1
|
Sorroche A, Moreno S, Elena Olmos M, Monge M, López-de-Luzuriaga JM. Deciphering the Primary Role of Au⋅⋅⋅H-X Hydrogen Bonding in Gold Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310314. [PMID: 37615519 DOI: 10.1002/anie.202310314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Au⋅⋅⋅H-X (X=N or C) hydrogen bonding is gaining increasing interest, both in the study of its intrinsic nature and in their operability in different fields. While the role of these interactions has been studied in the stabilization of gold(I) complexes, their role during the minimum free energy reaction pathway of a given catalytic process remains unexplored. We report herein that complex [Au(C≡CPh)(pip)] (pip=piperidine) catalyses the A3 -coupling reaction for the synthesis of propargylamines, thanks to the ability of Au(I) to promote weak hydrogen bonding interactions with the reactants along the free energy profile. Density Functional Theory (DFT) calculations show that these Au⋅⋅⋅H-X interactions play a directing role in the catalysed A3 -coupling. Topological non-covalent interactions (NCI), interaction region indicator (IRI) and quantum theory of atoms in molecules (QTAIM) analysis in real space of the electron density provide a description of these interactions accurately.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Sonia Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - M Elena Olmos
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José M López-de-Luzuriaga
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
2
|
Munawar A, Maltz LT, Liu WC, Gabbaï FP. Synthesis of an Indazole/Indazolium Phosphine Ligand Scaffold and Its Application in Gold(I) Catalysis. Organometallics 2023; 42:2742-2746. [PMID: 38357473 PMCID: PMC10863396 DOI: 10.1021/acs.organomet.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 02/16/2024]
Abstract
Advances in ligand development have allowed for the fine-tuning of gold catalysis. To contribute to this field, we designed an indazole phosphine ligand scaffold that allows facile introduction of cationic charge through methylation. With minimal changes to the structure upon methylation, we could assess the importance of the electronic effects of the insertion of a positive charge on the catalytic activity of the resulting gold(I) complex. Using the benchmark reactions of propargyl amide cyclization and enyne cyclization with and without hexafluoroisopropanol (HFIP), we observed marked differences in the catalytic activities of the neutral and cationic gold species.
Collapse
Affiliation(s)
- Asima Munawar
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Logan T. Maltz
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Wei-Chun Liu
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Doan H, Rugen C, Golz C, Alcarazo M. Synthesis of (±)-Angustatin A: Assembly of the Phenanthrene Moiety Despite Increasing Ring Strain. Org Lett 2023; 25:7181-7185. [PMID: 37748259 PMCID: PMC10563161 DOI: 10.1021/acs.orglett.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 09/27/2023]
Abstract
The synthesis of (±)-angustatin A, a phenanthrene-containing cyclophane that possesses conformational chirality, is reported. Key steps include a Pd-catalyzed Negishi coupling to assemble the necessary terphenyl intermediate, its closure into a 14-membered macrocycle via a catalytic-in-phosphine Wittig olefination, and finally a Pt-catalyzed alkyne hydroarylation, which is able to assemble the phenanthrene unit despite the thermodynamic cost of significantly bending arene A from the ideal plane.
Collapse
Affiliation(s)
- Hoang
D. Doan
- Institut für Organische und
Biomolekulare Chemie, Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Christian Rugen
- Institut für Organische und
Biomolekulare Chemie, Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und
Biomolekulare Chemie, Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und
Biomolekulare Chemie, Georg-August-Universität
Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Mikherdov AS, Jin M, Ito H. Exploring Au(i) involving halogen bonding with N-heterocyclic carbene Au(i) aryl complexes in crystalline media. Chem Sci 2023; 14:4485-4494. [PMID: 37152261 PMCID: PMC10155931 DOI: 10.1039/d3sc00373f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Among the known types of non-covalent interactions with a Au(i) metal center, Au(i) involving halogen bonding (XB) remains a rare phenomenon that has not been studied systematically. Herein, using five N-heterocyclic carbene (NHC) Au(i) aryl complexes and two iodoperfluoroarenes as XB donors, we demonstrated that the XB involving the Au(i) metal center can be predictably obtained for neutral Au(i) complexes using the example of nine co-crystals. The presence of XB involving the Au(i) center was experimentally investigated by single-crystal X-ray diffraction and solid-state 13C CP-MAS NMR methods, and their nature was elucidated through DFT calculations, followed by electron density, electrostatic potential, and orbital analyses. The obtained results revealed a connection between the structure and HOMO localization of Au(i) complexes as XB acceptors, and the geometrical, electronic, and spectroscopic features of XB interactions, as well as the supramolecular structure of the co-crystals.
