1
|
Yin L, Ding Y, Li Y, Liu C, Zhao Z, Ning H, Zhang P, Li F, Sun L, Li F. A Mechanistic Insight into the Acidic-stable MnSb 2O 6 for Electrocatalytic Water Oxidation. CHEMSUSCHEM 2025; 18:e202400623. [PMID: 38997233 DOI: 10.1002/cssc.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
The abundant, active, and acidic-stable catalysts for the oxygen evolution reaction (OER) are rare to proton exchange membrane-based water electrolysis. Mn-based materials show promise as electrocatalysts for OER in acid electrolytes. However, the relationship between the stability, activity and structure of Mn-based catalysts in acidic environments remains unclear. In this study, phase-pure MnSb2O6 was successfully prepared and investigated as a catalyst for OER in a sulfuric acid solution (pH of 2.0). A comprehensive mechanistic comparison between MnSb2O6 and Mn3O4 revealed that the rate-determining step for OER on MnSb2O6 is the direct formation of MnIV=O from MnII-H2O by the 2H+/2e- process. This process avoids the rearrangement of adjacent MnIII intermediates, leading to outstanding stability and activity.
Collapse
Affiliation(s)
- Li Yin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Yingzheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Ning
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310024, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Liu T, Chen C, Pu Z, Huang Q, Zhang X, Al-Enizi AM, Nafady A, Huang S, Chen D, Mu S. Non-Noble-Metal-Based Electrocatalysts for Acidic Oxygen Evolution Reaction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405399. [PMID: 39183523 DOI: 10.1002/smll.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.
Collapse
Affiliation(s)
- Tingting Liu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chen Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zonghua Pu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, 341000, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
3
|
Han C, Wang T. Understanding the catalytic performances of metal-doped Ta 2O 5 catalysts for acidic oxygen evolution reaction with computations. Chem Sci 2024:d4sc03554b. [PMID: 39165725 PMCID: PMC11331345 DOI: 10.1039/d4sc03554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
The design of stable and active alternative catalysts to iridium oxide for the anodic oxygen evolution reaction (OER) has been a long pursuit in acidic water splitting. Tantalum pentoxide (Ta2O5) has the merit of great acidic stability but poor OER performance, yet strategies to improve its intrinsic OER activity are highly desirable. Herein, by using density functional theory (DFT) calculations combined with aqueous stability assessment from surface Pourbaix diagrams, we systematically evaluated the OER activity and acidic stability of 14 different metal-doped Ta2O5 catalysts. Apart from the experimentally reported Ir-doped Ta2O5, we computationally identified Ru- and Nb-doped Ta2O5 catalysts as another two candidates with reasonably high stability and activity in acidic OER. Our study also underscores the essence of considering stable surface states of catalysts under working conditions before a reasonable activity trend can be computationally achieved.
Collapse
Affiliation(s)
- Congcong Han
- Department of Chemistry, Zhejiang University Hangzhou 310058 Zhejiang Province China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou 310030 Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 Zhejiang Province China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd Hangzhou 310000 Zhejiang China
| |
Collapse
|
4
|
Dowling J, Ifkovits ZP, Carim AI, Evans JM, Swint MC, Ye AZ, Richter MH, Li AX, Lewis NS. Catalysis of the Oxygen-Evolution Reaction in 1.0 M Sulfuric Acid by Manganese Antimonate Films Synthesized via Chemical Vapor Deposition. ACS APPLIED ENERGY MATERIALS 2024; 7:4288-4293. [PMID: 38817848 PMCID: PMC11134315 DOI: 10.1021/acsaem.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024]
Abstract
Manganese antimonate (MnySb1-yOx) electrocatalysts for the oxygen-evolution reaction (OER) were synthesized via chemical vapor deposition. Mn-rich rutile Mn0.63Sb0.37Ox catalysts on fluorine-doped tin oxide (FTO) supports drove the OER for 168 h (7 days) at 10 mA cm-2 with a time-averaged overpotential of 687 ± 9 mV and with >97% Faradaic efficiency. Time-dependent anolyte composition analysis revealed the steady dissolution of Mn and Sb. Extended durability analysis confirmed that Mn-rich MnySb1-yOx materials are more active but dissolve at a faster rate than previously reported Sb-rich MnySb1-yOx alloys.
