. [PMID: 37983387 PMCID: PMC10782517 DOI: 10.1021/jacs.3c08790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure-reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2- on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Jesse J. Martinez
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Melissa N. Hall
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Abdulhadi A. Al-Omari
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Fang Luo
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Mathias Primbs
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Davide Menga
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
| | - Nicolas Bibent
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Friedrich E. Wagner
- Department of Physics, Technische Universität München (TUM), 85748 Garching, Germany
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Peter Strasser
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Tim-Patrick Fellinger
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12203 Berlin, Germany
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thatcher W. Root
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
5
|
Iaia EP, Soyemi A, Szilvási T, Harris JW. Zeolite encapsulated organometallic complexes as model catalysts. Dalton Trans 2023; 52:16103-16112. [PMID: 37812079 DOI: 10.1039/d3dt02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Heterogeneities in the structure of active centers in metal-containing porous materials are unavoidable and complicate the description of chemical events occurring along reaction coordinates at the atomic level. Metal containing zeolites include sites of varied local coordination and secondary confining environments, requiring careful titration protocols to quantify the predominant active sites. Hybrid organometallic-zeolite catalysts are useful well-defined platform materials for spectroscopic, kinetic, and computational studies of heterogeneous catalysis that avoid the complications of conventional metal-containing porous materials. Such materials have been synthesized and studied previously, but catalytic applications were mostly limited to liquid-phase oxidation and electrochemical reactions. The hydrothermal stability, time-on-stream stability, and utility of these materials in gas-phase oxidation reactions are under-studied. The potential applications for single-site heterogeneous catalysts in fundamental research are abundant and motivate future synthetic, spectroscopic, kinetic, and computational studies.
Collapse
Affiliation(s)
- Ethan P Iaia
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Ademola Soyemi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - James W Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
6
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Liu X, Li J, Zitolo A, Gao M, Jiang J, Geng X, Xie Q, Wu D, Zheng H, Cai X, Lu J, Jaouen F, Li R. Doped Graphene To Mimic the Bacterial NADH Oxidase for One-Step NAD + Supplementation in Mammals. J Am Chem Soc 2023; 145:3108-3120. [PMID: 36700857 DOI: 10.1021/jacs.2c12336] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical regulator of metabolic networks, and declining levels of its oxidized form, NAD+, are closely associated with numerous diseases. While supplementing cells with precursors needed for NAD+ synthesis has shown poor efficacy in combatting NAD+ decline, an alternative strategy is the development of synthetic materials that catalyze the oxidation of NADH into NAD+, thereby taking over the natural role of the NADH oxidase (NOX) present in bacteria. Herein, we discovered that metal-nitrogen-doped graphene (MNGR) materials can catalyze the oxidation of NADH into NAD+. Among MNGR materials with different transition metals, Fe-, Co-, and Cu-NGR displayed strong catalytic activity combined with >80% conversion of NADH into NAD+, similar specificity to NOX for abstracting hydrogen from the pyridine ring of nicotinamide, and higher selectivity than 51 other nanomaterials. The NOX-like activity of FeNGR functioned well in diverse cell lines. As a proof of concept of the in vivo application, we showed that FeNGR could specifically target the liver and remedy the metabolic flux anomaly in obesity mice with NAD+-deficient cells. Overall, our study provides a distinct insight for exploration of drug candidates by design of synthetic materials to mimic the functions of unique enzymes (e.g., NOX) in bacteria.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jingkun Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Andrea Zitolo
- L'orme des Merisiers, Synchrotron SOLEIL, BP 48 Saint Aubin, Gif-sur-Yvette91192, France
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiangtian Geng
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Frédéric Jaouen
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier34293, France
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou215123, China
| |
Collapse
|
8
|
The Synthesis of Different Series of Cobalt BEA Zeolite Catalysts by Post-Synthesis Methods and Their Characterization. Catalysts 2022. [DOI: 10.3390/catal12121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three series of zeolite catalysts Co all-silica and Co Al-containing zeolites beta were prepared for use in the selective oxidative dehydrogenation of propane to propylene. Two series of zeolite catalysts Co all-silica were prepared by a two-step postsynthesis method at pH = 2.5 and pH = 3.0–9.0, respectively, which allows the incorporation of cobalt into SiBEA zeolite in the form of isolated framework pseudo-tetrahedral Co(II) species. The incorporation of Co ions into vacant T-atom sites and their reaction with silanol groups were demonstrated by NMR and FTIR methods. The generation of Lewis acid sites without the formation of Brønsted sites was proved by FTIR using pyridine and CO as probe molecules. The state of cobalt in three series of prepared and calcined zeolite catalysts was characterized by DR UV-vis. This technique allowed to show that for low Co content (<2 wt.%) cobalt is present in the form of framework pseudo-tetrahedral Co(II) species. For higher Co content (>2 wt.%), both framework pseudo-tetrahedral and extra-framework octahedral Co(II) species are present. The Co Al-containing zeolite beta series prepared on non-dealuminated support shows the presence of extra-framework octahedral Co(II) only.
