1
|
Alom NE, Rani N, Schlegel HB, Nguyen HM. Highly stereoselective synthesis of α-glycosylated carboxylic acids by phenanthroline catalysis. Org Chem Front 2024; 11:5769-5783. [PMID: 39211000 PMCID: PMC11347974 DOI: 10.1039/d4qo00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Carbohydrate molecules with an α-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse α-glycosylated carboxylic acids in good yields with high diastereoselectivity. Although there is no apparent correlation between reaction conversion and pK a of carboxylic acids, we found that carboxylic acids with a pK a of 4-5 provide high selectivity while those of a pK a of 2.5 or lower do not. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the α-face of the more reactive intermediate, resulting in the formation of α-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.
Collapse
Affiliation(s)
- Nur-E Alom
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | - Neha Rani
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | | | - Hien M Nguyen
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| |
Collapse
|
2
|
Luo S, Xu ZJ, Wang X, Hu XQ, Shang K, Zhang Z, He C, Qin Y, Yang JS. Divergent Synthesis and Antigenicity Evaluation of Core Oligosaccharides of the Lipopolysaccharides from Acinetobacter baumannii SMAL and ATCC 19606. Org Lett 2024; 26:8069-8073. [PMID: 39284123 DOI: 10.1021/acs.orglett.4c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Acinetobacter baumannii poses a serious threat to human health. Pathogenic bacterial lipopolysaccharides (LPSs) are potent immunogens for the development of antibacterial vaccines. To investigate the antigenic properties of A. baumannii LPS, five well-defined core oligosaccharide fragments from the LPS of A. baumannii SMAL and ATCC 19606 were synthesized. A divergent synthesis strategy based on orthogonally protected α-(2 → 5)-linked Kdo dimer 6 was developed. Selective exposure of different positions in this key precursor and then elongation of sugar chains via stereocontrolled formation of both 1,2-trans and 1,2-cis-2-aminoglycosidic linkages permitted the efficient synthesis of the targets. The synthetic route also highlights a 4-O and then 7-O glycosylation sequence for assembly of the novel 4,7-branched Kdo framework. Antigenicity assay using the glycan microarray technique disclosed that tetrasaccharide 3 featuring both 4,7-branch and α-(2 → 5)-Kdo-Kdo structural elements was a potential antigenic determinant.
Collapse
Affiliation(s)
- Sheng Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhuo-Jia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xia Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Qing Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ke Shang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chao He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Yang W, Ramadan S, Zu Y, Sun M, Huang X, Yu B. Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages. Nat Prod Rep 2024; 41:1403-1440. [PMID: 38888170 DOI: 10.1039/d4np00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.
Collapse
Affiliation(s)
- Weizhun Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Yan Zu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Mengxia Sun
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Chun Y, Luu KB, Woerpel KA. Acetal Substitution Reactions: Stereoelectronic Effects, Conformational Analysis, Reactivity vs. Selectivity, and Neighboring-Group Participation. Synlett 2024; 35:1763-1787. [PMID: 39502501 PMCID: PMC11534297 DOI: 10.1055/s-0042-1751541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Acetal substitution reactions can proceed by a number of mechanisms, but oxocarbenium ion intermediates are involved in many of these reactions. Our research has focused on understanding the conformational preferences, structures, and reactions of these intermediates. This Account summarizes our observations that electrostatic effects play a significant role in defining the preferred conformations, and that torsional effects determine how those intermediates react. Neighboring-group effects are not as straightforward as they might seem, considering that oxocarbenium ion intermediates are in equilibrium with structures that involve stabilization by a nearby substituent.
Collapse
Affiliation(s)
- Yuge Chun
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - Khoi B. Luu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
5
|
Zhao X, Ding H, Guo A, Zhong X, Zhou S, Wang G, Liu Y, Ishiwata A, Tanaka K, Cai H, Liu XW, Ding F. Zinc(ii)-mediated stereoselective construction of 1,2- cis 2-azido-2-deoxy glycosidic linkage: assembly of Acinetobacter baumannii K48 capsular pentasaccharide derivative. Chem Sci 2024; 15:12889-12899. [PMID: 39148796 PMCID: PMC11322977 DOI: 10.1039/d4sc03449j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
The capsular polysaccharide (CPS) is a major virulence factor of the pathogenic Acinetobacter baumannii and a promising target for vaccine development. However, the synthesis of the 1,2-cis-2-amino-2-deoxyglycoside core of CPS remains challenging to date. Here we develop a highly α-selective ZnI2-mediated 1,2-cis 2-azido-2-deoxy chemical glycosylation strategy using 2-azido-2-deoxy glucosyl donors equipped with various 4,6-O-tethered groups. Among them the tetraisopropyldisiloxane (TIPDS)-protected 2-azido-2-deoxy-d-glucosyl donor afforded predominantly α-glycoside (α : β = >20 : 1) in maximum yield. This novel approach applies to a wide acceptor substrate scope, including various aliphatic alcohols, sugar alcohols, and natural products. We demonstrated the versatility and effectiveness of this strategy by the synthesis of A. baumannii K48 capsular pentasaccharide repeating fragments, employing the developed reaction as the key step for constructing the 1,2-cis 2-azido-2-deoxy glycosidic linkage. The reaction mechanism was explored with combined experimental variable-temperature NMR (VT-NMR) studies and mass spectroscopy (MS) analysis, and theoretical density functional theory calculations, which suggested the formation of covalent α-C1GlcN-iodide intermediate in equilibrium with separated oxocarbenium-counter ion pair, followed by an SN1-like α-nucleophilic attack most likely from separated ion pairs by the ZnI2-activated acceptor complex under the influence of the 2-azido gauche effect.