Collapse
Affiliation(s)
- Alexander S Mikherdov
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
5
|
Beránek T, Jakubec M, Sýkora J, Císařová I, Žádný J, Storch J. Synthesis of 2-Phospha[7]helicene, a Helicene with a Terminal Phosphinine Ring. Org Lett 2022; 24:4756-4761. [PMID: 35748535 DOI: 10.1021/acs.orglett.2c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic strategy toward phosphahelicenes containing a terminal phosphinine ring has been explored. The 4-phenyl-6-methyl-2-phospha[7]helicene was prepared from starting 2-bromobenzo[c]phenanthrene in 12% overall yield in 12 steps. The synthetic approach involves introduction of the phosphorus function prior to photocyclization forming the final helicene skeleton, followed by the formation of a phosphorus hexacycle. The structure of the first phosphahelicene with a terminal phosphinine ring was confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Tomáš Beránek
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Martin Jakubec
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Jan Sýkora
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Jaroslav Žádný
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| | - Jan Storch
- Institute of Chemical Process Fundamentals, v.v.i., The Czech Academy of Sciences, Rozvojová 1/135, 165 02 Prague 6, Czech Republic
| |
Collapse
|
6
|
Li R, Barel N, Subramaniyan V, Cohen O, Tibika F, Tulchinsky Y. Sulfonium cations as versatile strongly π-acidic ligands. Chem Sci 2022; 13:4770-4778. [PMID: 35655889 PMCID: PMC9067576 DOI: 10.1039/d2sc00588c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 01/31/2023] Open
Abstract
More than a century old, sulfonium cations are still intriguing species in the landscape of organic chemistry. On one hand they have found broad applications in organic synthesis and materials science, but on the other hand, while isoelectronic to the ubiquitous tertiary phosphine ligands, their own coordination chemistry has been neglected for the last three decades. Here we report the synthesis and full characterization of the first Rh(i) and Pt(ii) complexes of sulfonium. Moreover, for the first time, coordination of an aromatic sulfonium has been established. A thorough computational analysis of the exceptionally short S-Rh bonds obtained attests to the strongly π-accepting nature of sulfonium cations and places them among the best π-acceptor ligands available today. Our calculations also show that embedding within a pincer framework enhances their π-acidity even further. Therefore, in addition to the stability and modularity that these frameworks offer, our pincer complexes might open the way for sulfonium cations to become powerful tools in π-acid catalysis.
Collapse
Affiliation(s)
- Ruiping Li
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Nitsan Barel
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | | | - Orit Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
7
|
Ylide-Substituted Phosphines: A Platform of Strong Donor Ligands for Gold Catalysis and Palladium-Catalyzed Coupling Reactions. Acc Chem Res 2022; 55:770-782. [PMID: 35170935 DOI: 10.1021/acs.accounts.1c00797] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of homogeneous catalysts is strongly connected to the design of new, sophisticated ligands, which resolve limitations of a given reaction protocol by manipulating the electronic properties of the metal and its spatial environment. Phosphines are a privileged class of ligands that find applications in many catalytic transformations, ranging from hydrogenation reactions to hydroformylation and coupling chemistry. For many years, chemists have been trying to improve the efficiency, selectivity, and application of coupling reactions. The use of highly electron-rich and bulky phosphines was often associated with increased selectivity and efficiency and led to the development of a vast variety of electron-rich alkyl-substituted phosphines. However, this concept of increasing the ligand donor strength reaches its limits with the use of trialkyl-substituted phosphines with tri-tert-butylphosphine thus being one of the most active ligands for many years. In the course of our research efforts to use the special donor strength of ylides to stabilize electron-deficient, low-valent main group compounds, we realized that ylide-substituted phosphine (YPhos) ligands possess remarkably strong donor abilities. Moreover, the YPhos ligands are highly tunable by changing the nature of the groups on the phosphonium, phosphine, or central ylidic carbon atom. We thus obtained a ligand platform with donor capabilities ranging from PCy3 to even stronger donor abilities than N-heterocyclic carbenes, while being more sterically demanding than simple phosphines as well as many well-known biarylphosphine ligands.These properties led us to explore the applicability of the YPhos ligands in catalysis. In a series of recent reports, our group applied YPhos ligands in gold and palladium catalyzed reactions at catalytic loadings applicable for medium- to large-scale applications. The increased donor strength and unique architecture allowed for remarkable activities in a series of transformations at mild reactions conditions. For gold(I)-catalyzed reactions, we obtained turnover numbers (TONs) for the hydroamination of phenylacetylene with aniline of over 20 000. Also, more complex reactions were easily catalyzed with efficiencies greater than those of other known gold(I) catalysts. Similar efficacies were found in a series of palladium-catalyzed coupling reactions. In Buchwald-Hartwig aminations, unprecedented activities for the amination of aryl chlorides were reached at room temperature. The speed of formation of the catalytically active mono-YPhos palladium species allowed for some of the amination reactions to be completed in only a few minutes. Adjustment of the ligand design enabled the use of a large variety of different aryl and alkyl amines of different steric demands. Furthermore, the YPhos ligands in general showed high activities and selectivity in the coupling of a variety of carbon nucleophiles with aryl chlorides, bromides, and triflates. This enabled the development of efficient reaction protocols for the α-arylation of unhindered ketones and the coupling of Grignard and zinc reagents as well as the first efficient coupling of chloroarenes with alkyllithium compounds. This Account summarizes the recent development of YPhos ligands and their application in gold and palladium catalysis. We also hope to stimulate further use of this ligand platform in catalysis in the future.
