1
|
Pu P, Zheng J, Qiao M, Yang L, Tong A, Zhu X, Zhang X. Engineered β1-3- N-Acetylglucosaminyltransferase Facilitating the One-Pot Multienzyme Synthesis of Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28019-28027. [PMID: 39641599 DOI: 10.1021/acs.jafc.4c04092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
β1-3-linked N-acetylglucosaminide is a prevalent carbohydrate motif found in oligosaccharides, polysaccharides, glycoproteins, and glycolipids. It is a crucial component of human milk oligosaccharides (HMOs). Neisseria meningitidis β1-3-N-acetylglucosaminyltransferase (NmLgtA) catalyzes the formation of a glycosidic bond and has the potential for use in synthesizing HMOs. However, this application is hindered by challenges such as low levels of enzyme expression, poor stability, and significant aggregation. Since there is no available crystal structure for NmLgtA, we used its AlphaFold 2 predicted structure to identify potential unfavorable factors. We then modified the enzyme by removing the 17 N-terminal amino acids and substituting nine specific residues. The engineered NmLgtA-Opti exhibited improved thermal stability, increased soluble protein expression, complete relief from aggregation, and enhanced catalysis while maintaining its catalytic specificity and substrate promiscuity. Furthermore, NmLgtA-Opti maximizes substrate utilization and can be employed in a sequential one-pot multienzyme platform for high-yield production of HMOs.
Collapse
Affiliation(s)
- Pei Pu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anqi Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Bao S, Shen T, Shabahang M, Bai G, Li L. Enzymatic Synthesis of Disialyllacto-N-Tetraose (DSLNT) and Related Human Milk Oligosaccharides Reveals Broad Siglec Recognition of the Atypical Neu5Acα2-6GlcNAc Motif. Angew Chem Int Ed Engl 2024; 63:e202411863. [PMID: 39223086 PMCID: PMC11631665 DOI: 10.1002/anie.202411863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Sialic acids (Sias) are ubiquitously expressed on all types of glycans, typically as terminating residues. They usually link to galactose, N-acetylgalactosamine, or other Sia residues, forming ligands of many glycan-binding proteins. An atypical linkage to the C6 of N-acetylglucosamine (GlcNAc) has been identified in human milk oligosaccharides (HMOs, e.g., DSLNT) and tumor-associated glycoconjugates. Herein, describe the systematic synthesis of these HMOs in an enzymatic modular manner. The synthetic strategy relies on a novel activity of ST6GalNAc6 for efficient construction of the Neu5Acα2-6GlcNAc linkage, and another 12 specific enzyme modules for sequential HMO assembly. The structures enabled comprehensive exploration of their structure-function relationships using glycan microarrays, revealing broad yet distinct recognition by Siglecs of the atypical Neu5Acα2-6GlcNAc motif. The work provides tools and new insight for the functional study and potential applications of Siglecs and HMOs.
Collapse
Affiliation(s)
- Shumin Bao
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tangliang Shen
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - MohammadHossein Shabahang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Guitao Bai
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Tseng HK, Lee TY, Chiang YC, Kuo WH, Tseng HW, Wang HK, Ni CK, Lin CC. Versatile Strategy for the Chemoenzymatic Synthesis of Branched Human Milk Oligosaccharides Containing the Lacto-N-Biose Motif. Angew Chem Int Ed Engl 2024:e202419021. [PMID: 39589188 DOI: 10.1002/anie.202419021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Human milk oligosaccharides (HMOs) exhibit prebiotic, antimicrobial, and immunomodulatory properties and confer significant benefits to infants. Branched HMOs are constructed through diverse glycosidic linkages and prominently feature the lacto-N-biose (LNB, Gal-β1,3-GlcNAc) motif with fucose and/or sialic acid modifications, displaying structural complexity that surpasses that of N- and O-glycans. However, synthesizing comprehensive libraries of branched HMO is challenging due to this complexity. Although a few systematic synthetic strategies have emerged, many of them rely on labor-intensive chemical methodologies or exploit the substrate specificity of human N-acetylglucosaminyltransferase 2 (hGCNT2). In this study, we capitalized on the substrate promiscuities of hGCNT2 and bacterial glycosyltransferases (GTs) to construct a universal tetrasaccharide core in a highly efficient manner. This core was systematically and flexibly extended to generate diverse branched HMOs utilizing the promiscuity of bacterial GTs coupled with N-trifluoroacetyl glucosamine (GlcNTFA), which facilitated sugar chain elongation. The GlcNTFA residues were subsequently converted into various N-modified glucosamines through straightforward chemical manipulations to modulate the activities of additional GTs during glycan extension. These masked amino groups were ultimately reverted to N-acetyl groups, facilitating the synthesis of a broad range of asymmetric and multiantennary HMOs featuring LNB moieties, including many previously inaccessible structures.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Ching Chiang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Wen-Hua Kuo
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
4
|