Collapse
Affiliation(s)
- Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Aoxin Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University Guangzhou 510006 China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| |
Collapse
|
6
|
Zhang Y, Ma X, Zhang L. Highly Stereoselective Synthesis of 2-Azido-2-Deoxyglycosides via Gold-Catalyzed S N2 Glycosylation. CCS CHEMISTRY 2023; 5:2799-2807. [PMID: 38435838 PMCID: PMC10904020 DOI: 10.31635/ccschem.023.202303086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Highly stereoselective synthesis of 2-azido-2-deoxyglucosides and 2-azido-2-deoxygalactosides is achieved via a gold-catalyzed SN2 glycosylation. The glycosyl donors feature a designed 1-naphthoate leaving group containing an amide group. Upon gold activation of the leaving group, the amide group is optimally positioned to direct an SN2 attack by an acceptor via H-bonding interaction. Both 2-azido-2-deoxyglucosyl/galactosyl donor anomers can undergo stereoinversion at the anomeric position, affording the opposite anomeric glycoside products with excellent levels of stereoselectivity or stereospecificity and in mostly excellent yields. This SN2 glycosylation accommodates a broad range of acceptors. The utility of this chemistry is demonstrated in the synthesis of a trisaccharide featuring three 1,2-cis-2-azido-2-deoxyglycosidic linkages.
Collapse
Affiliation(s)
- Yongliang Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| |
Collapse
|
7
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
8
|
Verma K, Mishra M, Maharana PK, Bhattacharyya H, Saha S, Punniyamurthy T. Sc(OTf) 3-Catalyzed Domino C-C/C-N Bond Formation of Aziridines with Quinones via Radical Pathway. Org Lett 2023; 25:7933-7938. [PMID: 37874042 DOI: 10.1021/acs.orglett.3c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sc(III)-catalyzed domino C-C and C-N bond formation of N-sulfonyl aziridines with quinones has been accomplished to furnish functionalized indolines at a moderate temperature. The umpolung reactivity of aziridines, radical pathway, mild reaction conditions, substrate scope, and coupling of drug molecules in a postsynthetic application are the important practical features.
Collapse
Affiliation(s)
- Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | |
Collapse
|
9
|
Lan X, Cai C, Wang J, Zhang Q, Feng Y, Chai Y. Tf2O/TfOH Catalytic Glycosylation Using o-(p-Methoxyphenylethynyl)benzyl Glycosides as Donors and Its Application in Synthesis of Oligosaccharides. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Aswathy M, Abhijith B, Lankalapalli RS, Radhakrishnan KV. A pentacarbomethoxycyclopentadiene (PCCP) organic Brønsted acid catalyzed stereoselective glycosidation of N-pentenyl orthoesters (NPOE) of d-glucose and d-galactose, in conjunction with N-iodosuccinimide. Carbohydr Res 2022; 522:108684. [DOI: 10.1016/j.carres.2022.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
|
11
|
Shadrick M, Stine KJ, Demchenko AV. Expanding the scope of stereoselective α-galactosylation using glycosyl chlorides. Bioorg Med Chem 2022; 73:117031. [PMID: 36202065 PMCID: PMC9677435 DOI: 10.1016/j.bmc.2022.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Recently, we reported that silver(I) oxide mediated Koenigs-Knorr glycosylation reaction can be dramatically accelerated in the presence of catalytic acid additives. We have also investigated how well this reaction works in application to differentially protected galactosyl bromides. Reported herein is the stereoselective synthesis of α-galactosides with galactosyl chlorides as glycosyl donors. Chlorides are easily accessible, stable, and can be efficiently activated for glycosylation. In this application, the most favorable reactions conditions comprised cooperative Ag2SO4 and Bi(OTf)3 promoter system.