Collapse
Affiliation(s)
- Jacqueline
A. Dowling
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Zachary P. Ifkovits
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Azhar I. Carim
- Division
of Chemistry and Chemical Engineering and Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jake M. Evans
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Madeleine C. Swint
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Alexandre Z. Ye
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Matthias H. Richter
- Division
of Engineering and Applied Sciences, California
Institute of Technology, Pasadena, California 91125, United States
| | - Anna X. Li
- Division
of Engineering and Applied Sciences, California
Institute of Technology, Pasadena, California 91125, United States
| | - Nathan S. Lewis
- Division
of Chemistry and Chemical Engineering and Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Zhao H, Zhu L, Yin J, Jin J, Du X, Tan L, Peng Y, Xi P, Yan CH. Stabilizing Lattice Oxygen through Mn Doping in NiCo 2O 4-δ Spinel Electrocatalysts for Efficient and Durable Acid Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202402171. [PMID: 38494450 DOI: 10.1002/anie.202402171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Design the electrocatalysts without noble metal is still a challenge for oxygen evolution reaction (OER) in acid media. Herein, we reported the manganese (Mn) doping method to decrease the concentration of oxygen vacancy (VO) and form the Mn-O structure adjacent octahedral sites in spinel NiCo2O4-δ (NiMn1.5Co3O4-δ), which highly enhanced the activity and stability of spinel NiCo2O4-δ with a low overpotential (η) of 280 mV at j=10 mA cm-2 and long-term stability of 80 h in acid media. The isotopic labelling experiment based on differential electrochemical mass spectrometry (DEMS) clearly demonstrated the lattice oxygen in NiMn1.5Co3O4-δ is more stable due to strong Mn-O bond and shows synergetic adsorbate evolution mechanism (SAEM) for acid OER. Density functional theory (DFT) calculations reveal highly increased oxygen vacancy formation energy (EVO) of NiCo2O4-δ after Mn doping. More importantly, the highly hydrogen bonding between Mn-O and *OOH adsorbed on adjacent Co octahedral sites promote the formation of *OO from *OOH due to the greatly enhanced charge density of O in Mn substituted sites.
Collapse
Affiliation(s)
- Hongyu Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Liu Zhu
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Tan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yong Peng
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University. The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Tang J, Su C, Shao Z. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. EXPLORATION (BEIJING, CHINA) 2024; 4:20220112. [PMID: 38854490 PMCID: PMC10867400 DOI: 10.1002/exp.20220112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 06/11/2024]
Abstract
Researchers have been seeking for the most technically-economical water electrolysis technology for entering the next-stage of industrial amplification for large-scale green hydrogen production. Various membrane-based electrolyzers have been developed to improve electric-efficiency, reduce the use of precious metals, enhance stability, and possibly realize direct seawater electrolysis. While electrode engineering is the key to approaching these goals by bridging the gap between catalysts design and electrolyzers development, nevertheless, as an emerging field, has not yet been systematically analyzed. Herein, this review is organized to comprehensively discuss the recent progresses of electrode engineering that have been made toward advanced membrane-based electrolyzers. For the commercialized or near-commercialized membrane electrolyzer technologies, the electrode material design principles are interpreted and the interface engineering that have been put forward to improve catalytic sites utilization and reduce precious metal loading is summarized. Given the pressing issues of electrolyzer cost reduction and efficiency improvement, the electrode structure engineering toward applying precious metal free electrocatalysts is highlighted and sufficient accessible sites within the thick catalyst layers with rational electrode architectures and effective ions/mass transport interfaces are enabled. In addition, this review also discusses the innovative ways as proposed to break the barriers of current membrane electrolyzers, including the adjustments of electrode reaction environment, and the feasible cell-voltage-breakdown strategies for durable direct seawater electrolysis. Hopefully, this review may provide insightful information of membrane-based electrode engineering and inspire the future development of advanced membrane electrolyzer technologies for cost-effective green hydrogen production.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| | - Chao Su
- School of Energy and PowerJiangsu University of Science and TechnologyZhenjiangChina
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
7
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
8
|
Adak M, Basak HK, Chakraborty B. Ease of Electrochemical Arsenate Dissolution from FeAsO 4 Microparticles during Alkaline Oxygen Evolution Reaction. ACS ORGANIC & INORGANIC AU 2023; 3:223-232. [PMID: 37545654 PMCID: PMC10401858 DOI: 10.1021/acsorginorgau.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023]
Abstract
Transition metal-based ABO4-type materials have now been paid significant attention due to their excellent electrochemical activity. However, a detailed study to understand the active species and its electro-evolution pathway is not traditionally performed. Herein, FeAsO4, a bimetallic ABO4-type oxide, has been prepared solvothermally. In-depth microscopic and spectroscopic studies showed that the as-synthesized cocoon-like FeAsO4 microparticles consist of several small individual nanocrystals with a mixture of monoclinic and triclinic phases. While depositing FeAsO4 on three-dimensional nickel foam (NF), it can show oxygen evolution reaction (OER) in a moderate operating potential. During the electrochemical activation of the FeAsO4/NF anode through cyclic voltammetric (CV) cycles prior to the OER study, an exponential increment in the current density (j) was observed. An ex situ Raman study with the electrode along with field emission scanning electron microscopy imaging showed that the pronounced OER activity with increasing number of CV cycles is associated with a rigorous morphological and chemical change, which is followed by [AsO4]3- leaching from FeAsO4. A chronoamperometric study and subsequent spectro- and microscopic analyses of the isolated sample from the electrode show an amorphous γ-FeO(OH) formation at the constant potential condition. The in situ formation of FeO(OH)ED (ED indicates electrochemically derived) shows better activity compared to pristine FeAsO4 and independently prepared FeO(OH). Tafel, impedance spectroscopic study, and determination of electrochemical surface area have inferred that the in situ formed FeO(OH)ED shows better electro-kinetics and possesses higher surface active sites compared to its parent FeAsO4. In this study, the electrochemical activity of FeAsO4 has been correlated with its structural integrity and unravels its electro-activation pathway by characterizing the active species for OER.
