1
|
Yang Y, Huang X, Jin Y. Photoinduced ligand-to-metal charge transfer (LMCT) in organic synthesis: reaction modes and research advances. Chem Commun (Camb) 2025. [PMID: 39760393 DOI: 10.1039/d4cc06099g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In recent years, visible light-induced ligand-to-metal charge transfer (LMCT) has emerged as an attractive approach for synthesizing a range of functionalized molecules. Compared to conventional photoredox reactions, photoinduced LMCT activation does not depend on redox potential and offers diverse reaction pathways, making it particularly suitable for the activation of inert bonds and the functional modification of complex organic molecules. This review highlights the indispensable role of photoinduced LMCT in synthetic chemistry, with a focus on recent advancements in LMCT-mediated hydrogen atom transfer (HAT), C-C bond cleavage, decarboxylative transformations, and radical ligand transfer (RLT) reactions.
Collapse
Affiliation(s)
- Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Xinxiang Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
2
|
Li Y, Wu S, Liu Y, He Z, Li W, Li S, Chen Z, Liu S, Tian B. Photoinduced Lignin C α-C β Bond Cleavage and Chemodivergent Functionalization via Iron Catalysis. CHEMSUSCHEM 2025; 18:e202401087. [PMID: 39036939 DOI: 10.1002/cssc.202401087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
The photocatalytic conversion of lignin into value-added chemicals especially those functionalized molecules represent one of the most important strategies for sustainable and environmental-friendly development. Cleavage of C-C bonds in lignin under mild photocatalytic conditions for refining lignin into useful molecules is meaningful but challenging. Meanwhile, the assembly of diverse functional groups into active lignin fragments during the depolymerization is of great challenging. Herein, using cheap iron catalysts under visible light irradiation, the highly selective and efficient cleavage of Cα-Cβ bond in lignin is realized via ligand-to-metal charge transfer (LMCT) and hydrogen atom transfer (HAT) processes. The subsequent divergent functionalization of generated lignin fragment-based radical intermediates enables an efficient formation of diverse functionalized molecules. This method is also effective for cleavage of Cα-Cβ bond in native lignin, yielding two identified benzaldehyde monomers in a total yield of 8.7 wt %.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Simeng Wu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yongqian Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhiyang He
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| |
Collapse
|
3
|
Zhao Q, Zeng Y, Jiang Z, Huang Z, Long DL, Cronin L, Xuan W. High-Nuclearity Polyoxometalate-Based Metal-Organic Frameworks for Photocatalytic Oxidative Cleavage of C-C Bond. Angew Chem Int Ed Engl 2024:e202421132. [PMID: 39653655 DOI: 10.1002/anie.202421132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [P8W48O184]40- precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [H16P8W58O218]32- {W58} and a fully-closed [H16P8W64O236]32- {W64}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W58} and {W64} as nodes, {Cu11(HL)9W58} HNPOMOF-1 and {Cu9(HL)9W64} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W58} and {W64}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date. HNPOMOF-1 features 3D framework possessing cage-like cavities filled with exposed carboxyl groups, while the inherent 2D layer-like HNPOMOF-2 allows for facile exfoliation into ultrathin nanosheets, and the resulted HNPOMOF-2NS exhibits superior activity towards photocatalytic oxidative cleavage of C-C bond for a series of lignin models. This work not only provides a strategy to build high-nuclearity POM cluster-based frameworks, but also demonstrates their great potential as functional materials for green catalysis.
Collapse
Affiliation(s)
- Qixin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yang Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhenxuan Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - De-Liang Long
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
4
|
Chen H, Qin B, Zhang Q, Hu X, Ma L, Zhang X, Tang Z, Chen L. Enhancement of Selective Catalytic Oxidation of Lignin β-O-4 Bond via Orbital Modulation and Surface Lattice Reconstruction. CHEMSUSCHEM 2024:e202402194. [PMID: 39555777 DOI: 10.1002/cssc.202402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/19/2024]
Abstract
The orbital modulation and surface lattice reconstruction represent an effective strategy to regulate the interaction between catalyst interface sites and intermediates, thereby enhancing catalytic activity and selectivity. In this study, the crystal surface of Au-K/CeO2 catalyst can undergo reversible transformation by tuning the coordination environment of Ce, which enables the activation of the Cβ-H bond and the oxidative cleavage of the Cβ-O and Cα-Cβ bonds, leading to the cleavage of 2-phenoxy-1-phenylethanol. The t2g orbitals of Au 5d hybridize with the 2p orbitals of lattice oxygen in CeO2 via π-coordination, modulating the coordination environment of Ce 4 f and reconstructing the lattice oxygen in the CeO2 framework, as well as increasing the oxygen vacancies. The interface sites formed by the synergy between Au clusters in the reconstructed Ce-OL1-Au structure and doped K play dual roles. On the one hand, it activates the Cβ-H bond, facilitating the enolization of the pre-oxidized 2-phenoxy-1-phenylethanone. On the other hand, through single-electron transfer involving Ce3+ 4f1 and the adsorption by oxygen vacancies, it enhances the oxidative cleavage of the Cβ-O and Cα-Cβ bonds. This study elucidates the complex mechanistic roles of the structure and properties of Au-K/CeO2 catalyst in the selective catalytic oxidation of lignin β-O-4 bond.
Collapse
Affiliation(s)
- Haonan Chen
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Baolong Qin
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xiaohong Hu
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhiyuan Tang
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
5
|
Palumbo CT, Ouellette ET, Zhu J, Román-Leshkov Y, Stahl SS, Beckham GT. Accessing monomers from lignin through carbon-carbon bond cleavage. Nat Rev Chem 2024; 8:799-816. [PMID: 39367248 DOI: 10.1038/s41570-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C-O bond cleavage, given the abundance of β-O-4 bonds in lignin and the large number of available C-O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C-C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C-C cleavage reactions, including those of linkages arising from biosynthesis (β-1, β-5, β-β and 5-5) and industrial processing (5-CH2-5 and α-5). We examine multiple approaches to C-C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C-C bond cleavage.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Erik T Ouellette
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shannon S Stahl
- Department of Chemistry. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
6
|
Klein A, Leiss-Maier F, Mühlhofer R, Boesen B, Mustafa G, Kugler H, Zeymer C. A De Novo Metalloenzyme for Cerium Photoredox Catalysis. J Am Chem Soc 2024; 146:25976-25985. [PMID: 39115259 PMCID: PMC11440500 DOI: 10.1021/jacs.4c04618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/26/2024]
Abstract
Cerium photoredox catalysis has emerged as a powerful strategy to activate molecules under mild conditions. Radical intermediates are formed using visible light and simple complexes of the earth-abundant lanthanide. Here, we report an artificial photoenzyme enabling this chemistry inside a protein. We utilize a de novo designed protein scaffold that tightly binds lanthanide ions in its central cavity. Upon visible-light irradiation, the cerium-dependent enzyme catalyzes the radical C-C bond cleavage of 1,2-diols in aqueous solution. Protein engineering led to variants with improved photostability and metal binding behavior. The photoenzyme cleaves a range of aromatic and aliphatic substrates, including lignin surrogates. Surface display of the protein scaffold on Escherichia coli facilitates whole-cell photobiocatalysis. Furthermore, we show that also natural lanthanide-binding proteins are suitable for this approach. Our study thus demonstrates a new-to-nature enzymatic photoredox activity with broad catalytic potential.