Collapse
|
8
|
Stalder T, Krischer F, Steinert H, Neigenfind P, Gessner VH. Ylide-Stabilized Phosphenium Cations: Impact of the Substitution Pattern on the Coordination Chemistry. Chemistry 2022; 28:e202104074. [PMID: 34890085 PMCID: PMC9303317 DOI: 10.1002/chem.202104074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/05/2022]
Abstract
Although N-heterocyclic phosphenium (NHP) cations have received considerable research interest due to their application in organocatalysis, including asymmetric synthesis, phosphenium cations with other substitution patterns have hardly been explored. Herein, the preparation of a series of ylide-substituted cations of type [YPR]+ (with Y=Ph3 PC(Ph), R=Ph, Cy or Y) and their structural and coordination properties are reported. Although the diylide-substituted cation forms spontaneous from the chlorophosphine precursor, the monoylidylphosphenium ions required the addition of a halide-abstraction reagent. The molecular structures of the cations reflected the different degrees of electron donation from the ylide to the phosphorus center depending on the second substituent. Molecular orbital analysis confirmed the stronger donor properties of the ylide systems compared to NHPs with the mono-ylide substituted cations featuring a more pronounced electrophilicity. This was mirrored by the reaction of the cations towards gold chloride, in which only the diylide-substituted cation [Y2 P]+ formed the expected LAuCl]+ complex, while the monoylide-substituted compounds reacted to the chlorophosphine ligands by transfer of the chloride from gold to the phosphorus center. These results demonstrate the tunability of ylide-functionalized phosphorus cations, which should allow for further applications in coordination chemistry in the future.
Collapse
Affiliation(s)
- Tobias Stalder
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Felix Krischer
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Henning Steinert
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Philipp Neigenfind
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
9
|
Abstract
AbstractThe distinguishing feature of α-cationic phosphines is the presence of at least one substituent, normally (hetero)cyclic and positively charged, which is directly attached to the phosphorus atom. As result from this unique substitution pattern, the thus designed ligands depict significantly diminished donor properties if compared with their neutral counterparts. Thus, if in a hypothetical catalytic cycle, the step that determines the rate is facilitated by an increase of the electrophilicity at the metal center; then, the use of α-cationic ancillary phosphines can be highly beneficial. This fact, combined with their easy syntheses and stability, which allows an easy handling, make α-cationic phosphines a useful tool for the synthetic practitioner. Our research on the topic demonstrates that generally a remarkable ligand acceleration effect is observed when α-cationic phosphines are employed in Au(I)- and Pt(II)-promoted cycloisomerizations; moreover, in some cases even otherwise not operative transformations can be promoted. This Account describes how we entered into the topic, our efforts, and those of others to understand the coordination behavior of α-cationic phosphines and further develop their range of applications in catalysis; but it also identifies the drawbacks associated with their use, which limit their range of application.1 Introduction2 Polycationic Phosphines: Stronger Acceptors than Phosphites3 Inconveniences Derived from the Use of (Poly)cationic phosphines4 A Second Generation of Cationic Ligands: α-Pyridiniophosphines5 Chiral α-Cationic Phosphines6 α-Radical Phosphines and (Poly)cationic Phosphine Oxides7 Conclusions and Outlook
Collapse
|
10
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H-C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021; 60:21014-21024. [PMID: 34313367 PMCID: PMC8518757 DOI: 10.1002/anie.202108581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/15/2023]
Abstract
Secondary ligand-metal interactions are decisive in many catalytic transformations. While arene-gold interactions have repeatedly been reported as critical structural feature in many high-performance gold catalysts, we herein report that these interactions can also be replaced by Au⋅⋅⋅H-C hydrogen bonds without suffering any reduction in catalytic performance. Systematic experimental and computational studies on a series of ylide-substituted phosphines featuring either a PPh3 (Ph YPhos) or PCy3 (Cy YPhos) moiety showed that the arene-gold interaction in the aryl-substituted compounds is efficiently compensated by the formation of Au⋅⋅⋅H-C hydrogen bonds. The strongest interaction is found with the C-H moiety next to the onium center, which due to the polarization results in remarkably strong interactions with the shortest Au⋅⋅⋅H-C hydrogen bonds reported to date. Calorimetric studies on the formation of the gold complexes further confirmed that the Ph YPhos and Cy YPhos ligands form similarly stable complexes. Consequently, both ligands showed the same catalytic performance in the hydroamination, hydrophenoxylation and hydrocarboxylation of alkynes, thus demonstrating that Au⋅⋅⋅H-C hydrogen bonds are equally suited for the generation of highly effective gold catalysts than gold-arene interactions. The generality of this observation was confirmed by a comparative study between a biaryl phosphine ligand and its cyclohexyl-substituted derivative, which again showed identical catalytic performance. These observations clearly support Au⋅⋅⋅H-C hydrogen bonds as fundamental secondary interactions in gold catalysts, thus further increasing the number of design elements that can be used for future catalyst construction.