Collapse
|
9
|
Bornet A, Pittkowski R, Nielsen TM, Berner E, Maletzko A, Schröder J, Quinson J, Melke J, Jensen KMØ, Arenz M. Influence of Temperature on the Performance of Carbon- and ATO-supported Oxygen Evolution Reaction Catalysts in a Gas Diffusion Electrode Setup. ACS Catal 2023; 13:7568-7577. [PMID: 37288094 PMCID: PMC10242686 DOI: 10.1021/acscatal.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Indexed: 06/09/2023]
Abstract
State-of-the-art industrial electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions are Ir-based. Considering the scarce supply of Ir, it is imperative to use the precious metal as efficiently as possible. In this work, we immobilized ultrasmall Ir and Ir0.4Ru0.6 nanoparticles on two different supports to maximize their dispersion. One high-surface-area carbon support serves as a reference but has limited technological relevance due to its lack of stability. The other support, antimony-doped tin oxide (ATO), has been proposed in the literature as a possible better support for OER catalysts. Temperature-dependent measurements performed in a recently developed gas diffusion electrode (GDE) setup reveal that surprisingly the catalysts immobilized on commercial ATO performed worse than their carbon-immobilized counterparts. The measurements suggest that the ATO support deteriorates particularly fast at elevated temperatures.
Collapse
Affiliation(s)
- Aline Bornet
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rebecca Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tobias M. Nielsen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Etienne Berner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Annabelle Maletzko
- Department
for Applied Electrochemistry, Fraunhofer-Institute
for Chemical Technology ICT, Joseph-von-Fraunhofer Strasse 7, 76327 Pfinztal, Germany
| | - Johanna Schröder
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jonathan Quinson
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Biochemical
and Chemical Engineering Department, Aarhus
University, Åbogade 40, 8200 Aarhus, Denmark
| | - Julia Melke
- Department
for Applied Electrochemistry, Fraunhofer-Institute
for Chemical Technology ICT, Joseph-von-Fraunhofer Strasse 7, 76327 Pfinztal, Germany
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Matthias Arenz
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Statt MJ, Rohr BA, Guevarra D, Suram SK, Morrell TE, Gregoire JM. The Materials Provenance Store. Sci Data 2023; 10:184. [PMID: 37024515 PMCID: PMC10079965 DOI: 10.1038/s41597-023-02107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
We present a database resulting from high throughput experimentation, primarily on metal oxide solid state materials. The central relational database, the Materials Provenance Store (MPS), manages the metadata and experimental provenance from acquisition of raw materials, through synthesis, to a broad range of materials characterization techniques. Given the primary research goal of materials discovery of solar fuels materials, many of the characterization experiments involve electrochemistry, along with optical, structural, and compositional characterizations. The MPS is populated with all information required for executing common data queries, which typically do not involve direct query of raw data. The result is a database file that can be distributed to users so that they can independently execute queries and subsequently download the data of interest. We propose this strategy as an approach to manage the highly heterogeneous and distributed data that arises from materials science experiments, as demonstrated by the management of over 30 million experiments run on over 12 million samples in the present MPS release.
Collapse
Affiliation(s)
| | | | - Dan Guevarra
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
- Liquid Sunlight Alliance, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Thomas E Morrell
- Caltech Library, California Institute of Technology, Pasadena, CA, 91125, USA
| | - John M Gregoire
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA.
- Liquid Sunlight Alliance, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
11
|
Mahidashti Z, Rezaei M, Borrelli M, Shaygan Nia A. Insight into the stability mechanism of nickel and manganese antimonate catalytic films during the oxygen evolution reaction in acidic media. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Babaei A, Rezaei M. Development of a highly stable and active non-precious anode electrocatalyst for oxygen evolution reaction in acidic medium based on nickel and cobalt-containing antimony oxide. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
13
|
Kreider ME, Kamat GA, Zamora Zeledón JA, Wei L, Sokaras D, Gallo A, Stevens MB, Jaramillo TF. Understanding the Stability of Manganese Chromium Antimonate Electrocatalysts through Multimodal In Situ and Operando Measurements. J Am Chem Soc 2022; 144:22549-22561. [PMID: 36453840 DOI: 10.1021/jacs.2c08600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Improving electrocatalyst stability is critical for the development of electrocatalytic devices. Herein, we utilize an on-line electrochemical flow cell coupled with an inductively coupled plasma-mass spectrometer (ICP-MS) to characterize the impact of composition and reactant gas on the multielement dissolution of Mn(-Cr)-Sb-O electrocatalysts. Compared to Mn2O3 and Cr2O3 oxides, the antimonate framework stabilizes Mn at OER potentials and Cr at both ORR and OER potentials. Furthermore, dissolution of Mn and Cr from Mn(-Cr) -Sb-O is driven by the ORR reaction rate, with minimal dissolution under N2. We observe preferential dissolution of Cr totaling 13% over 10 min at 0.3, 0.6, and 0.9 V vs RHE, with only 1.5% loss of Mn, indicating an enrichment of Mn at the surface of the particles. Despite this asymmetric dissolution, operando X-ray absorption spectroscopy (XAS) showed no measurable changes in the Mn K-edge at comparable potentials. This could suggest that modification to the Mn oxidation state and/or phase in the surface layer is too small or that the layer is too thin to be measured with the bulk XAS measurement. Lastly, on-line ICP-MS was used to assess the effects of applied potential, scan rate, and current on Mn-Cr-Sb-O during cyclic voltammetry and accelerated stress tests. With this deeper understanding of the interplay between oxygen reduction and dissolution, testing procedures were identified to maximize both activity and stability. This work highlights the use of multimodal in situ characterization techniques in tandem to build a more complete model of stability and develop protocols for optimizing catalyst performance.