Collapse
|
9
|
Whitcomb CA, Sviripa A, Schapowal MI, Mamedov K, Unocic RR, Paolucci C, Davis RJ. Mechanistic Insights on the Low-Temperature Oxidation of CO Catalyzed by Isolated Co Ions in N-Doped Carbon. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Colby A. Whitcomb
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Anna Sviripa
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Michael I. Schapowal
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Konstantin Mamedov
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Raymond R. Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Robert J. Davis
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| |
Collapse
|
10
|
Propane dehydrogenation to propylene over Co@N-doped carbon: Structure-activity-selectivity relationships. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Leshchev D, Rakitin M, Luvizotto B, Kadyrov R, Ravel B, Attenkofer K, Stavitski E. The Inner Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for materials research. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1095-1106. [PMID: 35787577 PMCID: PMC9255565 DOI: 10.1107/s160057752200460x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/01/2022] [Indexed: 05/14/2023]
Abstract
The Inner Shell Spectroscopy (ISS) beamline on the 8-ID station at the National Synchrotron Light Source II (NSLS-II), Upton, NY, USA, is a high-throughput X-ray absorption spectroscopy beamline designed for in situ, operando, and time-resolved material characterization using high monochromatic flux and scanning speed. This contribution discusses the technical specifications of the beamline in terms of optics, heat load management, monochromator motion control, and data acquisition and processing. Results of the beamline tests demonstrating the quality of the data obtainable on the instrument, possible energy scanning speeds, as well as long-term beamline stability are shown. The ability to directly control the monochromator trajectory to define the acquisition time for each spectral region is highlighted. Examples of studies performed on the beamline are presented. The paper is concluded with a brief outlook for future developments.
Collapse
Affiliation(s)
- Denis Leshchev
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Maksim Rakitin
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Luvizotto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ruslan Kadyrov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruce Ravel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Material Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Klaus Attenkofer
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
12
|
Howland WC, Gerken JB, Stahl SS, Surendranath Y. Thermal Hydroquinone Oxidation on Co/N-doped Carbon Proceeds by a Band-Mediated Electrochemical Mechanism. J Am Chem Soc 2022; 144:11253-11262. [PMID: 35699525 DOI: 10.1021/jacs.2c02746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular metal complexes catalyze aerobic oxidation reactions via redox cycling at the metal center to effect sequential activation of O2 and the substrate. Metal surfaces can catalyze the same transformations by coupling independent half-reactions for oxygen reduction and substrate oxidation mediated via the exchange of band-electrons. Metal- and nitrogen-doped carbons (MNCs) are promising catalysts for aerobic oxidation that consist of molecule-like active sites embedded in conductive carbon hosts. Owing to their combined molecular and metallic features, it remains unclear whether they catalyze aerobic oxidation via the sequential redox cycling pathways of molecules or band-mediated pathways of metals. Herein, we simultaneously track the potential of the catalyst and the rate of turnover of aerobic hydroquinone oxidation on a cobalt-based MNC catalyst in contact with a carbon electrode. By comparing operando measurements of rate and potential with the current-voltage behavior of each constituent half-reaction under identical conditions, we show that these molecular materials can display the band-mediated reaction mechanisms of extended metallic solids. We show that the action of these band-mediated mechanisms explains the fractional reaction orders in both oxygen and hydroquinone, the time evolution of catalyst potential and rate, and the dependence of rate on the overall reaction free energy. Selective poisoning experiments suggest that oxygen reduction proceeds at cobalt sites, whereas hydroquinone oxidation proceeds at native carbon-oxide defects on the MNC catalyst. These findings highlight that molecule-like active sites can take advantage of band-mediated mechanisms when coupled to conductive hosts.