Collapse
Affiliation(s)
- Melanie Shadrick
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA; Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA; Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, MO 63121, USA.
| |
Collapse
|
12
|
Loka RS, Song Z, Sletten ET, Kayal Y, Vlodavsky I, Zhang K, Nguyen HM. Heparan Sulfate Mimicking Glycopolymer Prevents Pancreatic β Cell Destruction and Suppresses Inflammatory Cytokine Expression in Islets under the Challenge of Upregulated Heparanase. ACS Chem Biol 2022; 17:1387-1400. [PMID: 35658404 PMCID: PMC9251817 DOI: 10.1021/acschembio.1c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diabetes is a chronic disease in which the levels of blood glucose are too high because the body does not effectively produce insulin to meet its needs or is resistant to insulin. β Cells in human pancreatic islets produce insulin, which signals glucogen production by the liver and causes muscles and fat to uptake glucose. Progressive loss of insulin-producing β cells is the main cause of both type 1 and type 2 diabetes. Heparan sulfate (HS) is a ubiquitous polysaccharide found at the cell surface and in the extracellular matrix (ECM) of a variety of tissues. HS binds to and assembles proteins in ECM, thus playing important roles in the integrity of ECM (particularly basement membrane), barrier function, and ECM-cell interactions. Islet HS is highly expressed by the pancreatic β cells and critical for the survival of β cells. Heparanase is an endoglycosidase and cleaves islet HS in the pancreas, resulting in β-cell death and oxidative stress. Heparanase could also accelerate β-cell death by promoting cytokine release from ECM and secretion by activated inflammatory and endothelial cells. We demonstrate that HS-mimicking glycopolymer, a potent heparanase inhibitor, improves the survival of cultured mouse pancreatic β cells and protects HS contents under the challenge of heparanase in human pancreatic islets. Moreover, this HS-mimicking glycopolymer reduces the expression levels of cytokines (IL8, IL1β, and TNFα) and the gene encoding Toll-like Receptor 2 (TLR2) in human pancreatic islets.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yasmin Kayal
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
13
|
Peng G, Humblot A, Wischert R, De Oliveira Vigier K, Jiang F, Pera-Titus M, Jérôme F. Selective Acid-Catalyzed Hydroarylation of Nonactivated Alkenes with Aniline Assisted by Hexafluoroisopropanol. J Org Chem 2021; 86:17896-17905. [PMID: 34855400 DOI: 10.1021/acs.joc.1c02197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The catalytic hydroarylation of nonactivated alkenes with aniline is a reaction of high interest, aiming at providing C-functionalized aniline derivatives that are important precursors for the fabrication of polyurethanes. However, this reaction remains a longstanding goal of catalysis, as it requires one to simultaneously address two important goals: (1) the very low reactivity of nonactivated alkenes and (2) control of the hydroarylation/hydroamination selectivity. As a result, the hydroarylation of aniline is mostly restricted to activated alkenes (i.e., featuring ring strain, conjugation, or activation with electron-donating or -withdrawing groups). Here we show that the combination of bismuth triflate and hexafluoroisopropanol (HFIP) leads to the formation of highly active catalytic species capable of promoting the hydroarylation of various nonactivated alkenes, such as 1-octene, 1-heptene, and 1-undecene, among others, with aniline with high selectivity (71-92%). Through a combined experimental and computational investigation, we propose a reaction pathway where HFIP stabilizes the rate-determining transition state through a H-bond interaction with the triflate anion, thus assisting the acid catalyst in the hydroarylation of nonactivated alkenes. From a practical point of view, this work opens a catalytic access to C-functionalized aniline derivatives from two cheap and abundant feedstocks in a 100% atom-economical fashion.
Collapse
Affiliation(s)
- Gongming Peng
- Eco-Efficient Products and Process Laboratory, SOLVAY/CNRS 3966 Jin Du Road, Xin Zhuang Industrial Zone, Shanghai 201108, China
| | - Anaelle Humblot
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers-CNRS 1 rue Marcel Doré, TSA 41105, 86073 Poitiers, France
| | - Raphael Wischert
- Eco-Efficient Products and Process Laboratory, SOLVAY/CNRS 3966 Jin Du Road, Xin Zhuang Industrial Zone, Shanghai 201108, China
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers-CNRS 1 rue Marcel Doré, TSA 41105, 86073 Poitiers, France
| | - Fan Jiang
- Eco-Efficient Products and Process Laboratory, SOLVAY/CNRS 3966 Jin Du Road, Xin Zhuang Industrial Zone, Shanghai 201108, China
| | - Marc Pera-Titus
- Eco-Efficient Products and Process Laboratory, SOLVAY/CNRS 3966 Jin Du Road, Xin Zhuang Industrial Zone, Shanghai 201108, China
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, University of Poitiers-CNRS 1 rue Marcel Doré, TSA 41105, 86073 Poitiers, France
| |
Collapse
|
14
|