Collapse
Affiliation(s)
- Melissa E Kreider
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Gaurav A Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lingze Wei
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
14
|
Zhu S, Liu D, Lv L, Le J, Zhou Y, Li J, Kuang Y. Charged matrix stabilized cobalt oxide electrocatalyst with extraordinary oxygen evolution performance at pH 7. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
16
|
Simondson D, Chatti M, Gardiner JL, Kerr BV, Hoogeveen DA, Cherepanov PV, Kuschnerus IC, Nguyen TD, Johannessen B, Chang SLY, MacFarlane DR, Hocking RK, Simonov AN. Mixed Silver–Bismuth Oxides: A Robust Oxygen Evolution Catalyst Operating at Low pH and Elevated Temperatures. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Darcy Simondson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Manjunath Chatti
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - James L. Gardiner
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Brittany V. Kerr
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia
| | - Dijon A. Hoogeveen
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | | | - Inga C. Kuschnerus
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Tam D. Nguyen
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | | | - Shery L. Y. Chang
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | | | - Rosalie K. Hocking
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia
| | | |
Collapse
|
17
|
Feng M, Huang J, Peng Y, Huang C, Yue X, Huang S. Tuning Electronic Structures of Transition Metal Carbides to Boost Oxygen Evolution Reactions in Acidic Medium. ACS NANO 2022; 16:13834-13844. [PMID: 35997614 DOI: 10.1021/acsnano.2c02099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing low-cost, efficient, and robust nonprecious metal electrocatalysts for oxygen evolution reactions (OER) in acidic medium is the major challenge to realize the application of the proton exchange membrane water electrolyzer (PEM-WE). It is well-known that transition metal carbides (TMCs) have Pt-like electronic structures and catalytic behaviors. However, monometallic carbides in acidic medium show ignored OER activities. Herein, we reported that the catalytic activity of the TMCs can be enhanced by constructing bimetallic carbides (TiTaC2) fabricated through hydrothermal treatment followed by an annealing process, and further by doping fluorine (F) into the bimetallic carbides (TiTaFxC2). The as-prepared reduced graphene oxide (rGO) supported TiTaFxC2 nanoparticles (TiTaFxC2 NP/rGO) show state-of-the-art OER catalytic activity, which is even superior to Ir/C catalyst (an onset potential of only 1.42 V vs RHE and the overpotential of 490 mV to reach 100 mA cm-2), fast kinetics (Tafel slope of only 36 mV dec-1), and high durability (maintaining the current density at 1.60 V vs RHE for 40 h). Detailed structural characterizations together with density functional theory (DFT) calculations reveal that the electronic structures of the bimetallic carbides have been tuned, and their possible mechanism is also discussed.
Collapse
Affiliation(s)
- Min Feng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jingle Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yang Peng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Churong Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
18
|
Kreider ME, Gunasooriya GTKK, Liu Y, Zamora Zeledón JA, Valle E, Zhou C, Montoya JH, Gallo A, Sinclair R, Nørskov JK, Stevens MB, Jaramillo TF. Strategies for Modulating the Catalytic Activity and Selectivity of Manganese Antimonates for the Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melissa E. Kreider
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Yunzhi Liu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - José A. Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eduardo Valle
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Chengshuang Zhou
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Joseph H. Montoya
- Toyota Research Institute, Los Altos, California 94022, United States
| | - Alessandro Gallo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Jens K. Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F. Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
19
|
Sustainable oxygen evolution electrocatalysis in aqueous 1 M H 2SO 4 with earth abundant nanostructured Co 3O 4. Nat Commun 2022; 13:4341. [PMID: 35896541 PMCID: PMC9329283 DOI: 10.1038/s41467-022-32024-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen evolution is preferred. Only noble-metal catalysts, such as IrO2, are fast and stable enough in acidic media. Herein, we report the excellent activity and long-term stability of Co3O4-based anodes in 1 M H2SO4 (pH 0.1) when processed in a partially hydrophobic carbon-based protecting matrix. These Co3O4@C composites reliably drive O2 evolution a 10 mA cm-2 current density for >40 h without appearance of performance fatigue, successfully passing benchmarking protocols without incorporating noble metals. Our strategy opens an alternative venue towards fast, energy efficient acid-media water oxidation electrodes.