Collapse
Affiliation(s)
- William C Howland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - James B Gerken
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Wei X, Hu Z, Li C, Zhang Y, Xie X, Wang H, Wu Z. High-density atomically dispersed CoNx catalysts supported on nitrogen-doped mesoporous carbon materials for efficient hydrogenation of nitro compounds. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Zhang Z, Li H, Wu D, Zhang L, Li J, Xu J, Lin S, Datye AK, Xiong H. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Bates JS, Biswas S, Suh SE, Johnson MR, Mondal B, Root TW, Stahl SS. Chemical and Electrochemical O 2 Reduction on Earth-Abundant M-N-C Catalysts and Implications for Mediated Electrolysis. J Am Chem Soc 2022; 144:922-927. [PMID: 34985869 PMCID: PMC8833842 DOI: 10.1021/jacs.1c11126] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
M-N-C catalysts, incorporating non-precious-metal ions (e.g. M = Fe, Co) within a nitrogen-doped carbon support, have been the focus of broad interest for electrochemical O2 reduction and aerobic oxidation reactions. The present study explores the mechanistic relationship between the O2 reduction mechanism under electrochemical and chemical conditions. Chemical O2 reduction is investigated via the aerobic oxidation of a hydroquinone, in which the O-H bonds supply the protons and electrons needed for O2 reduction to water. Mechanistic studies have been conducted to elucidate whether the M-N-C catalyst couples two independent half-reactions (IHR), similar to electrode-mediated processes, or mediates a direct inner-sphere reaction (ISR) between O2 and the organic molecule. Kinetic data support the latter ISR pathway. This conclusion is reinforced by rate/potential correlations that reveal significantly different Tafel slopes, implicating different mechanisms for chemical and electrochemical O2 reduction.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Sourav Biswas
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Drive, Madison, WI 53706, USA,Corresponding Authors: ;
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA,Corresponding Authors: ;
| |
Collapse
|
16
|
Lv H, Guo W, Chen M, Zhou H, Wu Y. Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63888-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Abstract
Cobalt and nitrogen co-doped carbon materials (Co@CN) have recently attracted significant attention as highly efficient noble-metal-free catalysts exhibiting a large application range. In a similar research interest, and taking into account the ever-increasing importance of bioethanol as a renewable raw material, here, we report the results on ethanol dehydrogenation to acetaldehyde over Co@NC catalysts. The catalyst samples were synthesized by a variety of affordable techniques, ensuring generation of various types of Co species incorporated in carbon, such as subnanosized cobalt sites and nano-sized particles of metallic cobalt and cobalt oxides. The catalytic activity was tested under both oxidative and non-oxidative gas-phase conditions at 200–450 °C using a fixed-bed flow reactor. The non-oxidative conditions proved to be much more preferable for the target reaction, competing, however, with ethanol dehydration to ethylene. Under specified reaction conditions, ethanol conversion achieved a level of 66% with 84% selectivity to acetaldehyde at 400 °C. The presence of molecular oxygen in the feed led mainly to deep oxidation of ethanol to COx, giving acetaldehyde in a comparatively low yield. The potential contribution of carbon itself and supported cobalt forms to the observed reaction pathways is discussed.