Collapse
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Julian Löffler
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
11
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H−C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Julian Löffler
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
12
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Collado A, Nelson DJ, Nolan SP. Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis-Ligand Development. Chem Rev 2021; 121:8559-8612. [PMID: 34259505 DOI: 10.1021/acs.chemrev.0c01320] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review considers phosphine and N-heterocyclic carbene complexes of gold(I) that are used as (pre)catalysts for a range of reactions in organic synthesis. These are divided according to the structure of the ligand, with the narrative focusing on studies that offer a quantitative comparison between the ligands and readily available or widely used existing systems.
Collapse
Affiliation(s)
- Alba Collado
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - David J Nelson
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
| |
Collapse
|
14
|
Suárez-Pantiga S, Redero P, Aniban X, Simon M, Golz C, Mata RA, Alcarazo M. In-Fjord Substitution in Expanded Helicenes: Effects of the Insert on the Inversion Barrier and Helical Pitch. Chemistry 2021; 27:13358-13366. [PMID: 34288171 PMCID: PMC8519012 DOI: 10.1002/chem.202102585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 01/23/2023]
Abstract
A series of expanded helicenes of different sizes and shapes incorporating phenyl- and biphenyl-substituents at the deepest part of their fjord have been synthesized via sequential Au-catalyzed hydroarylation of appropriately designed diynes, and their racemization barriers have been calculated employing electronic structure methods. These show that the overall profile of the inversions (energies, number of transition states and intermediates, and their relative position) is intensively affected by the interplay of steric and attractive London dispersion interactions. Hence, in-fjord substitution constitutes an additional tool to handle the mechanical properties in helicenes of uncommonly large diameter. The photochemical characterization of the newly prepared helical structures is also reported.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Pablo Redero
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xaiza Aniban
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
15
|
Iwai T, Goto Y, You Z, Sawamura M. A Hollow-shaped Caged Triarylphosphine: Synthesis, Characterization and Applications to Gold(I)-catalyzed 1,8-Enyne Cycloisomerization. CHEM LETT 2021. [DOI: 10.1246/cl.210176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuto Goto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Zhensheng You
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
16
|
Bodinier F, Sanogo Y, Ardisson J, Lannou MI, Sorin G. Low-valent dialkoxytitanium(ii): a useful tool for the synthesis of functionalized seven-membered ring compounds. Chem Commun (Camb) 2021; 57:3603-3606. [PMID: 33710225 DOI: 10.1039/d1cc00081k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe unprecedented access to all-carbon or heterocyclic seven-membered ring frameworks from 1,8-ene-ynes promoted by inexpensive low-valent titanium(ii) species, readily available from Ti(OiPr)4 and Grignard reagent. A broad range of cycloheptane, azepane or oxepane derivatives has been obtained (19 examples) with moderate to good yields and an excellent selectivity (up to 95/5 d.r.).