Collapse
|
20
|
|
21
|
Pan S, Li H, Liu D, Huang R, Pan X, Ren D, Li J, Shakouri M, Zhang Q, Wang M, Wei C, Mai L, Zhang B, Zhao Y, Wang Z, Graetzel M, Zhang X. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nat Commun 2022; 13:2294. [PMID: 35484271 PMCID: PMC9050677 DOI: 10.1038/s41467-022-30064-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Developing non-noble catalysts with superior activity and durability for oxygen evolution reaction (OER) in acidic media is paramount for hydrogen production from water. Still, challenges remain due to the inadequate activity and stability of the OER catalyst. Here, we report a cost-effective and stable manganese oxybromide (Mn7.5O10Br3) catalyst exhibiting an excellent OER activity in acidic electrolytes, with an overpotential of as low as 295 ± 5 mV at a current density of 10 mA cm−2. Mn7.5O10Br3 maintains good stability under operating conditions for at least 500 h. In situ Raman spectroscopy, X ray absorption near edge spectroscopy, and density functional theory calculations confirm that a self-oxidized surface with enhanced electronic transmission capacity forms on Mn7.5O10Br3 and is responsible for both the high catalytic activity and long-term stability during catalysis. The development of Mn7.5O10Br3 as an OER catalyst provides crucial insights into the design of non-noble metal electrocatalysts for water oxidation. While acidic water splitting offers a renewable means to obtain renewable hydrogen fuel, the catalysts needed to oxidize water often require expensive noble metals. Here, authors show manganese oxyhalides as acidic oxygen evolution electrocatalysts.
Collapse
Affiliation(s)
- Sanjiang Pan
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin, 300350, PR China.,Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, PR China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, PR China.,Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Dan Liu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Rui Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China
| | - Xuelei Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, PR China
| | - Dan Ren
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Jun Li
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Mohsen Shakouri
- Canadian Light Source, Inc. (CLSI), Saskatoon, Saskatchewan, Canada
| | - Qixing Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin, 300350, PR China.,Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, PR China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, PR China.,Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Manjing Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin, 300350, PR China.,Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, PR China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, PR China.,Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Changchun Wei
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin, 300350, PR China.,Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, PR China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, PR China.,Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, PR China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, PR China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin, 300350, PR China.,Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, PR China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, PR China.,Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| | - Zhenbin Wang
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Lyngby, 2800, Denmark.
| | - Michael Graetzel
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin, 300350, PR China. .,Laboratory of Photonics and Interfaces, Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland.
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, Solar Energy Research Center, Nankai University, Tianjin, 300350, PR China. .,Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin, 300350, PR China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, PR China. .,Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin, 300350, PR China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China.
| |
Collapse
|
22
|
Gunasooriya GTKK, Kreider ME, Liu Y, Zamora Zeledón JA, Wang Z, Valle E, Yang AC, Gallo A, Sinclair R, Stevens MB, Jaramillo TF, Nørskov JK. First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS NANO 2022; 16:6334-6348. [PMID: 35377139 DOI: 10.1021/acsnano.2c00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of inexpensive and abundant catalysts with high activity, selectivity, and stability for the oxygen reduction reaction (ORR) is imperative for the widespread implementation of fuel cell devices. Herein, we present a combined theoretical-experimental approach to discover and design first-row transition metal antimonates as excellent electrocatalytic materials for the ORR. Theoretically, we identify first-row transition metal antimonates─MSb2O6, where M = Mn, Fe, Co, and Ni─as nonprecious metal catalysts with good oxygen binding energetics, conductivity, thermodynamic phase stability, and aqueous stability. Among the considered antimonates, MnSb2O6 shows the highest theoretical ORR activity based on the 4e- ORR kinetic volcano. Experimentally, nanoparticulate transition metal antimonate catalysts are found to have a minimum of a 2.5-fold enhancement in intrinsic mass activity (on transition metal mass basis) relative to the corresponding transition metal oxide at 0.7 V vs RHE in 0.1 M KOH. MnSb2O6 is the most active catalyst under these conditions, with a 3.5-fold enhancement on a per Mn mass activity basis and 25-fold enhancement on a surface area basis over its antimony-free counterpart. Electrocatalytic and material stability are demonstrated over a 5 h chronopotentiometry experiment in the stability window identified by theoretical Pourbaix analysis. This study further highlights the stable and electrically conductive antimonate structure as a framework to tune the activity and selectivity of nonprecious metal oxide active sites for ORR catalysis.
Collapse
Affiliation(s)
| | - Melissa E Kreider
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yunzhi Liu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Zhenbin Wang
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eduardo Valle
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - An-Chih Yang
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alessandro Gallo
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Michaela Burke Stevens
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 via Ortega, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jens K Nørskov
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Hou Y, Lv J, Quan W, Lin Y, Hong Z, Huang Y. Strategies for Electrochemically Sustainable H 2 Production in Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104916. [PMID: 35018743 PMCID: PMC8895139 DOI: 10.1002/advs.202104916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Acidified water electrolysis with fast kinetics is widely regarded as a promising option for producing H2 . The main challenge of this technique is the difficulty in realizing sustainable H2 production (SHP) because of the poor stability of most electrode catalysts, especially on the anode side, under strongly acidic and highly polarized electrochemical environments, which leads to surface corrosion and performance degradation. Research efforts focused on tuning the atomic/nano structures of catalysts have been made to address this stability issue, with only limited effectiveness because of inevitable catalyst degradation. A systems approach considering reaction types and system configurations/operations may provide innovative viewpoints and strategies for SHP, although these aspects have been overlooked thus far. This review provides an overview of acidified water electrolysis for systematic investigations of these aspects to achieve SHP. First, the fundamental principles of SHP are discussed. Then, recent advances on design of stable electrode materials are examined, and several new strategies for SHP are proposed, including fabrication of symmetrical heterogeneous electrolysis system and fluid homogeneous electrolysis system, as well as decoupling/hybrid-governed sustainability. Finally, remaining challenges and corresponding opportunities are outlined to stimulate endeavors toward the development of advanced acidified water electrolysis techniques for SHP.