Collapse
Affiliation(s)
- Andreas
Sebastian Klein
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Florian Leiss-Maier
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Rahel Mühlhofer
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Benedikt Boesen
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Ghulam Mustafa
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Hannah Kugler
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
| | - Cathleen Zeymer
- Center
for Functional Protein Assemblies & Department of Bioscience,
TUM School of Natural Sciences, Technical
University of Munich (TUM), 85748 Garching, Germany
- TUM
Catalysis Research Center, Technical University
of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
7
|
Xiao G, Wang Z, Jin Y, Wang F. Visible-light-driven selective cleavage of lignin C-C bonds on the TiO 2@g-C 3N 4heterostructured photocatalyst. NANOTECHNOLOGY 2024; 35:495704. [PMID: 39284323 DOI: 10.1088/1361-6528/ad7b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
The selective cleavage of lignin C-C bonds is a highly sought-after process with the goal of obtaining low-molecular-weight aromatic chemicals from renewable resources. However, it remains a challenging task to achieve under mild conditions. Photocatalysis is a potentially promising approach to address this issue, but the development of efficient photocatalysts is still in progress. In this study, we introduce the heterostructured TiO2@g-C3N4photocatalyst for the development of a visible light photocatalytic procedure for the selective cleavage of lignin C-C bonds under mild conditions. The photocatalyst displays favourable visible light absorption, efficient charge separation efficiency, and promising reusability. A typicalβ-O-4 dimer model, 2-phenoxy-1-phenylethanol, was effectively (96.0% conversion) and selectively (95.0 selectivity) cleaved under visible light at ambient conditions. This photocatalytic procedure was also effective when subjected to solar irradiation or other lignin dimer models withβ-O-4 orβ-1 linkages. This reaction occurred through a Cβ-centred radical intermediate and a six-membered transition state with photogenerated holes as the primary active species. The Cα-OH oxidative dehydrogenation of the substrate could also take place but was a relatively minor route. This study provides a new photocatalytic procedure for visible-light-driven lignin valorisation and sheds light on the design of high-performance nanocomposite photocatalysts for C-C bond cleavage.
Collapse
Affiliation(s)
- Gang Xiao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishuai Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Jin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Fengping Wang
- College of Pharmacy, Hebei North University, Zhangjiakou 075100, People's Republic of China
| |
Collapse
|
8
|
Liu X, Wang Y, Duan H. Recent Progress in Electrocatalytic Conversion of Lignin: From Monomers, Dimers, to Raw Lignin. PRECISION CHEMISTRY 2024; 2:428-446. [PMID: 39478938 PMCID: PMC11524326 DOI: 10.1021/prechem.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 11/02/2024]
Abstract
Lignin, as the second largest renewable biomass resource in nature, has increasingly received significant interest for its potential to be transformed into valuable chemicals, potentially contributing to carbon neutrality. Among different approaches, renewable electricity-driven biomass conversion holds great promise to substitute a petroleum resource-driven one, owing to its characteristics of environmental friendliness, high energy efficiency, and tunable reactivity. The challenges lie on the polymeric structure and complex functional groups in lignin, requiring the development of efficient electrocatalysts for lignin valorization with enhanced activity and selectivity toward targeted chemicals. In this Review, we focus on the advancement of electrocatalytic valorization of lignin, from monomers, to dimers and to raw lignin, toward various value-added chemicals, with emphasis on catalyst design, reaction innovation, and mechanistic study. The general strategies for catalyst design are also summarized, offering insights into enhancing the activity and selectivity. Finally, challenges and perspectives for the electrocatalytic conversion of lignin are proposed.
Collapse
Affiliation(s)
- Xiang Liu
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
| | - Ye Wang
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
| | - Haohong Duan
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Engineering
Research Center of Advanced Rare Earth Materials, (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Liu X, Zhai L, Huo J, Yang R, Sun F. FeCl 3-Promoted Photocatalytic Cleavage of C α-C β Bond in Lignin and Lignin Model to Benzoic Acid. J Org Chem 2024; 89:12967-12972. [PMID: 39250268 DOI: 10.1021/acs.joc.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Because of the complex structure and inherent inert chemical activity of lignin, it is still challenging to depolymerize lignin to obtain valuable chemicals efficiently. Here, we present an FeCl3-promoted photocatalytic depolymerization strategy to realize the Cα-Cβ oxidative cleavage of lignin model compounds at room temperature. The method generates benzoic acid and phenol compounds in high yields. In addition, the method is effective for the depolymerization of organosolv lignin by cleavage of the products of Cα-Cβ bonds and affords the corresponding products. This strategy provides a method of using an economical photocatalyst to depolymerize lignin and provides a reference for the industrial depolymerization of lignin.
Collapse
Affiliation(s)
- Xinwei Liu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Lianjing Zhai
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jianyu Huo
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ronghe Yang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
10
|
Barth AT, Pyrch AJ, McCormick CT, Danilov EO, Castellano FN. Excited State Bond Homolysis of Vanadium(V) Photocatalysts for Alkoxy Radical Generation. J Phys Chem A 2024; 128:7609-7619. [PMID: 39213596 DOI: 10.1021/acs.jpca.4c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advancements in photocatalysis have transformed synthetic organic chemistry, using light as a powerful tool to drive selective chemical transformations. Recent approaches have focused on metal-halide ligand-to-metal charge transfer (LMCT) photoactivated bond homolysis reactions leveraged by earth-abundant elements to generate valuable synthons for radical-mediated cross-coupling reactions. Of recent utility, oxovanadium(V) LMCT photocatalysts exhibit selective alkoxy radical generation from aliphatic alcohols upon blue light (UVA) irradiation under mild conditions. The selective photochemical liberation of alkoxy radicals is valuable for applying late-stage fragmentation approaches in organic synthesis and depolymerization strategies for nonbiodegradable polymers. Steady-state and time-resolved spectroscopy were used to assign the electronic structure of three well-defined V(V) photocatalysts in their ground and excited states. We assign the excited state for this transformation at earth-abundant vanadium(V), interrogating the electronic structure using static UV-visible absorption, ultrafast transient absorption, and electron paramagnetic resonance spectroscopy coupled to computational approaches. These findings afford assignments of the short-lived excited state intermediates that dictate selective homolytic bond cleavage in metal alkoxides, illustrating the valuable insight gleaned from fundamental investigations of the molecular photochemistry responsible for light-escalated chemical transformations.