Collapse
Affiliation(s)
- Florent Bodinier
- Unité CNRS UMR 8038 Université de Paris, Faculté de Pharmacie, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Handelmann J, Babu CN, Steinert H, Schwarz C, Scherpf T, Kroll A, Gessner VH. Towards the rational design of ylide-substituted phosphines for gold(i)-catalysis: from inactive to ppm-level catalysis. Chem Sci 2021; 12:4329-4337. [PMID: 34168748 PMCID: PMC8179644 DOI: 10.1039/d1sc00105a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The implementation of gold catalysis into large-scale processes suffers from the fact that most reactions still require high catalyst loadings to achieve efficient catalysis thus making upscaling impractical. Here, we report systematic studies on the impact of the substituent in the backbone of ylide-substituted phosphines (YPhos) on the catalytic activity in the hydroamination of alkynes, which allowed us to increase the catalyst performance by orders of magnitude. While electronic changes of the ligand properties by introduction of aryl groups with electron-withdrawing or electron-donating groups had surprisingly little impact on the activity of the gold complexes, the use of bulky aryl groups with ortho-substituents led to a remarkable boost in the catalyst activity. However, this catalyst improvement is not a result of an increased steric demand of the ligand towards the metal center, but due to steric protection of the reactive ylidic carbon centre in the ligand backbone. The gold complex of the thus designed mesityl-substituted YPhos ligand YMesPCy2, which is readily accessible in one step from a simple phosphonium salt, exhibited a high catalyst stability and allowed for turnover numbers up to 20 000 in the hydroamination of a series of different alkynes and amines. Furthermore, the catalyst was also active in more challenging reactions including enyne cyclisation and the formation of 1,2-dihydroquinolines.
Collapse
Affiliation(s)
- Jens Handelmann
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Chatla Naga Babu
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Henning Steinert
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christopher Schwarz
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Thorsten Scherpf
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Alexander Kroll
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
19
|
Litle ED, Wilkins LC, Gabbaï FP. Ligand-enforced intimacy between a gold cation and a carbenium ion: impact on stability and reactivity. Chem Sci 2021; 12:3929-3936. [PMID: 34163662 PMCID: PMC8179465 DOI: 10.1039/d0sc05777k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Controlling the reactivity of transition metal complexes by positioning non-innocent functionalities around the catalytic pocket is a concept that has led to significant advances in catalysis. Here we describe our efforts toward the synthesis of dicationic phosphine gold complexes of general formula [(o-Ph2P(C6H4)Carb)Au(tht)]2+ decorated by a carbenium moiety (Carb) positioned in the immediate vicinity of the gold center. While the most acidic examples of such compounds have limited stability, the dicationic complexes with Carb+ = 9-N-methylacridinium and Carb+ = [C(ArN)2]+ (ArN = p-(C6H4)NMe2) are active as catalysts for the cycloisomerization of N-propargyl-4-fluorobenzamide, a substrate chosen to benchmark reactivity. The dicationic complex [(o-Ph2P(C6H4)C(ArN)2)Au(tht)]2+, which also promotes hydroarylation and enyne cyclization reactions, displays a higher catalytic activity than its acridinium analog, indicating that the electrophilic reactivity of these complexes scales with the Lewis acidity of the carbenium moiety. These results support the role of the carbenium unit as a non-innocent functionality which can readily enhance the activity of the adjacent metal center. Finally, we also describe our efforts toward the generation and isolation of free γ-cationic phosphines of general formula [(o-Ph2P(C6H4)Carb)]+. While cyclization into phosphonium species is observed for Carb+ = [C(ArN)2]+, [C(Ph)(ArN)]+, and 9-xanthylium, [(o-Ph2P(C6H4)-9-N-methylacridinium)]+ can be isolated as an air stable, biphilic derivative with uncompromised Lewis acidic and basic properties. This work describes the synthesis of carbenium-based, γ-cationic phosphines and their coordination to Au(i) cations , leading to carbophilic catalysts whose activity is enhanced by the ligand-enforced convergence of the positively charged moieties.![]()
Collapse
Affiliation(s)
- Elishua D Litle
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Lewis C Wilkins
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
20
|
Pelliccioli V, Franzini R, Mazzeo G, Villani C, Abbate S, Longhi G, Licandro E, Cauteruccio S. Chiral bis(benzo[1,2- b:4,3- b′]dithiophene) atropisomers: experimental and theoretical investigations of the stereochemical and chiroptical properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03248h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational chirality is a feature that may arise from the presence of a hindered rotation around a single bond that corresponds to a stereogenic axis.