Yang F, Hou W, Zhu D, Tang Y, Yu B. A Stereoselective Glycosylation Approach to the Construction of 1,2-trans-β-d-Glycosidic Linkages and Convergent Synthesis of Saponins. Chemistry 2021; 28:e202104002. [PMID: 34859514 DOI: 10.1002/chem.202104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 11/09/2022]
Abstract
Conventional syntheses of 1,2-trans-β-d- or α-l-glycosidic linkages rely mainly on neighboring group participation in the glycosylation reactions. The requirement for a neighboring participation group (NPG) excludes direct glycosylation with (1→2)-linked glycan donors, thus only allowing stepwise assembly of glycans and glycoconjugates containing this type of common motif. Here, a robust glycosylation protocol for the synthesis of 1,2-trans-β-d- or α-l-glycosidic linkages without resorting to NPG is disclosed; it employs an optimal combination of glycosyl N-phenyltrifluroacetimidates as donors, FeCl3 as promoter, and CH2 Cl2 /nitrile as solvent. A broad substrate scope has been demonstrated by glycosylations with 12 (1→2)-linked di- and trisaccharide donors and 13 alcoholic acceptors including eight complex triterpene derivatives. Most of the glycosylation reactions are high yielding and exclusively 1,2-trans selective. Ten representative, naturally occurring triterpene saponins were thus synthesized in a convergent manner after deprotection of the coupled glycosides. Intensive mechanistic studies indicated that this glycosylation proceeds by SN 2-type substitution of the glycosyl α-nitrilium intermediates. Importantly, FeCl3 dissociates and coordinates with nitrile into [Fe(RCN)n Cl2 ]+ and [FeCl4 ]- , and the ferric cationic species coordinates with the alcoholic acceptor to provide a protic species that activates the imidate, meanwhile the poor nucleophilicity of [FeCl4 ]- ensures an uninterruptive role for the glycosidation.
Collapse
Affiliation(s)
- Fuzhu Yang
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Wu Hou
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Dapeng Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
15
|
Li J, Nguyen HM. A Mechanistic Probe into 1,2- cis Glycoside Formation Catalyzed by Phenanthroline and Further Expansion of Scope. Adv Synth Catal 2021; 363:4054-4066. [PMID: 35431716 PMCID: PMC9009828 DOI: 10.1002/adsc.202100639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Phenanthroline, a rigid and planar compound with two fused pyridine rings, has been used as a powerful ligand for metals and a binding agent for DNA/RNA. We discovered that phenanthroline could be used as a nucleophilic catalyst to efficiently access high yielding and diastereoselective α-1,2-cis glycosides through the coupling of hydroxyl acceptors with α-glycosyl bromide donors. We have conducted an extensive investigation into the reaction mechanism, wherein the two glycosyl phenanthrolinium ion intermediates, a 4C1 chair-liked β-conformer and a B2,5 boat-like α-conformer, have been detected in a ratio of 2:1 (β:α) using variable temperature NMR experiments. Furthermore, NMR studies illustrate that a hydrogen bonding is formed between the second nitrogen atom of phenanthroline and the C1-anomeric hydrogen of sugar moiety to stabilize the phenanthrolinium ion intermediates. To obtain high α-1,2-cis stereoselectivity, a Curtin-Hammett scenario was proposed wherein interconversion of the 4C1 chair-like β-conformer and B2,5 boat-like α-conformer is more rapid than nucleophilic addition. Hydroxyl attack takes place from the α-face of the more reactive 4C1 β-phenanthrolinium intermediate to give an α-anomeric product. The utility of the phenanthroline catalysis is expanded to sterically hindered hydroxyl nucleophiles and chemoselective coupling of an alkyl hydroxyl group in the presence of a free C1-hemiacetal. In addition, the phenanthroline-based catalyst has a pronounced effect on site-selective couplings of triol motifs and orthogonally activates the anomeric bromide leaving group over the anomeric fluoride and sulfide counterparts.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan, 48202, United States
| |
Collapse
|
16
|
Hu X, He J, Zhang Y, Zhou J, Yu J. Highly Stereoselective Positional Isomerization of Styrenes
via
Acid‐Catalyzed
Carbocation Mechanism. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jun‐Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| |
Collapse
|
17
|
Bhattacharya A, Shukla PM, Maji B. Highly Selective and Catalytic C-N Bond Cleavage of Tertiary Sulfonamides: Scope and Mechanistic Insight. ACS OMEGA 2021; 6:18988-19005. [PMID: 34337238 PMCID: PMC8320137 DOI: 10.1021/acsomega.1c02276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A highly chemoselective C-N bond cleavage reaction of p-methoxybenzyl- (PMB), 3,4-dimethoxybenzyl- (DMB), or cinnamyl-substituted tertiary sulfonamides in the presence of catalytic Bi(OTf)3 is presented. A wide range of sulfonamide substrates smoothly furnished the corresponding C-N bond cleavage products in good to excellent yields. Great efforts have been made to obtain insights into the reaction mechanism based on a series of control experiments and mass spectroscopy.