Collapse
Affiliation(s)
- Alexandra T Barth
- North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Austin J Pyrch
- North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Conor T McCormick
- North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Evgeny O Danilov
- North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
11
|
Xu E, Xie F, Liu T, He J, Zhang Y. Photocatalytic, Oxidative Cleavage of C-C Bond in Lignin Models and Native Lignin. Chemistry 2024; 30:e202304209. [PMID: 38372165 DOI: 10.1002/chem.202304209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
It is challenging to realize the selective C-C bond cleavage of lignin β-O-4 linkages for production of high-value aromatic chemicals due to its intrinsic inertness and complex structure. Here we report a light-driven, chlorine-radical-based protocol to realize the oxidative C-C bond cleavage in various lignin model compounds catalyzed by commercially available TPT and CaCl2, achieving high conversion and good to high product yields at room temperature. Mechanistic studies reveal that the preferential activation of Cβ-H bond facilitates the oxidation and C-C bond cleavage of lignin β-O-4 model via chlorine radical. Furthermore, this method is also applicable to the depolymerization of natural lignin extracts, furnishing the aromatic oxygenates from the cleavage of Cα-Cβ bonds. This study provides experimental foundations to the depolymerization and valorization of lignin into high value-added aromatic compounds.
Collapse
Affiliation(s)
- Enjie Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Fuyu Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tianwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Borthakur I, Joshi A, Kumari S, Kundu S. Metal-Free Visible-Light Induced Oxidative Cleavage of C(sp 3 )-C, and C(sp 3 )-N Bonds of Nitriles, Alcohols, and Amines. Chemistry 2024; 30:e202303295. [PMID: 38116901 DOI: 10.1002/chem.202303295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Selective cleavage of unstrained (sp3 ) C-C/ C-N bonds under mild conditions is highly challenging due to the higher bond dissociation energy. A visible light mediated metal-free oxidative dehomologation of aryl acetonitriles, primary alcohols and diols to carboxylic acids via organophotocatalyzed C(sp3 )-CN, C(sp3 )-C(OH) bond cleavage is reported. Notably, this methodology was further extended towards selective synthesis of aldehydes via deamination of both primary as well as secondary amines. This mild protocol features wide array of substrate variation with excellent functional group tolerance, preparative-scale synthesis, and operational simplicity. Possible mechanisms for these transformations were demonstrated through a series of control experiments.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Abhisek Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| |
Collapse
|
13
|
Zhu R, Mao C, Gao F, Guo Z, Li M, Xin Y, Gu Z, Zhang L. Catalytic Cleavage of the C-O Bonds in Lignin and Lignin Model Compounds by Metal Triflate Catalysts. CHEMSUSCHEM 2024; 17:e202301743. [PMID: 38206879 DOI: 10.1002/cssc.202301743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The effective cleavage of C-O bonds in linkages of lignin was one of the significant strategies promoting lignin valorization. Herein, the strategy of C-O bonds cleavage of lignin using metal triflate as the catalyst was developed. The carboxylic acid or alcohol could be used as the nucleophile to stabilize the reactive intermediates formed during the depolymerization of lignin, and the corresponding ester/ether compounds could be obtained. This catalytic system was suitable for the C-O bond cleavage in α-O-4 and β-O-4 linkages with excellent efficiency. Additionally, reaction conditions were optimized. The reaction mixture was detected by 1 H NMR, and no other byproducts were found. As for treated lignin samples, the cleavage of C-O bonds in linkages was determined by 2D HSQC NMR, the increased content of the phenol hydroxyl group was proved by FT-IR, and the reduced molecular weight was investigated by GPC. Furthermore, multiple phenolic compounds were detected by GC-MS in the reaction mixtures.
Collapse
Affiliation(s)
- Rui Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Changtao Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Fang Gao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhongpeng Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Moying Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing, 214200, P. R. China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing, 214200, P. R. China
| |
Collapse
|
14
|
Li Y, Wen J, Wu S, Luo S, Ma C, Li S, Chen Z, Liu S, Tian B. Photocatalytic Conversion of Lignin Models into Functionalized Aromatic Molecules Initiated by the Proton-Coupled Electron Transfer Process. Org Lett 2024; 26:1218-1223. [PMID: 38319139 DOI: 10.1021/acs.orglett.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A mild and efficient method for lignin β-O-4 cleavage and functionalization was achieved via photocatalysis. This protocol exhibits a broad scope of lignin models and excellent compatibility of functionalization reagents, constructing a series of functionalized lignin-based aromatic compounds. Highly selective formation of alkyl radical species through a proton-coupled electron transfer and β-scission process provides the opportunity to form new C-C and C-N bonds by reaction with electrophilic reagents.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Jingya Wen
- Appraisal Center for Environment & Engineering, Ministry of Ecology and Environment, Beijing 100041, People's Republic of China
| | - Simeng Wu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| |
Collapse
|
15
|
Meng Y, Li J, Liu H, Wu H, Li H. Visible-light-mediated metal-free regioselective oxidative C-C bond cleavage of lignin dimers to aromatic acids. Chem Commun (Camb) 2024; 60:1642-1645. [PMID: 38235970 DOI: 10.1039/d3cc05958h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The upgrading of lignin is a sustainable and promising pathway for fossil-based aromatic compounds but always faces low selectivity. Herein, a metal-free photocatalyst, 2,4,6-triphenylpyrylium tetrafluoroborate (TPP), was illustrated to remarkably facilitate the regioselective oxidative Cα-Cβ bond cleavage of β-1 and β-O-4 lignin alcohol/ketone models into aromatic acids (92-99% yields) under visible-light irradiation at room temperature without any additive/co-catalyst, which was enabled by the synergistic effect of Cβ-H⋯C(TPP) interaction and·˙O2-/1O2 species. The synergy of the catalyst-substrate interaction and active species offers a reference for the enhancive and selective transformation of polymeric biomass and complex molecules.