Collapse
Affiliation(s)
- Yuxi Hou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Jiangquan Lv
- College of Electronics and Information Science & Organic Optoelectronics Engineering Research Center of Fujian's UniversitiesFujian Jiangxia UniversityFuzhouFujian350108P. R. China
| | - Weiwei Quan
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Yingbin Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Zhensheng Hong
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Yiyin Huang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| |
Collapse
|
24
|
Li A, Kong S, Guo C, Ooka H, Adachi K, Hashizume D, Jiang Q, Han H, Xiao J, Nakamura R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat Catal 2022. [DOI: 10.1038/s41929-021-00732-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Li L, Wang P, Shao Q, Huang X. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004243. [PMID: 33749035 DOI: 10.1002/adma.202004243] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane (PEM) water electrolyzers hold great significance for renewable energy storage and conversion. The acidic oxygen evolution reaction (OER) is one of the main roadblocks that hinder the practical application of PEM water electrolyzers. Highly active, cost-effective, and durable electrocatalysts are indispensable for lowering the high kinetic barrier of OER to achieve boosted reaction kinetics. To date, a wide spectrum of advanced electrocatalysts has been designed and synthesized for enhanced acidic OER performance, though Ir and Ru based nanostructures still represent the state-of-the-art catalysts. In this Progress Report, recent research progress in advanced electrocatalysts for improved acidic OER performance is summarized. First, fundamental understanding about acidic OER including reaction mechanisms and atomic understanding to acidic OER for rational design of efficient electrocatalysts are discussed. Thereafter, an overview of the progress in the design and synthesis of advanced acidic OER electrocatalysts is provided in terms of catalyst category, i.e., metallic nanostructures (Ir and Ru based), precious metal oxides, nonprecious metal oxides, and carbon based nanomaterials. Finally, perspectives to the future development of acidic OER are provided from the aspects of reaction mechanism investigation and more efficient electrocatalyst design.
Collapse
Affiliation(s)
- Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
26
|
Yang L, Haber JA, Armstrong Z, Yang SJ, Kan K, Zhou L, Richter MH, Roat C, Wagner N, Coram M, Berndl M, Riley P, Gregoire JM. Discovery of complex oxides via automated experiments and data science. Proc Natl Acad Sci U S A 2021; 118:e2106042118. [PMID: 34508002 PMCID: PMC8449358 DOI: 10.1073/pnas.2106042118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
The quest to identify materials with tailored properties is increasingly expanding into high-order composition spaces, with a corresponding combinatorial explosion in the number of candidate materials. A key challenge is to discover regions in composition space where materials have novel properties. Traditional predictive models for material properties are not accurate enough to guide the search. Herein, we use high-throughput measurements of optical properties to identify novel regions in three-cation metal oxide composition spaces by identifying compositions whose optical trends cannot be explained by simple phase mixtures. We screen 376,752 distinct compositions from 108 three-cation oxide systems based on the cation elements Mg, Fe, Co, Ni, Cu, Y, In, Sn, Ce, and Ta. Data models for candidate phase diagrams and three-cation compositions with emergent optical properties guide the discovery of materials with complex phase-dependent properties, as demonstrated by the discovery of a Co-Ta-Sn substitutional alloy oxide with tunable transparency, catalytic activity, and stability in strong acid electrolytes. These results required close coupling of data validation to experiment design to generate a reliable end-to-end high-throughput workflow for accelerating scientific discovery.