Collapse
|
18
|
Strassfeld DA, Algera RF, Wickens ZK, Jacobsen EN. A Case Study in Catalyst Generality: Simultaneous, Highly-Enantioselective Brønsted- and Lewis-Acid Mechanisms in Hydrogen-Bond-Donor Catalyzed Oxetane Openings. J Am Chem Soc 2021; 143:9585-9594. [PMID: 34152759 PMCID: PMC8564877 DOI: 10.1021/jacs.1c03992] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generality in asymmetric catalysis can be manifested in dramatic and valuable ways, such as high enantioselectivity across a wide assortment of substrates in a given reaction (broad substrate scope) or as applicability of a given chiral framework across a variety of mechanistically distinct reactions (privileged catalysts). Reactions and catalysts that display such generality hold special utility, because they can be applied broadly and sometimes even predictably in new applications. Despite the great value of such systems, the factors that underlie generality are not well understood. Here, we report a detailed investigation of an asymmetric hydrogen-bond-donor catalyzed oxetane opening with TMSBr that is shown to possess unexpected mechanistic generality. Careful analysis of the role of adventitious protic impurities revealed the participation of competing pathways involving addition of either TMSBr or HBr in the enantiodetermining, ring-opening event. The optimal catalyst induces high enantioselectivity in both pathways, thereby achieving precise stereocontrol in fundamentally different mechanisms under the same conditions and with the same chiral framework. The basis for that generality is analyzed using a combination of experimental and computational methods, which indicate that proximally localized catalyst components cooperatively stabilize and precisely orient dipolar enantiodetermining transition states in both pathways. Generality across different mechanisms is rarely considered in catalyst discovery efforts, but we suggest that it may play a role in the identification of so-called privileged catalysts.
Collapse
Affiliation(s)
- Daniel A Strassfeld
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Russell F Algera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zachary K Wickens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Shi Y, Pan BW, He JX, Zhou Y, Zhou J, Yu JS. Construction of gem-Difluoroenol Esters through Catalytic O-Selective Addition of Difluoroenoxysilanes to Ketenes. J Org Chem 2021; 86:7797-7805. [DOI: 10.1021/acs.joc.1c00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun-Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
20
|
Mu BS, Cui XY, Zeng XP, Yu JS, Zhou J. Modular synthesis of chiral 1,2-dihydropyridines via Mannich/Wittig/cycloisomerization sequence that internally reuses waste. Nat Commun 2021; 12:2219. [PMID: 33833227 PMCID: PMC8032725 DOI: 10.1038/s41467-021-22374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
1,2-Dihydropyridines are valuable and reactive synthons, and particularly useful precursors to synthesize piperidines and pyridines that are among the most common structural components of pharmaceuticals. However, the catalytic enantioselective synthesis of structurally diverse 1,2-dihydropyridines is limited to enantioselective addition of nucleophiles to activated pyridines. Here, we report a modular organocatalytic Mannich/Wittig/cycloisomerization sequence as a flexible strategy to access chiral 1,2-dihydropyridines from N-Boc aldimines, aldehydes, and phosphoranes, using a chiral amine catalyst. The key step in this protocol, cycloisomerization of chiral N-Boc δ-amino α,β-unsaturated ketones recycles the waste to improve the yield. Specifically, recycling by-product water from imine formation to gradually release the true catalyst HCl via hydrolysis of SiCl4, whilst maintaining a low concentration of HCl to suppress side reactions, and reusing waste Ph3PO from the Wittig step to modulate the acidity of HCl. This approach allows facile access to enantioenriched 2-substituted, 2,3- or 2,6-cis-disubstituted, and 2,3,6-cis-trisubstituted piperidines.
Collapse
Affiliation(s)
- Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Xiao-Yuan Cui
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Xing-Ping Zeng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China. .,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai, 200032, China.
| |
Collapse
|
21
|
Merino P, Delso I, Pereira S, Orta S, Pedrón M, Tejero T. Computational evidence of glycosyl cations. Org Biomol Chem 2021; 19:2350-2365. [PMID: 33481977 DOI: 10.1039/d0ob02373f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosyl cations are key intermediates in the glycosylation reactions taking place through a SN1-type mechanism. To obtain a reliable description of the glycosylation reaction mechanism a combination of computational studies and experimental data such as kinetic isotopic effects is needed. Computational studies have elucidated SN2-type glycosylation reaction mechanisms, but elucidation of mechanisms in which ion pairs can be formed presents some difficulties because of the recombination of the ions. Recent topological and dynamic studies open the door to the ultimate confirmation of the presence of glycosyl cations in the form of intimate ion pairs during certain glycosylation reactions. This review covers the state-of-the-art tools and applications of computational chemistry mainly developed during the last ten years to understand glycosylation reactions in which an oxocarbenium ion could be involved.