Collapse
Affiliation(s)
- Ye Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Huan Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Hongguo Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
16
|
Cheng X, Liu B, Zhao H, Zhang H, Wang J, Li Z, Li B, Chen Z, Hu J. Interfacial effect between Ni 2P/CdS for simultaneously heightening photocatalytic hydrogen production and lignocellulosic biomass photorefining. J Colloid Interface Sci 2024; 655:943-952. [PMID: 37949744 DOI: 10.1016/j.jcis.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Photorefining of biomass is increasingly recognized as a pivotal technology for the simultaneous production of hydrogen and value-added chemicals. The intrinsic recalcitrance of lignocellulosic biomass puts high demands on the rational design of bifunctional photocatalyst. Herein, Ni2P/CdS with a strong interfacial effect in this work was designed to overcome lignocellulosic biomass photorefining. The strong interfacial effect between Ni2P and CdS not only improved the light absorbance, but also optimized the spatial redistribution of photogenerated electrons and holes. Therefore, Ni2P/CdS exhibited an unprecedented H2 evolution activity (ca. 199.7 mmol·h-1·g-1) in the presence of lactic acid as the traditional sacrificial agent. Considerable H2 generation was also achieved in the presence of lignin (ca. 322.8 μmol·h-1·g-1), cellulose (ca. 534.3 μmol·h-1·g-1) and hemicellulose (ca. 382.2 μmol·h-1·g-1) as the electron donor respectively. Theoretical calculation results indicated that establishing the interfacial effect between Ni2P and CdS optimized their work functions. This optimization fosters improved the redistribution between electrons and holes, as a result, photocatalytic hydrogen production from biomass solution was greatly enhanced. Significantly, Ni2P/CdS showed dual functionalities to produce H2 and value-added compounds from raw biomass directly. This present work demonstrates the potential of raw biomass photorefining through astutely designing photocatalysts.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Bo Liu
- School of Materials Science and Engineering, Research Center for Materials Genome Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhangkang Li
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, NW, Calgary, Alberta T2N 1N4, Canada
| | - Bei Li
- School of Materials Science and Engineering, Research Center for Materials Genome Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
17
|
Palumbo CT, Gu NX, Bleem AC, Sullivan KP, Katahira R, Stanley LM, Kenny JK, Ingraham MA, Ramirez KJ, Haugen SJ, Amendola CR, Stahl SS, Beckham GT. Catalytic carbon-carbon bond cleavage in lignin via manganese-zirconium-mediated autoxidation. Nat Commun 2024; 15:862. [PMID: 38286984 PMCID: PMC10825196 DOI: 10.1038/s41467-024-45038-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
Efforts to produce aromatic monomers through catalytic lignin depolymerization have historically focused on aryl-ether bond cleavage. A large fraction of aromatic monomers in lignin, however, are linked by various carbon-carbon (C-C) bonds that are more challenging to cleave and limit the yields of aromatic monomers from lignin depolymerization. Here, we report a catalytic autoxidation method to cleave C-C bonds in lignin-derived dimers and oligomers from pine and poplar. The method uses manganese and zirconium salts as catalysts in acetic acid and produces aromatic carboxylic acids as primary products. The mixtures of the oxygenated monomers are efficiently converted to cis,cis-muconic acid in an engineered strain of Pseudomonas putida KT2440 that conducts aromatic O-demethylation reactions at the 4-position. This work demonstrates that autoxidation of lignin with Mn and Zr offers a catalytic strategy to increase the yield of valuable aromatic monomers from lignin.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Nina X Gu
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Alissa C Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Lisa M Stanley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Jacob K Kenny
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, 80303, CO, USA
| | - Morgan A Ingraham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Stefan J Haugen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Caroline R Amendola
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
18
|
Kang Y, Lu X, Xu J, Zhou Q, Zhang G, Xin J, Yan D, Sayed IEITEI. The ionic liquids upon perchlorate to promote the C-C/C-O bonds cleavage in alkali lignin under photothermal synergism. Int J Biol Macromol 2024; 255:128125. [PMID: 37984571 DOI: 10.1016/j.ijbiomac.2023.128125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Transforming lignin into aromatic monomers is critically attractive to develop green and sustainable energy supplies. However, the usage of the additional catalysts like metal or base/acid is commonly limited by the caused repolymerized and environmental issues. The key step is to mediate electron transfer in lignin to trigger lignin C-C/C-O bonds cleavage without the catalysts mentioned above. Here, we report that the ionic liquids [BMim][ClO4] was found to trigger lignin electron transfer to cleave the C-C/C-O bonds for aromatic monomers without any additional catalyst. The proton transfer from [BMim]+ to [ClO4]- could polarize the anion and decrease its structure stability, upon which the active hydroxyl radical generated and induced lignin C-C/C-O bonds fragmentation via free radical-mediated routes with the assistance of photothermal synergism. About 4.4 wt% yields of aromatic monomers, mainly composed of vanillin and acetosyringone, are afforded in [BMim][ClO4] under UV-light irradiation in the air at 80 °C. This work opens the way to produce value-added aromatic monomers from lignin using an eco-friendly, energy-efficient, and simple route that may contribute to the sustainable utilization of renewable natural resources.
Collapse
Affiliation(s)
- Ying Kang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Junli Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiayu Xin
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dongxia Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
19
|
Gu NX, Palumbo CT, Bleem AC, Sullivan KP, Haugen SJ, Woodworth SP, Ramirez KJ, Kenny JK, Stanley LD, Katahira R, Stahl SS, Beckham GT. Autoxidation Catalysis for Carbon-Carbon Bond Cleavage in Lignin. ACS CENTRAL SCIENCE 2023; 9:2277-2285. [PMID: 38161372 PMCID: PMC10755848 DOI: 10.1021/acscentsci.3c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Selective lignin depolymerization is a key step in lignin valorization to value-added products, and there are multiple catalytic methods to cleave labile aryl-ether bonds in lignin. However, the overall aromatic monomer yield is inherently limited by refractory carbon-carbon linkages, which are abundant in lignin and remain intact during most selective lignin deconstruction processes. In this work, we demonstrate that a Co/Mn/Br-based catalytic autoxidation method promotes carbon-carbon bond cleavage in acetylated lignin oligomers produced from reductive catalytic fractionation. The oxidation products include acetyl vanillic acid and acetyl vanillin, which are ideal substrates for bioconversion. Using an engineered strain of Pseudomonas putida, we demonstrate the conversion of these aromatic monomers to cis,cis-muconic acid. Overall, this study demonstrates that autoxidation enables higher yields of bioavailable aromatic monomers, exceeding the limits set by ether-bond cleavage alone.
Collapse
Affiliation(s)
- Nina X. Gu
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Chad T. Palumbo
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Alissa C. Bleem
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kevin P. Sullivan
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Stefan J. Haugen
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sean P. Woodworth
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kelsey J. Ramirez
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jacob K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lisa D. Stanley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Rui Katahira
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United
States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
20
|
Liang J, Li H, Ren M, Zhou M, Han J, Zhou W, Kong F, Fakayode OA, Ur Rehman A, Fapohunda FO, Zhou C. Lignin-ultrasound method: Enhancement of antimicrobial capacity of MoS 2-containing films. Int J Biol Macromol 2023; 252:126509. [PMID: 37633551 DOI: 10.1016/j.ijbiomac.2023.126509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
To improve the antimicrobial ability of MoS2-containing films, we used lignin and triple-frequency ultrasound for liquid-phase exfoliation (LPE) to obtain MoS2 nanosheets. Photoresponsive antimicrobial films with MoS2 nanosheets, lignin, polyvinyl alcohol and deep eutectic solvents were subsequently prepared. Lignin functionalized the MoS2 nanosheets by chemically linking with S in MoS2 and significantly improved the exfoliation efficiency. Tri-frequency ultrasound produces beneficial effects on the LPE process by creating a more homogeneous sound field and a stronger degree of cavitation. The concentration of MoS2 nanosheets in the exfoliating solution could reach 1.713 mg/mL under the effect of lignin-ultrasound. The antimicrobial ability of the films was analyzed, and the colony-forming units of E. coli and S. aureus could be reduced from 7 × 106 to 1 × 106 cfu/mL under the irradiation of infrared. The lignin in the film undergoes depolymerization and demethoxylation under the irradiation of infrared to have a more phenolic hydroxyl structure, which confers the growth inhibition ability of the films for bacteria that cannot be in close contact with the film. The method we used has some significance for the preparation of MoS2 nanosheets, and composite films prepared from MoS2, and lignin can be used in food packaging, wound antimicrobials, and other fields.