Collapse
Affiliation(s)
- Valentina Pelliccioli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milan, Italy
| | - Roberta Franzini
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, via Branze 45, 25123 Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
- Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, via Branze 45, 25123 Brescia, Italy
| | - Emanuela Licandro
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milan, Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milan, Italy
| |
Collapse
|
21
|
Zieliński A, Marset X, Golz C, Wolf LM, Alcarazo M. Two‐Step Synthesis of Heptacyclo[6.6.0.0
2,6
.0
3,13
.0
4,11
.0
5,9
.0
10,14
] tetradecane from Norbornadiene: Mechanism of the Cage Assembly and Post‐synthetic Functionalization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adam Zieliński
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Xavier Marset
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Lawrence M. Wolf
- Department of Chemistry University of Massachusetts Lowell Lowell MA 01854 USA
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
22
|
Zieliński A, Marset X, Golz C, Wolf LM, Alcarazo M. Two-Step Synthesis of Heptacyclo[6.6.0.0 2,6 .0 3,13 .0 4,11 .0 5,9 .0 10,14 ] tetradecane from Norbornadiene: Mechanism of the Cage Assembly and Post-synthetic Functionalization. Angew Chem Int Ed Engl 2020; 59:23299-23305. [PMID: 32881255 PMCID: PMC7756769 DOI: 10.1002/anie.202010766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 01/18/2023]
Abstract
A selective and scalable two-step approach to the dimerization of norbornadiene (NBD) into its thermodynamically most stable dimer, heptacyclo[6.6.0.02,6 .03,13 .04,11 .05,9 .010,14 ] tetradecane, (HCTD) is reported. Calculations indicate that the reaction starts with the Rh-catalyzed stepwise homo Diels-Alder cyclisation of NBD into its exo-cis-endo dimer. Treatment of this compound with acid promotes its evolution to HCTD via a [1,2]-sigmatropic rearrangement. The assemblies of 7,12-disubstituted cages from 7-(alkyl/aryl) NBDs, as well as the selective post-synthetic C-H functionalization of the core HCTD scaffold at position C1, or positions C1 and C4 are described.
Collapse
Affiliation(s)
- Adam Zieliński
- Institut für Organische und Biomolekulare ChemieGeorg August Universität GöttingenTammannstr 237077GöttingenGermany
| | - Xavier Marset
- Institut für Organische und Biomolekulare ChemieGeorg August Universität GöttingenTammannstr 237077GöttingenGermany
| | - Christopher Golz
- Institut für Organische und Biomolekulare ChemieGeorg August Universität GöttingenTammannstr 237077GöttingenGermany
| | - Lawrence M. Wolf
- Department of ChemistryUniversity of Massachusetts LowellLowellMA01854USA
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg August Universität GöttingenTammannstr 237077GöttingenGermany
| |
Collapse
|
23
|
Pelliccioli V, Dova D, Baldoli C, Graiff C, Licandro E, Cauteruccio S. Diversified Syntheses of Tetrathia[7]helicenes by Metal‐Catalyzed Cross‐Coupling Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Valentina Pelliccioli
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Davide Dova
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Clara Baldoli
- CNR-Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta” Via Golgi 19 20133 Milano Italy
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/a 43124 Parma Italy
| | - Emanuela Licandro
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| |
Collapse
|
24
|
Johannsen T, Golz C, Alcarazo M. α‐Kationische Phosphole: Synthese und Anwendungen als Liganden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tim Johannsen
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammanstr. 2 Göttingen Deutschland
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammanstr. 2 Göttingen Deutschland
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammanstr. 2 Göttingen Deutschland
| |
Collapse
|
25
|
Johannsen T, Golz C, Alcarazo M. α-Cationic Phospholes: Synthesis and Applications as Ancillary Ligands. Angew Chem Int Ed Engl 2020; 59:22779-22784. [PMID: 32853445 PMCID: PMC7756421 DOI: 10.1002/anie.202009303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/23/2020] [Indexed: 01/14/2023]
Abstract
A series of structurally differentiated α‐cationic phospholes containing cyclopropenium, imidazolium, and iminium substituents has been synthesized by reaction of chlorophosphole 1 with the corresponding stable carbenes. Evaluation of the donor properties of these compounds reveals that their strong π‐acceptor character is heavily influenced by the nature of the cationic group. The coordination chemistry of these newly prepared ligands towards AuI centers is also described and their unique electronic properties exploited in catalysis. Interestingly, α‐cationic phosphole containing catalysts were not only able to accelerate model cycloisomerization reactions, but also to efficiently discriminate between concurrent reaction pathways, avoiding the formation of undesired product mixtures.