Collapse
Affiliation(s)
- Pedro Merino
- Unidad de Glicobiología. Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Isomura M, Petrone DA, Carreira EM. Construction of Vicinal Quaternary Centers via Iridium-Catalyzed Asymmetric Allenylic Alkylation of Racemic Tertiary Alcohols. J Am Chem Soc 2021; 143:3323-3329. [DOI: 10.1021/jacs.1c00609] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mayuko Isomura
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - David A. Petrone
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | |
Collapse
|
23
|
Crich D. En Route to the Transformation of Glycoscience: A Chemist's Perspective on Internal and External Crossroads in Glycochemistry. J Am Chem Soc 2021; 143:17-34. [PMID: 33350830 PMCID: PMC7856254 DOI: 10.1021/jacs.0c11106] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.
Collapse
Affiliation(s)
- David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Talasila DS, Bauer EB. Ferrocenium complex aided O-glycosylation of glycosyl halides. RSC Adv 2021; 11:36814-36820. [PMID: 35494397 PMCID: PMC9043573 DOI: 10.1039/d1ra05788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
Abstract
A new strategy for the activation of glycosyl halide donors to be utilized in glycosylation reactions is presented, utilizing the ferrocenium (Fc) complexes [FcB(OH)2]SbF6 and FcBF4 as promoters. The scope of the new system has been investigated using glycosyl chloride and glycosyl fluoride donors in combination with common glycosyl acceptors, such as protected glucose. The corresponding glycosylation products were formed in 95 to 10% isolated yields with α/β ratios ranging from 1/1 to β only (2 to 14 h reaction time at room temperature, 40 to 100% ferrocenium promoter load). Ferrocenium complexes as a new, tunable platform for O-glycosylation reactions are introduced.![]()
Collapse
Affiliation(s)
- Deva Saroja Talasila
- University of Missouri – St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA
| | - Eike B. Bauer
- University of Missouri – St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA
| |
Collapse
|
25
|
Shadrick M, Singh Y, Demchenko AV. Stereocontrolled α-Galactosylation under Cooperative Catalysis. J Org Chem 2020; 85:15936-15944. [PMID: 33064474 PMCID: PMC8142852 DOI: 10.1021/acs.joc.0c01279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A recent discovery of a cooperative catalysis comprising a silver salt and an acid led to a dramatic improvement in the way glycosyl halides are glycosidated. Excellent yields have been achieved, but the stereoselectivity achieved with 2-O-benzylated donors was poor. Reported herein is our first attempt to refine the stereoselectivity of the cooperatively catalyzed galactosylation reaction. Careful optimization of the reaction conditions along with studying effects of the remote protecting groups led to excellent stereocontrol of α-galactosylation of a variety of glycosyl acceptors with differentially protected galactosyl donors.
Collapse
Affiliation(s)
- Melanie Shadrick
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
26
|
Abstract
Carbohydrates are a large class of natural products that play key roles in a number of biological processes such as in cellular communication or disease progression. Carbohydrates are also used as vaccines and pharmaceuticals. Their synthesis through glycosylation reactions is challenging, and often stoichiometric amounts of promoters are required. Transition metal catalyzed glycosylation reactions are far less common, but can have advantages with respect to reaction conditions and selectivity. The review intends to approach the topic from the catalysis and carbohydrate perspective to encourage researchers from both the fields to perform research in the area. The article covers the basics in glycosylation and catalysis chemistry. The catalysts for the reaction can be roughly divided into two groups. In one group, the catalysts serve as Lewis acids. In the other group, the catalysts play a higher sophisticated role, are involved in all elementary steps of the mechanism and remain coordinated to the substrate throughout the whole catalytic cycle. Based on selected examples, the main trends in transition metal catalyzed glycosylation reactions are explained. Lewis acid catalysts tend to require a somewhat higher catalyst load compared to other organometallic catalysts. The reaction conditions such as the temperature and time depend in many cases on the leaving group employed. An outlook is also presented. The article is not meant to be comprehensive; it outlines the most common transition metal catalyzed processes with the intention to bring the catalysis and carbohydrate communities together and to inspire research activities in both areas.
Collapse
Affiliation(s)
- Eike B Bauer
- University of Missouri - St Louis, Department of Chemistry and Biochemistry, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
27
|
Smith DGM, Ito E, Yamasaki S, Williams SJ. Cholesteryl 6- O-acyl-α-glucosides from diverse Helicobacter spp. signal through the C-type lectin receptor Mincle. Org Biomol Chem 2020; 18:7907-7915. [PMID: 32996960 DOI: 10.1039/d0ob01776k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helicobacter spp. are Gram-negative bacteria that cause a spectrum of disease in the gut, biliary tree and liver. Many Helicobacter spp. produce a range of cholesteryl α-glucosides that have the potential to act as pathogen associated molecular patterns. We report a highly stereoselective α-glucosylation of cholesterol using 3,4,6-tri-O-acetyl-2-O-benzyl-d-glucopyranosyl N-phenyl-2,2,2-trifluoroacetimidate, which allowed the synthesis of cholesteryl α-glucoside (αCG) and representative Helicobacter spp. cholesteryl 6-O-acyl-α-glucosides (αCAGs; acyl = C12:0, 14:0, C16:0, C18:0, C18:1). All αCAGs, irrespective of the nature of their acyl chain composition, strongly agonised signalling through the C-type lectin receptor Mincle from human and mouse to similar degrees. By contrast, αCG only weakly signalled through human Mincle, and did not signal through mouse Mincle. These results provide a molecular basis for understanding of the immunobiology of non-pylori Helicobacter infections in humans and other animals.