Ma S, Gao J, Tian Y, Wen L. Recent progress in chemoenzymatic synthesis of human glycans. Org Biomol Chem 2024; 22:7767-7785. [PMID: 39246045 DOI: 10.1039/d4ob01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Gao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Guang C, Du Z, Meng J, Zhu Y, Zhu Y, Mu W. Recent Progress in Physiological Significance and Biosynthesis of Lacto- N-triose II: Insights into a Crucial Biomolecule. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19539-19548. [PMID: 39188079 DOI: 10.1021/acs.jafc.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Lacto-N-triose II (LNTri II), an important precursor for human milk oligosaccharide (HMOs) synthesis, has garnered significant attention due to its structural features and physiological properties. Composed of galactose (Gal), N-acetylglucosamine (GlcNAc), and glucose (Glc), with the chemical structure GlcNAcβ1,3Galβ1,4Glc, the distinctive structure of LNTri II confers various physiological functions such as promoting the growth of beneficial bacteria, regulating the infant immune system, and preventing certain gastrointestinal diseases. Extensive research efforts have been dedicated to elucidating efficient enzymatic synthesis pathways for LNTri II production, with particular emphasis on the transglycosylation activity of β-N-acetylhexosaminidases and the action of β-1,3-N-acetylglucosaminyltransferases. Additionally, metabolic engineering and cell factory approaches have been explored, harnessing the potential of engineered microbial hosts for the large-scale biosynthesis of LNTri II. This review summarizes the structure, derivatives, physiological effects, and biosynthesis of LNTri II.
Collapse
Affiliation(s)
- Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yunqi Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
6
|
Jiang Y, Sun T, Lin Y, Liu M, Wang X. Is it possible to obtain substitutes for human milk oligosaccharides from bovine milk, goat milk, or other mammal milks? Compr Rev Food Sci Food Saf 2024; 23:e70018. [PMID: 39302160 DOI: 10.1111/1541-4337.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Considering the current level of chemical and biological synthesis technology, it was a sensible selection to obtain milk oligosaccharides (MOs) from other mammals as the potential substitute for human MOs (HMOs) that possessed various structural features in the infant formula. Through a comprehensive analysis of the content, structure, and function of MOs in six distinct varieties of mammal milk, it has been shown that goat milk was the most suitable material for the preparation as a human milk substitute. Goat MOs (GMOs) had a relatively high content and diverse structural features compared to those found in other mammalian milks. The concentration of GMOs in colostrum ranged from 60 to 350 mg/L, whereas in mature milk, it ranged from 200 to 24,00 mg/L. The acidic oligosaccharides in goat milk have attracted considerable attention due to their closeness in acidic content and structural diversity with HMOs. Simultaneously, it was discovered that some structures, like N-glycolylneuraminic acid, were found to have a certain content in GMOs and served essential functional properties. Moreover, studies focused on the extraction of MOs from goat milk indicated that the production of GMOs on an industrial scale was viable. Furthermore, it is imperative to do further study on GMOs to enhance the preparation process, discover of new MOs structures and bioactivity evaluation, which will contribute to the development of both the commercial production of MOs and the goat milk industry.
Collapse
Affiliation(s)
- Yishan Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yihan Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- College of Enology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Fontana J, Sparkman-Yager D, Faulkner I, Cardiff R, Kiattisewee C, Walls A, Primo TG, Kinnunen PC, Garcia Martin H, Zalatan JG, Carothers JM. Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling. Nat Commun 2024; 15:6341. [PMID: 39068154 PMCID: PMC11283517 DOI: 10.1038/s41467-024-50528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (rS = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - David Sparkman-Yager
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ian Faulkner
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Aria Walls
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Tommy G Primo
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Patrick C Kinnunen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Hector Garcia Martin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Barnum CR, Paviani B, Couture G, Masarweh C, Chen Y, Huang YP, Markel K, Mills DA, Lebrilla CB, Barile D, Yang M, Shih PM. Engineered plants provide a photosynthetic platform for the production of diverse human milk oligosaccharides. NATURE FOOD 2024; 5:480-490. [PMID: 38872016 PMCID: PMC11199141 DOI: 10.1038/s43016-024-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates which support the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the approximately 200 structurally diverse HMOs at scale has proved difficult. Here we produce a diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high-value and complex HMOs, such as lacto-N-fucopentaose I. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement with potential applications in adult and infant health. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the low-cost and sustainable production of HMOs.