Collapse
Affiliation(s)
- Lusann Yang
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - Joel A Haber
- Division of Engineering and Applied Science and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125
| | - Zan Armstrong
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - Samuel J Yang
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - Kevin Kan
- Division of Engineering and Applied Science and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125
| | - Lan Zhou
- Division of Engineering and Applied Science and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125
| | - Matthias H Richter
- Division of Engineering and Applied Science and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125
| | - Christopher Roat
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - Nicholas Wagner
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - Marc Coram
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - Marc Berndl
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - Patrick Riley
- Google Research, Google Applied Science, Mountain View, CA, 94043
| | - John M Gregoire
- Division of Engineering and Applied Science and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
27
|
Gao J, Tao H, Liu B. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003786. [PMID: 34169587 DOI: 10.1002/adma.202003786] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/29/2020] [Indexed: 06/13/2023]
Abstract
Water oxidation, or the oxygen evolution reaction (OER), which combines two oxygen atoms from two water molecules and releases one oxygen molecule, plays the key role by providing protons and electrons needed for the hydrogen generation, electrochemical carbon dioxide reduction, and nitrogen fixation. The multielectron transfer OER process involves multiple reaction intermediates, and a high overpotential is needed to overcome the sluggish kinetics. Among the different water splitting devices, proton exchange membrane (PEM) water electrolyzer offers greater advantages. However, current anode OER electrocatalysts in PEM electrolyzers are limited to precious iridium and ruthenium oxides. Developing highly active, stable, and precious-metal-free electrocatalysts for water oxidation in acidic media is attractive for the large-scale application of PEM electrolyzers. In recent years, various types of precious-metal-free catalysts such as carbon-based materials, earth-abundant transition metal oxides, and multiple metal oxide mixtures have been investigated and some of them show promising activity and stability for acidic OER. In this review, the thermodynamics of water oxidation, Pourbaix diagram of metal elements in aqueous solution, and theoretical screening and prediction of precious-metal-free electrocatalysts for acidic OER are first elaborated. The catalytic performance, reaction kinetics, and mechanisms together with future research directions regarding acidic OER are summarized and discussed.
Collapse
Affiliation(s)
- Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Huabing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
28
|
Li Y, Wei X, Chen L, Shi J. Electrocatalytic Hydrogen Production Trilogy. Angew Chem Int Ed Engl 2021; 60:19550-19571. [DOI: 10.1002/anie.202009854] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinfa Wei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Jianlin Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
29
|
Affiliation(s)
- Yan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinfa Wei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Jianlin Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
30
|
Menezes PW, Walter C, Chakraborty B, Hausmann JN, Zaharieva I, Frick A, von Hauff E, Dau H, Driess M. Combination of Highly Efficient Electrocatalytic Water Oxidation with Selective Oxygenation of Organic Substrates using Manganese Borophosphates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004098. [PMID: 33491823 PMCID: PMC11468780 DOI: 10.1002/adma.202004098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
One of the key catalytic reactions for life on earth, the oxidation of water to molecular oxygen, occurs in the oxygen-evolving complex of the photosystem II (PSII) mediated by a manganese-containing cluster. Considerable efforts in this research area embrace the development of efficient artificial manganese-based catalysts for the oxygen evolution reaction (OER). Using artificial OER catalysts for selective oxygenation of organic substrates to produce value-added chemicals is a worthwhile objective. However, unsatisfying catalytic performance and poor stability have been a fundamental bottleneck in the field of artificial PSII analogs. Herein, for the first time, a manganese-based anode material is developed and paired up for combining electrocatalytic water oxidation and selective oxygenations of organics delivering the highest efficiency reported to date. This can be achieved by employing helical manganese borophosphates, representing a new class of materials. The uniquely high catalytic activity and durability (over 5 months) of the latter precursors in alkaline media are attributed to its unexpected surface transformation into an amorphous MnOx phase with a birnessite-like short-range order and surface-stabilized MnIII sites under extended electrical bias, as unequivocally demonstrated by a combination of in situ Raman and quasi in situ X-ray absorption spectroscopy as well as ex situ methods.
Collapse
Affiliation(s)
- Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Carsten Walter
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Biswarup Chakraborty
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Jan Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| | - Ivelina Zaharieva
- Fachbereich PhysikFreie Universität BerlinArnimallee 14Berlin14195Germany
| | - Achidi Frick
- Department of Physics and AstronomyVrije Universiteit AmsterdamDe Boelelaan 1081Amsterdam1081 HVThe Netherlands
| | - Elizabeth von Hauff
- Department of Physics and AstronomyVrije Universiteit AmsterdamDe Boelelaan 1081Amsterdam1081 HVThe Netherlands
| | - Holger Dau
- Fachbereich PhysikFreie Universität BerlinArnimallee 14Berlin14195Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C2Berlin10623Germany
| |
Collapse
|
31
|
Morozan A, Johnson H, Roiron C, Genay G, Aldakov D, Ghedjatti A, Nguyen CT, Tran PD, Kinge S, Artero V. Nonprecious Bimetallic Iron–Molybdenum Sulfide Electrocatalysts for the Hydrogen Evolution Reaction in Proton Exchange Membrane Electrolyzers. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03692] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adina Morozan