Collapse
|
18
|
Ni-decorated Fe-/N- co-doped carbon anchored on porous cobalt oxide nanowires arrays for efficient electrocatalytic oxygen evolution. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Wu L, Ren Z, He Y, Yang M, Yu Y, Liu Y, Tan L, Tang Y. Atomically Dispersed Co 2+ Sites Incorporated into a Silicalite-1 Zeolite Framework as a High-Performance and Coking-Resistant Catalyst for Propane Nonoxidative Dehydrogenation to Propylene. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48934-48948. [PMID: 34615351 DOI: 10.1021/acsami.1c15892] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Propane nonoxidative dehydrogenation (PDH) is a promising route to produce propylene with the development of shale gas exploration technology. Co-based catalysts with low cost and low toxicity could activate C-H effectively, but they suffer from deactivation with coke formation. In this work, a catalyst formed by incorporating highly dispersed Co sites into a Silicalite-1 zeolite framework (Co-Silicalite-1) is synthesized by a hydrothermal protocol in the presence of ammonia, which exhibits superior propane dehydrogenation catalytic performance with 0.0946 mmol C3H6·s-1·gCo-1 and propylene selectivity higher than 98.5%. It also shows outstanding catalytic stability and coking resistance in a 3560 min time-on-stream. Combined characterization results demonstrate that the tetrahedrally coordinated Co2+ site serves as the PDH catalytic active site, which is stabilized by Si-O units of the zeolite framework. Incorporation of Co sites into the zeolite framework could avoid the reduction of Co species to metallic Co. Moreover, the catalytic performance is improved by the enhanced propane adsorption and propylene desorption.
Collapse
Affiliation(s)
- Lizhi Wu
- Institute of Molecular Catalysis and In-Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhuangzhuang Ren
- Institute of Molecular Catalysis and In-Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yongsheng He
- Institute of Molecular Catalysis and In-Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Meng Yang
- Institute of Molecular Catalysis and In-Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yunkai Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Yueming Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Li Tan
- Institute of Molecular Catalysis and In-Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Yu Tang
- Institute of Molecular Catalysis and In-Situ/Operando Studies, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
20
|
Mekrattanachai P, Zhu L, Setthaya N, Chindawong C, Song WG. The Highly Effective Cobalt Based Metal–Organic Frameworks Catalyst for One Pot Oxidative Esterification Under Mild Conditions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Ren P, Li Q, Song T, Wang Z, Motokura K, Yang Y. Highly Efficient and Stable Atomically Dispersed Cu Catalyst for Azide‐Alkyne Cycloaddition Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202100831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peng Ren
- CAS Key Laboratory of Bio-Based Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qinglin Li
- CAS Key Laboratory of Bio-Based Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Song
- CAS Key Laboratory of Bio-Based Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Shandong Energy Institute Qingdao 266101 P. R. China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 P. R. China
| | - Zhaozhan Wang
- CAS Key Laboratory of Bio-Based Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Shandong Energy Institute Qingdao 266101 P. R. China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 P. R. China
| | - Ken Motokura
- Department of Chemistry and Life Science Yokohama National University Yokohama 240-8501 Japan
| | - Yong Yang
- CAS Key Laboratory of Bio-Based Materials Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Shandong Energy Institute Qingdao 266101 P. R. China
- Qingdao New Energy Shandong Laboratory Qingdao 266101 P. R. China
| |
Collapse
|
22
|
Cao T, Dai X, Li F, Liu W, Bai Y, Fu Y, Qi W. Efficient Non‐Precious Metal Catalyst for Propane Dehydrogenation: Atomically Dispersed Cobalt‐nitrogen Compounds on Carbon Nanotubes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tianlong Cao
- Department of Chemistry College of Sciences Northeastern University No. 3–11, Wenhua Road Shenyang 110819 P.R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Xueya Dai
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Weijie Liu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Yunli Bai
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Yu Fu
- Department of Chemistry College of Sciences Northeastern University No. 3–11, Wenhua Road Shenyang 110819 P.R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| |
Collapse
|
23
|
Influence of Co on Ethylene Steam Reforming Over Co–Cr–O Spinel Catalysts. Catal Letters 2021. [DOI: 10.1007/s10562-020-03396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Chernov AN, Astrakova TV, Sobolev VI, Koltunov KY. Liquid versus gas phase dehydrogenation of formic acid over Co@N-doped carbon materials. The role of single atomic sites. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Guo P, Liao S, Wang S, Shi J, Tong X. Highly efficient and selectivity-controllable aerobic oxidative cleavage of C-C bond over heterogeneous Fe-based catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev 2021; 50:3315-3354. [DOI: 10.1039/d0cs00814a] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes recent advances in the propane dehydrogenation process in terms of emerging technologies, catalyst development and new chemistry.