Collapse
Affiliation(s)
- Collin R Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Garret Couture
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Chad Masarweh
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Minliang Yang
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Li Y, Li Y, Guo Y, Chen C, Yang L, Jiang Q, Ling P, Wang S, Li L, Fang J. Enzymatic modular synthesis of asymmetrically branched human milk oligosaccharides. Carbohydr Polym 2024; 333:121908. [PMID: 38494200 DOI: 10.1016/j.carbpol.2024.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Human milk oligosaccharides (HMOs) are intricate glycans that promote healthy growth of infants and have been incorporated into infant formula as food additives. Despite their importance, the limited availability of asymmetrically branched HMOs hinders the exploration of their structure and function relationships. Herein, we report an enzymatic modular strategy for the efficient synthesis of these HMOs. The key branching enzyme for the assembly of branched HMOs, human β1,6-N-acetylglucosaminyltransferase 2 (GCNT2), was successfully expressed in Pichia pastoris for the first time. Then, it was integrated with six other bacterial glycosyltransferases to establish seven glycosylation modules. Each module comprises a one-pot multi-enzyme (OPME) system for in-situ generation of costly sugar nucleotide donors, combined with a glycosyltransferase for specific glycosylation. This approach enabled the synthesis of 31 branched HMOs and 13 linear HMOs in a stepwise manner with well-programmed synthetic routes. The binding details of these HMOs with related glycan-binding proteins were subsequently elucidated using glycan microarray assays to provide insights into their biological functions. This comprehensive collection of synthetic HMOs not only serves as standards for HMOs structure identification in complex biological samples but also significantly enhances the fields of HMOs glycomics, opening new avenues for biomedical applications.
Collapse
Affiliation(s)
- Yinshuang Li
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Yi Li
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuxi Guo
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States of America
| | - Congcong Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Lin Yang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Qian Jiang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Peixue Ling
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China
| | - Shuaishuai Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lei Li
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States of America.
| | - Junqiang Fang
- National Glycoengineering Research Center and Shandong Key Laboratory of carbohydrate chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
10
|
Wu Y, Sun Y, Pei C, Peng X, Liu X, Qian EW, Du Y, Li JJ. Automated chemoenzymatic modular synthesis of human milk oligosaccharides on a digital microfluidic platform. RSC Adv 2024; 14:17397-17405. [PMID: 38813121 PMCID: PMC11134329 DOI: 10.1039/d4ra01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Glycans, along with proteins, nucleic acids, and lipids, constitute the four fundamental classes of biomacromolecules found in living organisms. Generally, glycans are attached to proteins or lipids to form glycoconjugates that perform critical roles in various biological processes. Automatic synthesis of glycans is essential for investigation into structure-function relationships of glycans. In this study, we presented a method that integrated magnetic bead-based manipulation and modular chemoenzymatic synthesis of human milk oligosaccharides (HMOs), on a DMF (Digital Microfluidics) platform. On the DMF platform, enzymatic modular reactions were conducted in solution, and purification of products or intermediates was achieved by using DEAE magnetic beads, circumventing the intricate steps required for traditional solid-phase synthesis. With this approach, we have successfully synthesized eleven HMOs with highest yields of up to >90% on the DMF platform. This study would not only lay the foundation for OPME synthesis of glycans on the DMF platform, but also set the stage for developing automated enzymatic glycan synthesizers based on the DMF platform.
Collapse
Affiliation(s)
- Yiran Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunze Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Caixia Pei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology Nakacho 2-24-16, Koganei Tokyo 184-8588 Japan
| | - Xinlv Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xianming Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Eika W Qian
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology Nakacho 2-24-16, Koganei Tokyo 184-8588 Japan
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Jian-Jun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Liu J, Feng X, Liang L, Sun L, Meng D. Enzymatic biosynthesis of D-galactose derivatives: Advances and perspectives. Int J Biol Macromol 2024; 267:131518. [PMID: 38615865 DOI: 10.1016/j.ijbiomac.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
D-Galactose derivatives, including galactosyl-conjugates and galactose-upgrading compounds, provide various physiological benefits and find applications in industries such as food, cosmetics, feed, pharmaceuticals. Many research on galactose derivatives focuses on identification, characterization, development, and mechanistic aspects of their physiological function, providing opportunities and challenges for the development of practical approaches for synthesizing galactose derivatives. This study focuses on recent advancements in enzymatic biosynthesis of galactose derivatives. Various strategies including isomerization, epimerization, transgalactosylation, and phosphorylation-dephosphorylation were extensively discussed under the perspectives of thermodynamic feasibility, theoretical yield, cost-effectiveness, and by-product elimination. Specifically, the enzymatic phosphorylation-dephosphorylation cascade is a promising enzymatic synthesis route for galactose derivatives because it can overcome the thermodynamic equilibrium of isomerization and utilize cost-effective raw materials. The study also elucidates the existing challenges and future trends in enzymatic biosynthesis of galactose derivatives. Collectively, this review provides a real-time summary aimed at promoting the practical biosynthesis of galactose derivatives through enzymatic catalysis.