Collapse
Affiliation(s)
- Tim Johannsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstr. 2, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstr. 2, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammanstr. 2, Göttingen, Germany
| |
Collapse
|
26
|
Sprenger K, Golz C, Alcarazo M. Synthesis of Cycloheptatrienes, Oxepines, Thiepines, and Silepines: A Comparison between Brønsted Acid and Au‐Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kristin Sprenger
- Institut für Organische und Biomolekulare Chemie Georg‐August‐Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg‐August‐Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg‐August‐Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
27
|
Hartung T, Machleid R, Simon M, Golz C, Alcarazo M. Enantioselective Synthesis of 1,12‐Disubstituted [4]Helicenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915870] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thierry Hartung
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Rafael Machleid
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
28
|
Hartung T, Machleid R, Simon M, Golz C, Alcarazo M. Enantioselective Synthesis of 1,12-Disubstituted [4]Helicenes. Angew Chem Int Ed Engl 2020; 59:5660-5664. [PMID: 31961992 PMCID: PMC7154633 DOI: 10.1002/anie.201915870] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 12/16/2022]
Abstract
A highly enantioselective synthesis of 1,12-disubstituted [4]carbohelicenes is reported. The key step for the developed synthetic route is a Au-catalyzed intramolecular alkyne hydroarylation, which is achieved with good to excellent regio- and enantioselectivity by employing TADDOL-derived (TADDOL=α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol) α-cationic phosphonites as ancillary ligands. Moreover, an appropriate design of the substrate makes the assembly of [4]helicenes of different substitution patterns possible, thus demonstrating the synthetic utility of the method. The absolute stereochemistry of the newly prepared structures was determined by X-ray crystallography and characterization of their photophysical properties is also reported.
Collapse
Affiliation(s)
- Thierry Hartung
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Rafael Machleid
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
29
|
Zhang J, Simon M, Golz C, Alcarazo M. Gold‐Catalyzed Atroposelective Synthesis of 1,1′‐Binaphthalene‐2,3′‐diols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915456] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianwei Zhang
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
30
|
Zhang J, Simon M, Golz C, Alcarazo M. Gold-Catalyzed Atroposelective Synthesis of 1,1'-Binaphthalene-2,3'-diols. Angew Chem Int Ed Engl 2020; 59:5647-5650. [PMID: 31859408 PMCID: PMC7155015 DOI: 10.1002/anie.201915456] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 01/15/2023]
Abstract
A highly atroposelective (up to 97 % ee) Au‐catalyzed synthesis of 1,1′‐binaphthalene‐2,3′‐diols is reported starting from a range of substituted benzyl alkynones. Essential for the achievement of high enantioselectivity during the key assembly of the naphto‐3‐ol unit is the use of TADDOL‐derived α‐cationic phosphonites as ancillary ligands. Preliminary results demonstrate that the transformation of the obtained binaphthyls into axially chiral monodentate phosphines is possible without degradation of enantiopurity.
Collapse
Affiliation(s)
- Jianwei Zhang
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Martin Simon
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
31
|
Asskar G, Rivard M, Martens T. Glutaconaldehyde as an Alternative Reagent to the Zincke Salt for the Transformation of Primary Amines into Pyridinium Salts. J Org Chem 2020; 85:1232-1239. [PMID: 31834800 DOI: 10.1021/acs.joc.9b02538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the presence of amines, the degradation of glutaconaldehyde in acidic medium can be prevented. By exploitation of this behavior, primary amines are transformed into their corresponding pyridinium salts, including those substrates that remain unreactive toward the Zincke salt, which is the reagent typically used to perform this transformation. The use of glutaconaldehyde also allows control of the nature of the counterion of the pyridinium with no need for additional salt metathesis reaction.
Collapse
Affiliation(s)
- Ghada Asskar
- ICMPE (UMR 7182), CNRS, UPEC , Université Paris Est , 94320 Thiais , France
| | - Michael Rivard
- ICMPE (UMR 7182), CNRS, UPEC , Université Paris Est , 94320 Thiais , France
| | - Thierry Martens
- ICMPE (UMR 7182), CNRS, UPEC , Université Paris Est , 94320 Thiais , France
| |
Collapse
|
32
|
Averesch KFG, Pesch H, Golz C, Alcarazo M. Synthesis of Alkynylthiopyridinium Salts and Their Use as Thioketene Equivalents. Chemistry 2019; 25:10472-10477. [PMID: 31168874 DOI: 10.1002/chem.201901895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/24/2019] [Indexed: 11/10/2022]
Abstract
A synthetic method has been developed for the preparation of dihalo(pyridinium)sulfuranes and their transformation into alkynylthiopyridinium salts, starting from inexpensive thiopyridones. The reactivity of these salts towards different nucleophiles is evaluated. Most thiols and amines are converted into dithioesters and thioamides, respectively; whereas sterically demanding thiols delivered alkynylthioethers. These results, together with preliminary mechanistic studies reveal that alkynylthiopyridinium salts can be considered synthetic equivalents of unstable thioketenes.