Collapse
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Tingting Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
27
|
Gupta SSR, Lakshmi Kantam M. Finely dispersed CuO on nitrogen-doped carbon hollow nanospheres for selective oxidation of sp 3 C–H bonds. NEW J CHEM 2021. [DOI: 10.1039/d1nj02406j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective oxidation of sp3 C–H bonds has been demonstrated using a novel nanocomposite, CuO/N-C-HNSs, as the catalyst.
Collapse
Affiliation(s)
- Shyam Sunder R. Gupta
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai – 400019, Maharashtra, India
| | - Mannepalli Lakshmi Kantam
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai – 400019, Maharashtra, India
| |
Collapse
|
28
|
Luo Z, Whitcomb CA, Kaylor N, Zhang Y, Zhang S, Davis RJ, Gunnoe TB. Oxidative Alkenylation of Arenes Using Supported Rh Materials: Evidence that Active Catalysts are Formed by Rh Leaching. ChemCatChem 2020. [DOI: 10.1002/cctc.202001526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhongwen Luo
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Colby A. Whitcomb
- Department of Chemical Engineering University of Virginia Charlottesville VA 22904 USA
| | - Nicholas Kaylor
- Department of Chemical Engineering University of Virginia Charlottesville VA 22904 USA
- Southwest Research Institute San Antonio TX 78238 USA
| | - Yulu Zhang
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Sen Zhang
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Robert J. Davis
- Department of Chemical Engineering University of Virginia Charlottesville VA 22904 USA
| | - T. Brent Gunnoe
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
29
|
Liu H, Ding N, Wei J, Tang X, Zeng X, Sun Y, Lei T, Fang H, Li T, Lin L. Oxidative Esterification of 5-Hydroxymethylfurfural with an N-doped Carbon-supported CoCu Bimetallic Catalyst. CHEMSUSCHEM 2020; 13:4151-4158. [PMID: 32449610 DOI: 10.1002/cssc.202000537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 06/11/2023]
Abstract
The direct fabrication of furan-2,5-dimethylcarboxylate (FDMC), a promising renewable monomer, from biomass-derived 5-hydroxymethylfurfural (HMF) is a cutting-edge process. In this contribution, an elaborately designed N-doped carbon-supported CoCu bimetallic catalyst (Cox Cuy -NC; x/y=9:1, 7:3, 4:6, which represents the designed molar ratio of Co and Cu in the catalyst), which could offer a desirable FDMC yield of 95 % under mild and base-free conditions (Co7 Cu3 -NC, 2 bar O2 , 80 °C, 4 h) is described for the oxidative esterification of HMF. Notably, an FDMC formation rate of 6.1 molFDMC molCo -1 h-1 was achieved over Co7 Cu3 -NC, which represents the highest catalytic efficiency so far among Co-based catalytic systems. It has been demonstrated that Cu-doping in Co7 Cu3 -NC catalyst brings about more active sites (Co-Nx species) with stronger molecular oxygen activation ability. The increase of surface N content of Co7 Cu3 -NC also improves basicity of the catalyst, which favors the hydrogen abstraction process during the HMF oxidative esterification reaction. These findings may pave an efficient and green way for the synthesis of sustainable bio-based polymer monomers.