Collapse
Affiliation(s)
- Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhao Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Olugbenga Abiola Fakayode
- Department of Mechanical Engineering, 10-263 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Abd Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
21
|
Ziwei W, Hao S, Yizhen C, Ben L, Yaowei X, Wanxia W, Kaiyue W, Mengheng L, Li G, Lei W. Thermal, photonic, and electrocatalysis in lignin depolymerization research. RSC Adv 2023; 13:32627-32640. [PMID: 37936635 PMCID: PMC10626394 DOI: 10.1039/d3ra06880c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
In order to realize a sustainable bio-based future, it is essential to fully harness the potential of biomass, including lignin - a readily available biopolymer that ranks second in abundance and serves as a renewable source of aromatics. While lignin has traditionally been used for lower-value applications like fuel and power generation, unlocking its higher-value potential through diverse conversion and upgrading techniques is of paramount importance. This review focuses on the catalytic conversion of lignin, with a specific emphasis on selective depolymerization, a process that not only supports economically and environmentally sustainable biorefineries but also aligns with Green Chemistry principles, mitigating adverse environmental impacts. Furthermore, we provide a comprehensive discussion of reaction pathways and mechanisms, including C-O and C-C bond cleavage, among different catalysts. Lastly, we analyze and briefly discuss the prospects of rational catalyst design in biomass valorization.
Collapse
Affiliation(s)
- Wang Ziwei
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Shu Hao
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Chen Yizhen
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Liu Ben
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Xu Yaowei
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Wang Wanxia
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Wang Kaiyue
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
| | - Lei Mengheng
- China Tobacco Hubei Industrial Co., Ltd Wuhan 430040 China
- Hubei Xinye Reconstituted Tobacco Development Co., Ltd Wuhan 430056 China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory Wuhan 430040 China
| | - Guo Li
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Heping Avenue 947 Wuhan 430081 China +86-027-6886-2335
| | - Wang Lei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
22
|
Xu X, Dai S, Xu S, Zhu Q, Li Y. Efficient Photocatalytic Cleavage of Lignin Models by a Soluble Perylene Diimide/Carbon Nitride S-Scheme Heterojunction. Angew Chem Int Ed Engl 2023; 62:e202309066. [PMID: 37675642 DOI: 10.1002/anie.202309066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
3,4,9,10-Perylenetetracarboxylic dianhydride (PDI) is one of the best n-type organic semiconductors and an ideal light-driven catalyst for lignin depolymerization. However, the charge localization effect and the excessively strong intermolecular aggregation trend in PDI result in rapid electron-hole (e- -h+ ) recombination, which limits photocatalytic performance. Herein, polymeric carbon nitride/polyhedral oligomeric silsesquioxane PDI (p-CN/P-PDI) S-scheme heterojunction photocatalyst was prepared by the solvent evaporation-deposition method for C-C bond selective cleavage of lignin β-O-4 model. Based on the material characterization results, the synergic role of polyhedral oligomeric silsesquioxane (POSS) and S-scheme heterojunction maintains appropriate aggregation domains, achieves better solar light utilization, faster charge-transfer efficiency, and greater redox capacity. Notably, the 3 % p-CN/P-PDI heterostructure exhibits a remarkable enhancement in cleavage conversion efficiency, achieving approximately 16.42 and 2.57 times higher conversion rates compared to polyhedral oligomeric silsesquioxane modified PDI (POSS-PDI) and polymeric carbon nitride (p-CN), respectively.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Shuqi Dai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Shuai Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Qi Zhu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Yuliang Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| |
Collapse
|
23
|
Zhao Z, Zhang Z, Meng Q, Chen B, Song J, Liu H, Han B. Aerobic Oxidative Cleavage of C(OH)-C Bonds to Produce Aromatic Aldehydes Catalyzed by Cu I -1,10-phenanthroline Complex. CHEMSUSCHEM 2023; 16:e202300373. [PMID: 37258454 DOI: 10.1002/cssc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Effective cleavage and functionalization of C(OH)-C bonds is of great importance for the production of value-added chemicals from renewable biomass resources such as carbohydrates, lignin and their derivatives. The efficiency and selectivity of oxidative cleavage of C(OH)-C bonds are hindered by their inert nature and various side reactions associated with the hydroxyl group. The oxidative conversion of secondary alcohols to produce aldehydes is particularly challenging because the generated aldehydes tend to be over-oxidized to acids or the other side products. Noble-metal based catalysts are necessary to get satisfactory aldehyde yields. Herein, for the first time, the efficient aerobic oxidative conversion of secondary aromatic alcohols into aromatic aldehydes is reported using non-noble metal catalysts and environmentally benign oxygen, without any additional base. It was found that CuI -1,10-phenanthroline (Cu-phen) complex showed outstanding performance for the reactions. The C(OH)-C bonds of a diverse array of aromatic secondary alcohols were effectively cleaved and functionalized, selectively affording aldehydes with excellent yields. Detailed mechanism study revealed a radical mediated pathway for the oxidative reaction. We believe that the findings in this work will lead to many explorations in non-noble metal catalyzed oxidative reactions.
Collapse
Affiliation(s)
- Ziwei Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Jinliang Song
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Liu J, Gao S, Miliordos E, Chen M. Asymmetric Syntheses of ( Z)- or ( E)-β,γ-Unsaturated Ketones via Silane-Controlled Enantiodivergent Catalysis. J Am Chem Soc 2023; 145:19542-19553. [PMID: 37639380 PMCID: PMC11144060 DOI: 10.1021/jacs.3c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-β,γ-unsaturated ketones from 1,3-butadienyl silanes are developed. The nature of the silyl group of the dienes has a significant impact on the stereo- and enantioselectivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted 1,3-diene gave (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereogenic center with excellent enantioselectivities and high Z-selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-β,γ-unsaturated ketones with high optical purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
25
|
Aboagye D, Djellabi R, Medina F, Contreras S. Radical-Mediated Photocatalysis for Lignocellulosic Biomass Conversion into Value-Added Chemicals and Hydrogen: Facts, Opportunities and Challenges. Angew Chem Int Ed Engl 2023; 62:e202301909. [PMID: 37162030 DOI: 10.1002/anie.202301909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Photocatalytic biomass conversion into high-value chemicals and fuels is considered one of the hottest ongoing research and industrial topics toward sustainable development. In short, this process can cleave Cβ -O/Cα -Cβ bonds in lignin to aromatic platform chemicals, and further conversion of the polysaccharides to other platform chemicals and H2 . From the chemistry point of view, the optimization of the unique cooperative interplay of radical oxidation species (which are activated via molecular oxygen species, ROSs) and substrate-derived radical intermediates by appropriate control of their type and/or yield is key to the selective production of desired products. Technically, several challenges have been raised that face successful real-world applications. This review aims to discuss the recently reported mechanistic pathways toward selective biomass conversion through the optimization of ROSs behavior and materials/system design. On top of that, through a SWOT analysis, we critically discussed this technology from both chemistry and technological viewpoints to help the scientists and engineers bridge the gap between lab-scale and large-scale production.