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA/IRIG, 17 rue des Martyrs, 38054 Grenoble, France
| | - Hannah Johnson
- Advanced Technology, Toyota Motor Europe, Hoge Wei 33, Zaventem 1930, Belgium
| | - Camille Roiron
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA/IRIG, 17 rue des Martyrs, 38054 Grenoble, France
| | - Ghislain Genay
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA/IRIG, 17 rue des Martyrs, 38054 Grenoble, France
| | - Dmitry Aldakov
- SyMMES, STEP, Univ. Grenoble Alpes, CNRS, CEA/IRIG, 17 rue des Martyrs, 38054 Grenoble, France
| | - Ahmed Ghedjatti
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA/IRIG, 17 rue des Martyrs, 38054 Grenoble, France
| | - Chuc T. Nguyen
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Ha Noi, Vietnam
| | - Phong D. Tran
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Ha Noi, Vietnam
| | - Sachin Kinge
- Advanced Technology, Toyota Motor Europe, Hoge Wei 33, Zaventem 1930, Belgium
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS, CEA/IRIG, 17 rue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
32
|
|
33
|
Zhang W, Wang S, Yang SA, Xia XH, Zhou YG. Plasmon of Au nanorods activates metal-organic frameworks for both the hydrogen evolution reaction and oxygen evolution reaction. NANOSCALE 2020; 12:17290-17297. [PMID: 32789321 DOI: 10.1039/d0nr04562d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Electrocatalytic water splitting holds great promise for renewable energy conversion and storage systems. However, it usually suffers from sluggish kinetics, which greatly hinders its real application. Here, we demonstrate the utilization of the localized surface plasmon resonance (LSPR) of Au nanorods (AuNRs) to significantly improve the electroactivity of both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at Co-MOF nanosheets (Co-MOFNs) under different polarizations. Theoretical calculations suggest that the HER enhancement can be largely attributed to the injection of hot electrons from plasmonic AuNRs to Co-MOFN catalysts, which upraises the Fermi level of Co-MOFNs, increasing their reductive activity towards the HER. Regarding the promotion of the OER, it is indicated that the formed holes in Co-MOFNs should majorly locate on the surface oxygen atoms, which may also serve as active positions working jointly with neighboring Co atoms in oxidizing OH-. The plasmon enhanced HER and OER electrocatalysis could also be observed over AuNR/Ni-MOFN and AuNR/NiCo-MOFN catalysts, suggesting the generality of this strategy. This study highlights the possibility of accelerating both the HER and OER efficiency by AuNR plasmonic excitation and provides a new route towards the design of more efficient water splitting systems with the assistance of light energy.
Collapse
Affiliation(s)
- Wenmin Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Shanshan Wang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore and School of Physics, Southeast University, Nanjing, 211189, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
34
|
Bo X, Dastafkan K, Zhao C. Design of Multi‐Metallic‐Based Electrocatalysts for Enhanced Water Oxidation. Chemphyschem 2019; 20:2936-2945. [DOI: 10.1002/cphc.201900507] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Bo
- School of Chemistry, Faculty of Science The University of New South Wales High Street Sydney Australia 2052
| | - Kamran Dastafkan
- School of Chemistry, Faculty of Science The University of New South Wales High Street Sydney Australia 2052
| | - Chuan Zhao
- School of Chemistry, Faculty of Science The University of New South Wales High Street Sydney Australia 2052
| |
Collapse
|
35
|
Abstract
The expected shortage of fossil fuels as well as the accompanying climate change are among the major challenges of the 21st century. A global shift to a sustainable energy landscape is, therefore, of utmost importance. Over the past few years, solar technologies have entered the energy market and have paved the way to replace fossil-based energy sources, in the long term. In particular, electrochemical solar-to-hydrogen technologies have attracted a lot of interest—not only in academia, but also in industry. Solar water splitting (artificial photosynthesis) is one of the most active areas in contemporary materials and catalysis research. The development of low-cost, efficient, and stable water oxidation catalysts (WOCs) remains crucial for artificial photosynthesis applications, because WOCs still represent a major economical and efficient bottleneck. In the following, we summarize recent advances in water oxidation catalysts development, with selected examples from 2016 onwards. This condensed survey demonstrates that the ongoing quest for new materials and informed catalyst design is a dynamic and rapidly developing research area.
Collapse
|
36
|
Kwong WL, Lee CC, Shchukarev A, Messinger J. Cobalt-doped hematite thin films for electrocatalytic water oxidation in highly acidic media. Chem Commun (Camb) 2019; 55:5017-5020. [DOI: 10.1039/c9cc01369e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-concentration cobalt doping improves the intrinsic activity and charge transport of hematite thin-film electrocatalyst for high-performance acidic water oxidation.
Collapse
Affiliation(s)
- Wai Ling Kwong
- Department of Chemistry-Ångström Laboratory
- Molecular Biomimetics
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy
- Umeå University
- 90187 Umeå
- Sweden
| | - Andrey Shchukarev
- Department of Chemistry
- Kemiskt Biologiskt Centrum (KBC)
- Umeå University
- 90187 Umeå
- Sweden
| | - Johannes Messinger
- Department of Chemistry-Ångström Laboratory
- Molecular Biomimetics
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
37
|
Patel AM, Nørskov JK, Persson KA, Montoya JH. Efficient Pourbaix diagrams of many-element compounds. Phys Chem Chem Phys 2019; 21:25323-25327. [DOI: 10.1039/c9cp04799a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for constructing pourbaix diagrams of many-element compounds reveals the electrochemical stability of complex materials in aqueous environments.
Collapse
Affiliation(s)
- Anjli M. Patel
- Department of Chemical Engineering
- Stanford University
- Stanford
- USA
| | - Jens K. Nørskov
- Department of Physics
- Technical University of Denmark
- Lyngby
- Denmark
| | - Kristin A. Persson
- Lawrence Berkeley National Laboratory and Department of Materials Science
- University of California
- Berkeley
- USA
| | | |
Collapse
|