Collapse
Affiliation(s)
- Huai Liu
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Ning Ding
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Junnan Wei
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361005, Fujian, P. R. China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361005, Fujian, P. R. China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361005, Fujian, P. R. China
| | - Tingzhou Lei
- Henan Key Lab of Biomass Energy, Huayuan Road 29, Zhengzhou, Henan, 450008, P. R. China
| | - Huayu Fang
- Fujian Huafeng New Materials Co., Ltd., Putian, 351152, Fujian, P. R. China
| | - Tianyuan Li
- Fujian Huafeng New Materials Co., Ltd., Putian, 351152, Fujian, P. R. China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, P. R. China
- Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen, 361005, Fujian, P. R. China
| |
Collapse
|
30
|
Qin R, Liu K, Wu Q, Zheng N. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem Rev 2020; 120:11810-11899. [DOI: 10.1021/acs.chemrev.0c00094] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
31
|
Guo X, Gu J, Hu X, Zhang S, Chen Z, Huang S. Coordination tailoring towards efficient single-atom catalysts for N2 fixation: A case study of iron-nitrogen-carbon (Fe@N-C) systems. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Mohammadi-rad N, Esrafili MD, Sardroodi JJ. CuN3 doped graphene as an active electrocatalyst for oxygen reduction reaction in fuel cells: A DFT study. J Mol Graph Model 2020; 96:107537. [DOI: 10.1016/j.jmgm.2020.107537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/01/2022]
|
33
|
Facile mechanochemical synthesis of Co@NC catalysts for oxidative esterification of benzyl alcohol with methanol. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Chen J, Zhang Y, Zhu D, Li T. Selective oxidation of alcohols by porphyrin‐based porous polymer‐supported manganese heterogeneous catalysts. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jian Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, School of Chemistry and Chemical EngineeringHuanggang Normal University Number 146, Xingang 2 Road Huanggang City 438000 Hubei Province China
- Hubei Key Laboratory of Material Chemistry and Service Failure; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Number 1073, Luoyu Road Wuhan 430074 Hubei Province China
| | - Yan Zhang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, School of Chemistry and Chemical EngineeringHuanggang Normal University Number 146, Xingang 2 Road Huanggang City 438000 Hubei Province China
| | - Dajian Zhu
- Hubei Key Laboratory of Material Chemistry and Service Failure; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Number 1073, Luoyu Road Wuhan 430074 Hubei Province China
| | - Tao Li
- Hubei Key Laboratory of Material Chemistry and Service Failure; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Number 1073, Luoyu Road Wuhan 430074 Hubei Province China
| |
Collapse
|
35
|
Atomic Layer Deposition for Preparing Isolated Co Sites on SiO 2 for Ethane Dehydrogenation Catalysis. NANOMATERIALS 2020; 10:nano10020244. [PMID: 32019069 PMCID: PMC7075116 DOI: 10.3390/nano10020244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
Abstract
Unlike Co clusters, isolated Co atoms have been shown to be selective for catalytic dehydrogenation of ethane to ethylene; however, preparation of isolated Co sites requires special preparation procedures. Here, we demonstrate that Atomic Layer Deposition (ALD) of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)cobalt(III) (Co(TMHD)3) on silica and other supports is effective in producing these isolated species. Silica-supported catalysts prepared with one ALD cycle showed ethylene selectivities greater than 96% at 923 K and were stable when CO2 was co-fed with the ethane. Co catalysts prepared by impregnation formed clusters that were significantly less active, selective, and stable. Rates and selectivities also decreased for catalysts with multiple ALD cycles. Isolated Co catalysts prepared on Al2O3 and MgAl2O4 showed reasonable selectivity for ethane dehydrogenation but were not as effective as their silica counterpart.