Collapse
Affiliation(s)
- Kai F G Averesch
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Henner Pesch
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr 2, 37077, Göttingen, Germany
| |
Collapse
|
33
|
Navarro M, Toledo A, Joost M, Amgoune A, Mallet-Ladeira S, Bourissou D. π Complexes of P^P and P^N chelated gold(i). Chem Commun (Camb) 2019; 55:7974-7977. [PMID: 31225552 DOI: 10.1039/c9cc04266k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tricoordinate gold(i) π-complexes containing P-based chelating ligands (P^P and P^N) were prepared. The structure of the gold(i) styrene complexes has been analysed in detail based on NMR and XRD data. The P^N complex is a competent catalyst for indole alkylation. The reaction proceeds with complete C3 and Markovnikov selectivity.
Collapse
Affiliation(s)
- Miquel Navarro
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Alberto Toledo
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Maximilian Joost
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Abderrahmane Amgoune
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599), Université de Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 Route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
34
|
Tang Y, Benaissa I, Huynh M, Vendier L, Lugan N, Bastin S, Belmont P, César V, Michelet V. An Original L‐shape, Tunable N‐Heterocyclic Carbene Platform for Efficient Gold(I) Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yue Tang
- PSL Research University Chimie ParisTech—CNRS Institut de Recherche de Chimie Paris 75005 Paris France
- University Côte d'Azur Institut de Chimie de Nice, UMR 7272 CNRS Parc Valrose Faculté des Sciences 06100 Nice France
| | - Idir Benaissa
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Mathieu Huynh
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Laure Vendier
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Noël Lugan
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Stéphanie Bastin
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Philippe Belmont
- Université Paris Descartes Faculté de Pharmacie de Paris UMR CNRS 8038 CiTCoM 4 avenue de l'Observatoire 75006 Paris France
| | - Vincent César
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Véronique Michelet
- PSL Research University Chimie ParisTech—CNRS Institut de Recherche de Chimie Paris 75005 Paris France
- University Côte d'Azur Institut de Chimie de Nice, UMR 7272 CNRS Parc Valrose Faculté des Sciences 06100 Nice France
| |
Collapse
|
35
|
Tang Y, Benaissa I, Huynh M, Vendier L, Lugan N, Bastin S, Belmont P, César V, Michelet V. An Original L‐shape, Tunable N‐Heterocyclic Carbene Platform for Efficient Gold(I) Catalysis. Angew Chem Int Ed Engl 2019; 58:7977-7981. [DOI: 10.1002/anie.201901090] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yue Tang
- PSL Research University Chimie ParisTech—CNRS Institut de Recherche de Chimie Paris 75005 Paris France
- University Côte d'Azur Institut de Chimie de Nice, UMR 7272 CNRS Parc Valrose Faculté des Sciences 06100 Nice France
| | - Idir Benaissa
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Mathieu Huynh
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Laure Vendier
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Noël Lugan
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Stéphanie Bastin
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Philippe Belmont
- Université Paris Descartes Faculté de Pharmacie de Paris UMR CNRS 8038 CiTCoM 4 avenue de l'Observatoire 75006 Paris France
| | - Vincent César
- LCC-CNRS Université de Toulouse CNRS 205 route de Narbonne 31077 Toulouse Cedex 4 France
| | - Véronique Michelet
- PSL Research University Chimie ParisTech—CNRS Institut de Recherche de Chimie Paris 75005 Paris France
- University Côte d'Azur Institut de Chimie de Nice, UMR 7272 CNRS Parc Valrose Faculté des Sciences 06100 Nice France
| |
Collapse
|
36
|
Phosphines featuring a hexafluorocyclopentene skeleton: Synthesis, coordination properties, and applications for Lewis-acidic transition-metal catalysts. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Schwarz C, Handelmann J, Baier DM, Ouissa A, Gessner VH. Mono- and diylide-substituted phosphines (YPhos): impact of the ligand properties on the catalytic activity in gold(i)-catalysed hydroaminations. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01861a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The monoylide-phosphines show a linear correlation between their donor strength and their activity in gold-catalysed hydroaminations, while steric congestions leads to lower activities of the diylide congeners despite their higher donor properties.
Collapse
Affiliation(s)
- Christopher Schwarz
- Faculty of Chemistry and Biochemistry
- Chair of Inorganic Chemistry II
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Jens Handelmann
- Faculty of Chemistry and Biochemistry
- Chair of Inorganic Chemistry II
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel M. Baier
- Faculty of Chemistry and Biochemistry
- Chair of Inorganic Chemistry II
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Alina Ouissa
- Faculty of Chemistry and Biochemistry
- Chair of Inorganic Chemistry II
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Viktoria H. Gessner
- Faculty of Chemistry and Biochemistry
- Chair of Inorganic Chemistry II
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|