Collapse
Affiliation(s)
- Dominic Aboagye
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Ridha Djellabi
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Francesc Medina
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Sandra Contreras
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| |
Collapse
|
26
|
Xu J, Zhou Z, Liu M, Wang J, Zhang L. Photocatalytic depolymerization of lignin via oxidizing cleavage of C α-C β bonds in micellar aqueous media. Int J Biol Macromol 2023; 245:125476. [PMID: 37353112 DOI: 10.1016/j.ijbiomac.2023.125476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
Photocatalytic depolymerization of lignin to prepare high-value chemicals is a promising way to promote the valuable utilization of lignin. However, the complexity and stubbornness of lignin structure seriously decrease the photocatalytic efficiency and selectivity. Herein, the micellar aqueous media (SDS-8/HCl) consisting of sodium lauryl sulfonate and hydrochloric acid was successfully prepared. Photocatalyst TiO2 and SDS-8/HCl system can effectively depolymerize the typical β-1 lignin models and ethanol organosolv lignin to value-added chemicals by oxidizing cleavage of lignin Cα-Cβ bonds. The addition of hydrochloric acid solution (1 mol/L) improves the selectivity of photocatalytic breaking of lignin Cα-Cβ bonds. Chlorine ions are oxidized to chlorine radicals by photogenerated holes and hydroxyl radicals, dramatically increasing the photocatalytic efficiency. Electron paramagnetic resonance technique and Gas chromatography-mass spectrometry were used to demonstrate the presence of chlorine radicals. Under optimal conditions, the conversion of substrate Dpol is 98.4 %, and the obtained products are mainly benzaldehyde and benzoic acid. Isotope labeling experiments show that water is also involved in photocatalytic reactions and the oxygen needed to form the product benzaldehyde comes from water. Single-electron transfer processes are possible photocatalytic mechanisms that differ from the previous reports. Importantly, water and chlorine ions were found to be involved in photocatalytic reactions for the first time and promote the cleavage of lignin Cα-Cβ bonds. This work provides new ideas for photocatalytic cleavage of lignin Cα-Cβ bonds in heterogeneous photocatalytic systems using micellar aqueous media.
Collapse
Affiliation(s)
- Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China.
| | - Zijie Zhou
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Meng Liu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Jinyu Wang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Lihui Zhang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| |
Collapse
|
27
|
Cheng X, Palma B, Zhao H, Zhang H, Wang J, Chen Z, Hu J. Photoreforming for Lignin Upgrading: A Critical Review. CHEMSUSCHEM 2023:e202300675. [PMID: 37455297 DOI: 10.1002/cssc.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Photoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications. Considering the complexity of lignin physicochemical properties, related analytic methods are also introduced to characterize lignin photocatalytic conversion and product distribution. We finally put forward the challenges and perspective of lignin photoreforming, hoping to provide some guidance to valorize biomass into value-added chemicals and fuels via a mild photoreforming process in the future.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, T2N 1N4, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Xu J, Yu T, Zhao G, Wang J. Enhancing oxidation ability of graphitic carbon nitride photocatalysts to promote lignin C α-C β bond cleavage in micellar aqueous media. Int J Biol Macromol 2023; 236:124029. [PMID: 36924872 DOI: 10.1016/j.ijbiomac.2023.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
As the most abundant aromatic resource, lignin is an appreciated biomass material to obtain aromatic high-value chemicals. However, the selective cleavage of lignin Cα-Cβ bonds under mild conditions constitutes a challenge. Herein, a photocatalyst having high oxidation capacity was successfully synthesized by codoping S and Cl atoms into graphite carbon nitride (g-C3N4). The resulting S,Cl/CN-1.5 photocatalyst exhibits enhanced photogenerated electron-hole separation ability and higher valence band potential than g-C3N4. S,Cl/CN-1.5 can efficiently break lignin Cα-Cβ bonds in micellar aqueous medium to produce benzaldehyde and benzyl alcohol as the main products. Mechanism studies show that the photocatalytic cleavage of lignin Cα-Cβ bonds proceeds via single-electron transfer and Cβ radical mechanisms in which hydroxyl radicals and photogenerated holes play an important role. Isotopic experiments show that the O atoms required for the photocatalytic cleavage of lignin Cα-Cβ bonds come from water in the micellar aqueous medium based on the full contact between water and substrate. Although O2 atmosphere is beneficial for the photocatalytic efficiency, O2 is not necessary for the photocatalytic cleavage of lignin Cα-Cβ bonds. This research provides a useful guide for designing efficient photocatalysts to depolymerize lignin into high-value chemicals.
Collapse
Affiliation(s)
- Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China.
| | - Tao Yu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| | - Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Jinyu Wang
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, China
| |
Collapse
|
29
|
Dai D, Qiu J, Xia G, Zhang L, Ma H, Yang L, Yao J. Interspersing CdS nanodots into iodine vacancy-rich BiOI sphere for photocatalytic lignin valorization. Int J Biol Macromol 2023; 227:1317-1324. [PMID: 36470441 DOI: 10.1016/j.ijbiomac.2022.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Flower-like BiOI was decorated by CdS nanodots and followed by the introduction of iodine vacancies (VI) for photocatalytic sodium lignosulfonate (SLS) valorization under visible light. The iodine vacancies could adjust the band configuration, strengthen the light absorption and act as electron traps, while the intimate contact between BiOI and CdS nanodots provides a high-speed channel for charge transfer. As a consequence, the photocatalytic performance of SLS conversion into value-added vanillin was greatly improved over CdS/BiOI-VI compared with those of CdS, BiOI and CdS/BiOI. The highest yield of vanillin is 10.95 mg/gSLS over CdS/BiOI-VI, about 5, 8.7, 1.3 times those of CdS, BiOI, CdS/BiOI, respectively, and exceeding most related photocatalysts reported elsewhere. More significantly, as to the lignin from Masson pine and alkali lignin, the corresponding vanillin yield can reach 7.04 and 6.54 mg/glignin, respectively, under the same condition, which suggests the great potential and universality for photocatalytic lignin valorization over such CdS/BiOI-VI heterostructure.
Collapse
Affiliation(s)
- Dingliang Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guanglu Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Luan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Dong Y, Dong L, Gu X, Wang Y, Liao Y, Luque R, Chen Z. Sustainable production of active pharmaceutical ingredients from lignin-based benzoic acid derivatives via “demand orientation”. GREEN CHEMISTRY 2023; 25:3791-3815. [DOI: 10.1039/d3gc00241a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Catalytic production of several representative active pharmaceutical ingredients (APIs) from lignin.