Collapse
Affiliation(s)
- Juanjuan Liu
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Xinming Feng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China
| | - Likun Liang
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Liqin Sun
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China.
| | - Dongdong Meng
- College of Life Sciences, Yantai University, Yantai 264005, Shandong, China; Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovation Utilization, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
12
|
Endo S, Sugita T, Kamai S, Nakamura K, Yamazaki F, Sampei S, Snarskis G, Valančiūtė A, Kazemi M, Rokaitis I, Koketsu K. Selective microbial production of lacto-N-fucopentaose I in Escherichia coli using engineered α-1,2-fucosyltransferases. Metab Eng 2024; 82:1-11. [PMID: 38145749 DOI: 10.1016/j.ymben.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Lacto-N-fucopentaose I (LNFP I) is the second most abundant fucosylated human milk oligosaccharide (HMO) in breast milk after 2'-fucosyllactose (2'-FL). Studies have reported that LNFP I exhibits antimicrobial activity against group B Streptococcus and antiviral effects against Enterovirus and Norovirus. Microbial production of HMOs by engineered Escherichia coli is an attractive, low-cost process, but few studies have investigated production of long-chain HMOs, including the pentasaccharide LNFP I. LNFP I is synthesized by α1,2-fucosyltransfer reaction to the N-acetylglucosamine moiety of the lacto-N-tetraose skeleton, which is catalyzed by α1,2-fucosyltransferase (α1,2-FucT). However, α1,2-FucTs competitively transfer fucose to lactose, resulting in formation of the byproduct 2'-FL. In this study, we constructed LNFP I-producing strains of E. coli with various α1,2-fucTs, and observed undesired 2'-FL accumulation during fed-batch fermentation, although, in test tube assays, some strains produced LNFP I without 2'-FL. We hypothesized that promiscuous substrate selectivity of α1,2-FucT was responsible for 2'-FL production. Therefore, to decrease the formation of byproduct 2'-FL, we designed 15 variants of FsFucT from Francisella sp. FSC1006 by rational and semi-rational design approaches. Five of these variants of FsFucT surpassed a twofold reduction in 2'-FL production compared with wild-type FsFucT while maintaining comparable levels of LNFP I production. These designs encompassed substitutions in either a loop region of the enzyme (residues 154-171), or in specific residues (Q7, H162, and L164) that influence substrate binding either directly or indirectly. In particular, the E. coli strain that expressed FsFucT_S3 variants, with a substituted loop region (residues 154-171) forming an α-helix structure, achieved an accumulation of 19.6 g/L of LNFP I and 0.04 g/L of 2'-FL, while the E. coli strain expressing the wild-type FsFucT accumulated 12.2 g/L of LNFP I and 5.85 g/L of 2'-FL during Fed-bach fermentation. Therefore, we have successfully demonstrated the selective and efficient production of the pentasaccharide LNFP I without the byproduct 2'-FL by combining protein engineering of α1,2-FucT designed through in silico structural modeling of an α1,2-FucT and docking simulation with various ligands, with metabolic engineering of the host cell.