Collapse
Affiliation(s)
- Dylan G M Smith
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
28
|
Hao YJ, Gong Y, Zhou Y, Zhou J, Yu JS. Construction of β-Quaternary α,α-Difluoroketones via Catalytic Nucleophilic Substitution of Tertiary Alcohols with Difluoroenoxysilanes. Org Lett 2020; 22:8516-8521. [DOI: 10.1021/acs.orglett.0c03123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yong-Jia Hao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Gong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
29
|
Kobayashi Y, Takemoto Y. Regio- and stereoselective glycosylation of 1,2-O-unprotected sugars using organoboron catalysts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Yu F, Dickson JL, Loka RS, Xu H, Schaugaard RN, Schlegel HB, Luo L, Nguyen HM. Diastereoselective sp 3 C-O Bond Formation via Visible Light-Induced, Copper-Catalyzed Cross-Couplings of Glycosyl Bromides with Aliphatic Alcohols. ACS Catal 2020; 10:5990-6001. [PMID: 34168901 DOI: 10.1021/acscatal.0c01470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper-catalyzed cross-coupling reactions have become one of the most powerful methods for generating carbon-heteroatom bonds, an important framework of many organic molecules. However, copper-catalyzed C(sp3)-O cross-coupling of alkyl halides with alkyl alcohols remains elusive because of the sluggish nature of oxidative addition to copper. To address this challenge, we have developed a catalytic copper system, which overcomes the copper oxidative addition barrier with the aid of visible light and effectively facilitates the cross-couplings of glycosyl bromides with aliphatic alcohols to afford C(sp3)-O bonds with high levels of diastereoselectivity. Importantly, this catalytic system leads to a mild and efficient method for stereoselective construction of α-1,2-cis glycosides, which are of paramount importance, but challenging. In general, stereochemical outcomes in α-1,2-cis glycosidic C-O bond-forming processes are unpredictable and dependent on the steric and electronic nature of protecting groups bound to carbohydrate coupling partners. Currently, the most reliable approaches rely on the use of a chiral auxiliary or hydrogen-bond directing group at the C2- and C4-position of carbohydrate electrophiles to control α-1,2-cis selectivity. In our approach, earth-abundant copper not only acts as a photocatalyst and a bond-forming catalyst, but also enforces the stereocontrolled formation of anomeric C-O bonds. This cross-coupling protocol enables highly diastereoselective access to a wide variety of α-1,2-cis-glycosides and biologically relevant α-glycan oligosaccharides. Our work provides a foundation for developing new methods for the stereoselective construction of natural and unnatural anomeric carbon(sp3)-heteroatom bonds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jalen L. Dickson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ravi S. Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hengfu Xu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Richard N. Schaugaard
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M. Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
31
|
Zhang S, Lebœuf D, Moran J. Brønsted Acid and H‐Bond Activation in Boronic Acid Catalysis. Chemistry 2020; 26:9883-9888. [DOI: 10.1002/chem.202001902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Shaofei Zhang
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - David Lebœuf
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Joseph Moran
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| |
Collapse
|
32
|
Zhu S, Li J, Loka RS, Song Z, Vlodavsky I, Zhang K, Nguyen HM. Modulating Heparanase Activity: Tuning Sulfation Pattern and Glycosidic Linkage of Oligosaccharides. J Med Chem 2020; 63:4227-4255. [PMID: 32216347 DOI: 10.1021/acs.jmedchem.0c00156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heparanase cleaves polymeric heparan sulfate (HS) molecules into smaller oligosaccharides, allowing for release of angiogenic growth factors promoting tumor development and autoreactive immune cells to reach the insulin-producing β cells. Interaction of heparanase with HS chains is regulated by specific substrate sulfation sequences. We have synthesized 11 trisaccharides that are highly tunable in structure and sulfation pattern, allowing us to determine how heparanase recognizes HS substrate and selects a favorable cleavage site. Our study shows that (1) N-SO3- at +1 subsite and 6-O-SO3- at -2 subsite of trisaccharides are critical for heparanase recognition, (2) addition of 2-O-SO3- at the -1 subsite and of 3-O-SO3- to GlcN unit is not advantageous, and (3) the anomeric configuration (α or β) at the reducing end is crucial in controlling heparanase activity. Our study also illustrates that the α-trisaccharide having N- and 6-O-SO3- at -2 and +1 subsites inhibited heparanase and was resistant toward hydrolysis.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jiayi Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
33
|
Palo-Nieto C, Sau A, Jeanneret R, Payard PA, Salamé A, Martins-Teixeira MB, Carvalho I, Grimaud L, Galan MC. Copper Reactivity Can Be Tuned to Catalyze the Stereoselective Synthesis of 2-Deoxyglycosides from Glycals. Org Lett 2020; 22:1991-1996. [DOI: 10.1021/acs.orglett.9b04525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos Palo-Nieto