Collapse
Affiliation(s)
- Yuguo Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhe Liao
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation
- Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
31
|
Xu X, Wang H, Tan CH, Ye X. Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2022; 3:74-91. [PMID: 37035284 PMCID: PMC10080730 DOI: 10.1021/acsorginorgau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.
Collapse
Affiliation(s)
- Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
32
|
Huang M, Guo H, Zeng Z, Xiao H, Hu H, He L, Li K, Liu X, Yan L. Selective Photocatalytic Transformation of Lignin to Aromatic Chemicals by Crystalline Carbon Nitride in Water-Acetonitrile Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15707. [PMID: 36497780 PMCID: PMC9736535 DOI: 10.3390/ijerph192315707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The photocatalytic conversion of lignin to aromatic compounds in aqueous solutions is a promising approach. We herein report a crystalline carbon nitride prepared by high-temperature thermal polymerization and alkali-metal molten salt treatment, which was then applied in the selective conversion of lignin to aromatic compounds. The results showed that the tri-s-tri-C3N4 presented a relatively high activity and selectivity for the conversion of lignin in aqueous solutions. In a 95% water-acetonitrile solution, it achieved a relatively high conversation rate of lignin, reaching 62.00%, and the selectivity of the C-C bond cleavage was high, at 86.8%. The characterization results obtained by TEM, UV-vis/DRS, PL, and transient photocurrent response showed that the ultra-high activity of tri-s-tri-C3N4 was mainly due to the improvements in crystallinity and light absorption. Mechanism studies showed that the dispersion of the catalyst and the combination of lignin and catalyst in aqueous solvents with different acetonitrile ratios were the main factors affecting lignin conversion. As the water content in the solutions increased, the primary active sites were converted from h+ to ·O2-. This study revealed the interactions between lignin, photocatalysts, and reaction solutions, providing a theoretical basis for the photocatalytic conversion of lignin in aqueous solutions.
Collapse
Affiliation(s)
- Meirou Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhenxing Zeng
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Xiao
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Liu He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Kexin Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoming Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Liushui Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Jiangxi Provincial Experimental Teaching Demonstration Center of Environmental Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
33
|
Lu X, Gu X. A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:106. [PMID: 36221137 PMCID: PMC9552425 DOI: 10.1186/s13068-022-02203-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Lignin is a promising alternative to traditional fossil resources for producing biofuels due to its aromaticity and renewability. Pyrolysis is an efficient technology to convert lignin to valuable chemicals, which is beneficial for improving lignin valorization. In this review, pyrolytic behaviors of various lignin were included, as well as the pyrolytic mechanism consisting of initial, primary, and charring stages were also introduced. Several parallel reactions, such as demethoxylation, demethylation, decarboxylation, and decarbonylation of lignin side chains to form light gases, major lignin structure decomposition to generate phenolic compounds, and polymerization of active lignin intermediates to yield char, can be observed through the whole pyrolysis process. Several parameters, such as pyrolytic temperature, time, lignin type, and functional groups (hydroxyl, methoxy), were also investigated to figure out their effects on lignin pyrolysis. On the other hand, zeolite-driven lignin catalytic pyrolysis and lignin co-pyrolysis with other hydrogen-rich co-feedings were also introduced for improving process efficiency to produce more aromatic hydrocarbons (AHs). During the pyrolysis process, phenolic compounds and/or AHs can be produced, showing promising applications in biochemical intermediates and biofuel additives. Finally, some challenges and future perspectives for lignin pyrolysis have been discussed.
Collapse
Affiliation(s)
- Xinyu Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
34
|
Palma B, Cheng X, Liu L, Zhong N, Zhao H, Renneckar S, Larter S, Kibria M, Hu J. Visible‐light Driven Lignin Valorization into Value‐added Chemicals and Sustainable Hydrogen Using Zn1‐xCdxS Solid Solutions as Photocatalyst. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bruna Palma
- University of Calgary Schulich School of Engineering Chemical and Petroleum Engineering CANADA
| | - Xi Cheng
- University of Calgary Chemical and Petroleum Engineering CANADA
| | - Liyang Liu
- The University of British Columbia Department of Wood Science CANADA
| | - Na Zhong
- University of Calgary Department of Chemical and Petroleum Engineering CANADA
| | - Heng Zhao
- University of Calgary Chemical and Petroleum Engineering 3535 Research RD NW T2L 2K8 Calgary CANADA
| | - Scott Renneckar
- The University of British Columbia Department of Wood Science CANADA
| | | | - Md Kibria
- University of Calgary Department of Chemical and Petroleum Engineering CANADA
| | - Jinguang Hu
- University of Calgary Chemical and Petroleum Engineering CANADA
| |
Collapse
|
35
|
Xu J, Shi J, Wang J, Zhang L, Wang Y. Photocatalyst g-C3N4 for efficient cleavage of lignin C C bonds in micellar aqueous medium. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
36
|
Juliá F. Ligand‐to‐Metal Charge Transfer (LMCT) Photochemistry at 3d‐Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabio Juliá
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry Av Paisos Catalans, 16 43007 Tarragona SPAIN
| |
Collapse
|
37
|
Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
38
|
Wu J, Peng Z, Shen T, Liu ZQ. Electrosynthesis of ortho‐Amino Aryl Ketones by Aerobic Electrooxidative Cleavage of the C(2)=C(3)/C(2)‐N Bonds of N‐Boc Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jintao Wu
- Nanjing University of Chinese Medicine CHINA
| | - Zehui Peng
- Nanjing University of Chinese Medicine CHINA
| | - Tong Shen
- Nanjing University of Chinese Medicine CHINA
| | - Zhong-Quan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University CHINA
| |
Collapse
|
39
|
Parmar D, Dhiman AK, Kumar R, Sharma AK, Sharma U. Cp*Co(III)-Catalyzed Selective C8-Olefination and Oxyarylation of Quinoline N-Oxides with Terminal Alkynes. J Org Chem 2022; 87:9069-9087. [PMID: 35758768 DOI: 10.1021/acs.joc.2c00752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herein we report Cp*Co(III)-catalyzed site-selective (C8)-H olefination and oxyarylation of quinoline N-oxides with terminal alkynes. The selectivity for C8-olefination and oxyarylation is sterically and electronically controlled. In the case of quinoline N-oxides (unsubstituted at the C2 position), only the olefination product was obtained irrespective of the nature of the alkynes. In contrast, oxyarylation was observed exclusively when 2-substituted quinoline N-oxides were reacted with 9-ethynylphenanthrene. However, alkynes with electron-withdrawing groups provided only olefination products with 2-substituted quinoline N-oxides. The developed strategy allowed a facile functionalization of quinoline N-oxides bearing natural molecules and an estrone-derived terminal alkyne to deliver the corresponding olefinated and oxyarylated products. To understand the reaction mechanism, control experiments, deuterium-labeling experiments, and kinetic isotope effect (KIE) studies were performed.