Collapse
|
36
|
Liu Y, Du S, Cao J, Huang W, Zhang X, Qi B, Zhang S. Simultaneous Determination of Hydroquinone and Catechol by N‐doped Porous Biochar‐modified Electrode. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yue‐Xin Liu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, College of Chemistry and Environmental EngineeringHubei Minzu University Enshi 445000 China
| | - Shi‐Man Du
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, College of Chemistry and Environmental EngineeringHubei Minzu University Enshi 445000 China
| | - Jie Cao
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, College of Chemistry and Environmental EngineeringHubei Minzu University Enshi 445000 China
| | - Wen‐sheng Huang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, College of Chemistry and Environmental EngineeringHubei Minzu University Enshi 445000 China
| | - Xiao‐Ru Zhang
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical AnalysisQingdao University of Science and Technology Qingdao 266042 China
| | - Bao‐Ping Qi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, College of Chemistry and Environmental EngineeringHubei Minzu University Enshi 445000 China
| | - Sheng‐Hui Zhang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, College of Chemistry and Environmental EngineeringHubei Minzu University Enshi 445000 China
| |
Collapse
|
37
|
Xi J, Wei G, An L, Xu Z, Xu Z, Fan L, Gao L. Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy. NANO LETTERS 2019; 19:7645-7654. [PMID: 31580681 DOI: 10.1021/acs.nanolett.9b02242] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-carbon hybrid materials have shown promise as potential enzyme mimetics for antibacterial therapy; however, the effects of metal states and corresponding antibacterial mechanisms are largely unknown. Here, two kinds of copper/carbon nanozymes were designed, with tuned copper states from Cu0 to Cu2+. Results revealed that the copper/carbon nanozymes exhibited copper state-dependent peroxidase-, catalase-, and superoxide dismutase-like activities. Furthermore, the antibacterial activities were also primarily determined by the copper state. The different antibacterial mechanisms of these two copper/carbon nanozymes were also proposed. For the CuO-modified copper/carbon nanozymes, the released Cu2+ caused membrane damage, lipid peroxidation, and DNA degradation of Gram-negative bacteria, whereas, for Cu-modified copper/carbon nanozymes, the generation of reactive oxygen species (ROS) via peroxidase-like catalytic reactions was the determining factor against both Gram-positive and Gram-negative bacteria. Lastly, we established two bacterially infected animal models, i.e., bacteria-infected enteritis and wound healing, to confirm the antibacterial ability of the copper/carbon nanozymes. Our findings provide a deeper understanding of metal state-dependent enzyme-like and antibacterial activities and highlight a new approach for designing novel and selective antibacterial therapies based on metal-carbon nanozymes.
Collapse
Affiliation(s)
- Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
- College of Veterinary Medicine , Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , China
| | - Gen Wei
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
| | - Lanfang An
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
| | - Zhuobin Xu
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Lei Fan
- School of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou , Jiangsu 225002 , China
| | - Lizeng Gao
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine , Yangzhou University , Yangzhou , Jiangsu 225001 , China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases , Yangzhou , Jiangsu 225001 , China
| |
Collapse
|
38
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
39
|
Huang K, Fu H, Shi W, Wang H, Cao Y, Yang G, Peng F, Wang Q, Liu Z, Zhang B, Yu H. Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co N C. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Bates JS, Bukowski BC, Harris JW, Greeley J, Gounder R. Distinct Catalytic Reactivity of Sn Substituted in Framework Locations and at Defect Grain Boundaries in Sn-Zeolites. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01123] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jason S. Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brandon C. Bukowski
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - James W. Harris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Bi-functional catalyst of porous N-doped carbon with bimetallic FeCu for solvent-free resultant imines and hydrogenation of nitroarenes. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.12.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Fabrication of Co/P25 coated with thin nitrogen-doped carbon shells (Co/P25/NC) as an efficient electrocatalyst for oxygen reduction reaction (ORR). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Mitchell S, Vorobyeva E, Pérez‐Ramírez J. The Multifaceted Reactivity of Single‐Atom Heterogeneous Catalysts. Angew Chem Int Ed Engl 2018; 57:15316-15329. [DOI: 10.1002/anie.201806936] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Sharon Mitchell
- ETH ZurichDepartment of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Evgeniya Vorobyeva
- ETH ZurichDepartment of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Javier Pérez‐Ramírez
- ETH ZurichDepartment of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
44
|
Mitchell S, Vorobyeva E, Pérez‐Ramírez J. Die facettenreiche Reaktivität heterogener Einzelatom‐Katalysatoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806936] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sharon Mitchell
- ETH ZurichDepartment of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering Vladimir-Prelog-Weg 1 8093 Zurich Schweiz
| | - Evgeniya Vorobyeva
- ETH ZurichDepartment of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering Vladimir-Prelog-Weg 1 8093 Zurich Schweiz
| | - Javier Pérez‐Ramírez
- ETH ZurichDepartment of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering Vladimir-Prelog-Weg 1 8093 Zurich Schweiz
| |
Collapse
|
45
|
Affiliation(s)
- Robert Davis
- Dept. of Chemical Engineering University of Virginia Charlottesville VA 22904
| |
Collapse
|