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Robin Jeanneret
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| | - Pierre-Adrien Payard
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Aude Salamé
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Maristela Braga Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Monte Alegre CEP 14040-903, Brazil
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université − Ecole Normale Supérieure − CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 3TS, United Kingdom
| |
Collapse
|
34
|
Steen JD, Stepanovic S, Parvizian M, de Boer JW, Hage R, Chen J, Swart M, Gruden M, Browne WR. Lewis versus Brønsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation. Inorg Chem 2019; 58:14924-14930. [PMID: 31625380 PMCID: PMC6832668 DOI: 10.1021/acs.inorgchem.9b02737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Lewis acid (LA) activation
by coordination to metal oxido species
has emerged as a new strategy in catalytic oxidations. Despite the
many reports of enhancement of performance in oxidation catalysis,
direct evidence for LA-catalyst interactions under catalytically relevant
conditions is lacking. Here, we show, using the oxidation of alkenes
with H2O2 and the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 (1), that Lewis acids commonly used to enhance catalytic activity,
e.g., Sc(OTf)3, in fact undergo hydrolysis with adventitious
water to release a strong Brønsted acid. The formation of Brønsted
acids in situ is demonstrated using a combination of resonance Raman,
UV/vis absorption spectroscopy, cyclic voltammetry, isotope labeling,
and DFT calculations. The involvement of Brønsted acids in LA
enhanced systems shown here holds implications for the conclusions
reached in regard to the relevance of direct LA-metal oxido interactions
under catalytic conditions. Lewis acid activation of oxidation
catalysts is proposed
to be through binding of the Lewis acids to metal-oxo species. The
activity of the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 in the oxidation of alkenes
with H2O2 appears to correlate with the strength
of the Lewis acid used for its activation. We show that the correlation
arises from the relative propensity of the Lewis acids to generate
Brønsted acids in situ.
Collapse
Affiliation(s)
- Jorn D Steen
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Stepan Stepanovic
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Mahsa Parvizian
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Johannes W de Boer
- Catexel B.V. , BioPartner Center Leiden , Galileiweg 8 , 2333 BD Leiden , The Netherlands
| | - Ronald Hage
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands.,Catexel B.V. , BioPartner Center Leiden , Galileiweg 8 , 2333 BD Leiden , The Netherlands
| | - Juan Chen
- Department of Applied Chemistry, School of Science , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Marcel Swart
- IQCC & Departament de Química , Universitat de Girona , Campus Montilivi (Ciències) , 17003 Girona , Spain.,ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| | - Maja Gruden
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| |
Collapse
|
35
|
Zhu S, Samala G, Sletten ET, Stockdill JL, Nguyen HM. Facile triflic acid-catalyzed α-1,2- cis-thio glycosylations: scope and application to the synthesis of S-linked oligosaccharides, glycolipids, sublancin glycopeptides, and T N/T F antigens. Chem Sci 2019; 10:10475-10480. [PMID: 32110337 PMCID: PMC7020787 DOI: 10.1039/c9sc04079j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 01/22/2023] Open
Abstract
Studies of S-linked glycoconjugates have attracted growing interest because of their enhanced chemical stability and enzymatic resistance over O-glycoside counterparts.
Studies of S-linked glycoconjugates have attracted growing interest because of their enhanced chemical stability and enzymatic resistance over O-glycoside counterparts. We here report a facile approach to access α-1,2-cis-S-linked glycosides using triflic acid as a catalyst to promote the glycosylation of a series of thiols with d-glucosamine, galactosamine, glucose, and galactose electrophiles. This method is broadly applicable for the stereoselective synthesis of S-linked glycopeptides, oligosaccharides and glycolipids in high yield and excellent α-selectivity. Many of the synthetic limitations associated with the preparation of these S-linked products are overcome by this catalytic method.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| | - Ganesh Samala
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| | - Eric T Sletten
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , USA
| | - Jennifer L Stockdill
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| | - Hien M Nguyen
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , USA . ;
| |
Collapse
|
36
|
Isomura M, Petrone DA, Carreira EM. Coordination-Induced Stereocontrol over Carbocations: Asymmetric Reductive Deoxygenation of Racemic Tertiary Alcohols. J Am Chem Soc 2019; 141:4738-4748. [DOI: 10.1021/jacs.9b00862] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mayuko Isomura
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - David A. Petrone
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | |
Collapse
|