Collapse
Affiliation(s)
- Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rohit Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akhilesh K Sharma
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
40
|
Light-driven transition-metal-free direct decarbonylation of unstrained diaryl ketones via a dual C–C bond cleavage. Nat Commun 2022; 13:1805. [PMID: 35379809 PMCID: PMC8979990 DOI: 10.1038/s41467-022-29327-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cleavage and formation of carbon−carbon bonds have emerged as powerful tools for structural modifications in organic synthesis. Although transition−metal−catalyzed decarbonylation of unstrained diaryl ketones provides a viable protocol to construct biaryl structures, the use of expensive catalyst and high temperature (>140 oC) have greatly limited their universal applicability. Moreover, the direct activation of two inert C − C bonds in diaryl ketones without the assistance of metal catalyst has been a great challenge due to the inherent stability of C − C bonds (nonpolar, thermo-dynamically stable, and kinetically inert). Here we report an efficient light-driven transition-metal-free strategy for decarbonylation of unstrained diaryl ketones to construct biaryl compounds through dual inert C − C bonds cleavage. This reaction featured mild reaction conditions, easy-to-handle reactants and reagents, and excellent functional groups tolerance. The mechanistic investigation and DFT calculation suggest that this strategy proceeds through the formation of dioxy radical intermediate via a single-electron-transfer (SET) process between photo-excited diaryl ketone and DBU mediated by DMSO, followed by removal of CO2 to construct biaryl compounds. The cleavage and formation of carbon−carbon bonds is an important strategy for structural modifications in organic syntheses. Herein, the authors present a photoinduced method to construct biaryl compounds through dual inert C−C bond cleavage.
Collapse
|
41
|
Shen T, Liu S, Zhao J, Wang N, Yang L, Wu J, Shen X, Liu ZQ. Electrochemical Aerobic Oxidative Cleavage of (sp 3)C-C(sp 3)/H Bonds in Alkylarenes. J Org Chem 2022; 87:3286-3295. [PMID: 35188765 DOI: 10.1021/acs.joc.1c02947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An electrochemistry-promoted oxidative cleavage of (sp3)C-C(sp3)/H bonds in alkylarenes was developed. Various aryl alkanes can be smoothly converted into ketones/aldehydes under aerobic conditions using a user-friendly undivided cell setup. The features of air as oxidant, scalability, and mild conditions make them attractive in synthetic organic chemistry.
Collapse
Affiliation(s)
- Tong Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Institute of Molecular Sciences, University of Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Shuai Liu
- Institute of Molecular Sciences, University of Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nengyong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Le Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jintao Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
42
|
Radical generation and fate control for photocatalytic biomass conversion. Nat Rev Chem 2022; 6:197-214. [PMID: 37117437 DOI: 10.1038/s41570-022-00359-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Photocatalysis is an emerging approach for sustainable chemical production from renewable biomass under mild conditions. Active radicals are always generated as key intermediates, in which their high reactivity renders them versatile for various upgrading processes. However, controlling their reaction is a challenge, especially in highly functionalized biomass frameworks. In this Review, we summarize recent advanced photocatalytic systems for selective biomass valorization, with an emphasis on their distinct radical-mediated reaction patterns. The strategies for generating a specific radical intermediate and controlling its subsequent conversion towards desired chemicals are also highlighted, aiming to provide guidance for future studies. We believe that taking full advantage of the unique reactivity of radical intermediates would provide great opportunities to develop more efficient photocatalytic systems for biomass valorization.
Collapse
|
43
|
Nayak P, Nayak M, Meena K, Kar S. Oxo(corrolato)vanadium( iv) catalyzed epoxidation: oxo(peroxo)(corrolato)vanadium( v) is the true catalytic species. NEW J CHEM 2022. [DOI: 10.1039/d1nj06015e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxo(corrolato)vanadium(iv) complexes are highly efficient oxidizers in the presence of H2O2 and KHCO3, and oxo(peroxo)(corrolato)vanadium(v) complexes are the catalytic intermediate.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
44
|
Wang Y, He Q, Cao Z, Wang P, Chen G, Beller M. Hypervalent-iodine promoted selective cleavage of C(sp 3)–C(sp 3) bonds in ethers. Org Chem Front 2022. [DOI: 10.1039/d2qo01114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-promoted and radical-mediated strategy for the site-specific cleavage of C(sp3)–C(sp3) bonds in ethers is reported.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Qin He
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zehui Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Wang
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock 18059, Germany
| |
Collapse
|
45
|
Yang G, Shi J, Sun H, Tong X. A product-controllable aerobic oxidative cleavage of vicinal diols using vanadium-based photocatalyst. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00566a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalytic controllable oxidative cleavage of C-C bond is developed with molecular oxygen as the oxidant. Herein, a series of vanadium oxide-based photocatalysts were synthesized and characterized by XPS, PL,...
Collapse
|
46
|
Chen H, Hong D, Wan K, Wang J, Niu B, Zhang Y, Long D. Urchin-like Nb2O5 hollow microspheres enabling efficient and selective photocatalytic C–C bond cleavage in lignin models under ambient conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Abderrazak Y, Bhattacharyya A, Reiser O. Durch sichtbares Licht induzierte Homolyse unedler, gut verfügbarer Metallsubstratkomplexe: Eine komplementäre Aktivierungsstrategie in der Photoredoxkatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Youssef Abderrazak
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Aditya Bhattacharyya
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
48
|
Abderrazak Y, Bhattacharyya A, Reiser O. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 60:21100-21115. [PMID: 33599363 PMCID: PMC8519011 DOI: 10.1002/anie.202100270] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Indexed: 01/16/2023]
Abstract
The mainstream applications of visible-light photoredox catalysis predominately involve outer-sphere single-electron transfer (SET) or energy transfer (EnT) processes of precious metal RuII or IrIII complexes or of organic dyes with low photostability. Earth-abundant metal-based Mn Ln -type (M=metal, Ln =polydentate ligands) complexes are rapidly evolving as alternative photocatalysts as they offer not only economic and ecological advantages but also access to the complementary inner-sphere mechanistic modes, thereby transcending their inherent limitations of ultrashort excited-state lifetimes for use as effective photocatalysts. The generic process, termed visible-light-induced homolysis (VLIH), entails the formation of suitable light-absorbing ligated metal-substrate complexes (Mn Ln -Z; Z=substrate) that can undergo homolytic cleavage to generate Mn-1 Ln and Z. for further transformations.
Collapse
Affiliation(s)
- Youssef Abderrazak
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Aditya Bhattacharyya
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
49
|
McCaffrey VP, Conover OQ, Bernard MA, Yarranton JT, Lessnau NR, Hempfling JP. Substituent effects in dioxovanadium(V) schiff-base complexes: Tuning the outcomes of oxidation reactions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Li C, Li J, Qin L, Yang P, Vlachos DG. Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02551] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Jiang Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Ling Qin
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| |
Collapse
|