Collapse
Affiliation(s)
- Shun Endo
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomotoshi Sugita
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Sayaka Kamai
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazuki Nakamura
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Fuhito Yamazaki
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Sotaro Sampei
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | | | | | - Masoud Kazemi
- Biomatter, Žirmūnų G. 139A, Vilnius 09120, Lithuania
| | | | - Kento Koketsu
- Kirin Central Research Institute, Kirin Holdings Company, Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
13
|
Li Y, Chen Q, Liu S, Deng L, Li S, Gao R. Efficient One-Pot Synthesis of Uridine Diphosphate Galactose Employing a Trienzyme System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3644-3653. [PMID: 38335068 DOI: 10.1021/acs.jafc.3c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The limited availability of high-cost nucleotide sugars is a significant constraint on the application of their downstream products (glycosides and prebiotics) in the food or pharmaceutical industry. To better solve the problem, this study presented a one-pot approach for the biosynthesis of UDP-Gal using a thermophilic multienzyme system consisting of GalK, UGPase, and PPase. Under optimal conditions, a 2 h reaction resulted in a UTP conversion rate of 87.4%. In a fed-batch reaction with Gal/ATP = 20 mM:10 mM, UDP-Gal accumulated to 33.76 mM with a space-time yield (STY) of 6.36 g/L·h-1 after the second feeding. In repetitive batch synthesis, the average yield of UDP-Gal over 8 cycles reached 10.80 g/L with a very low biocatalyst loading of 0.002 genzymes/gproduct. Interestingly, Galk (Tth0595) could synthesize Gal-1P using ADP as a donor of phosphate groups, which had never been reported before. This approach possessed the benefits of high synthesis efficiency, low cost, and superior reaction system stability, and it provided new insights into the rapid one-pot synthesis of UDP-Gal and high-value glycosidic compounds.
Collapse
Affiliation(s)
- Yajing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Qi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Siyao Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Lin Deng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Shichao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun 130021, China
| |
Collapse
|
14
|
Zhu L, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15908-15925. [PMID: 37851533 DOI: 10.1021/acs.jafc.3c04412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Human milk is the gold standard for infant feeding. Human milk oligosaccharides (HMOs) are a unique group of oligosaccharides in human milk. Great interest in HMOs has grown in recent years due to their positive effects on various aspects of infant health. HMOs provide various physiologic functions, including establishing a balanced infant's gut microbiota, strengthening the gastrointestinal barrier, preventing infections, and potential support to the immune system. However, the clinical application of HMOs is challenging due to their specificity to human milk and the difficulties and high costs associated with their isolation and synthesis. Here, the differences in oligosaccharides in human and other mammalian milk are compared, and the synthetic strategies to access HMOs are summarized. Additionally, the potential use and molecular mechanisms of HMOs as a new food bioactive component in different diseases, such as infection, necrotizing enterocolitis, diabetes, and allergy, are critically reviewed. Finally, the current challenges and prospects of HMOs in basic research and application are discussed.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
15
|
Hussnaetter KP, Palm P, Pich A, Franzreb M, Rapp E, Elling L. Strategies for Automated Enzymatic Glycan Synthesis (AEGS). Biotechnol Adv 2023; 67:108208. [PMID: 37437855 DOI: 10.1016/j.biotechadv.2023.108208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Glycans are the most abundant biopolymers on earth and are constituents of glycoproteins, glycolipids, and proteoglycans with multiple biological functions. The availability of different complex glycan structures is of major interest in biotechnology and basic research of biological systems. High complexity, establishment of general and ubiquitous synthesis techniques, as well as sophisticated analytics, are major challenges in the development of glycan synthesis strategies. Enzymatic glycan synthesis with Leloir-glycosyltransferases is an attractive alternative to chemical synthesis as it can achieve quantitative regio- and stereoselective glycosylation in a single step. Various strategies for synthesis of a wide variety of different glycan structures has already be established and will exemplarily be discussed in the scope of this review. However, the application of enzymatic glycan synthesis in an automated system has high demands on the equipment, techniques, and methods. Different automation approaches have already been shown. However, while these techniques have been applied for several glycans, only a few strategies are able to conserve the full potential of enzymatic glycan synthesis during the process - economical and enzyme technological recycling of enzymes is still rare. In this review, we show the major challenges towards Automated Enzymatic Glycan Synthesis (AEGS). First, we discuss examples for immobilization of glycans or glycosyltransferases as an important prerequisite for the embedment and implementation in an enzyme reactor. Next, improvement of bioreactors towards automation will be described. Finally, analysis and monitoring of the synthesis process are discussed. Furthermore, automation processes and cycle design are highlighted. Accordingly, the transition of recent approaches towards a universal automated glycan synthesis platform will be projected. To this end, this review aims to describe essential key features for AEGS, evaluate the current state-of-the-art and give thought- encouraging impulses towards future full automated enzymatic glycan synthesis.
Collapse
Affiliation(s)
- Kai Philip Hussnaetter
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry and DWI Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Matthias Franzreb
- Karlsruher Institute of Technology (KIT), Institute of Functional Interfaces, Hermann v. Helmholtz, Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestrasse 20 * ZENIT, 39120 Magdeburg, Germany; Max Planck Institute for Dynamics of Complex Technical System, Bioprocess Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany.
| |
Collapse
|
16
|
Li T, Li J, Yan Q, Yang S, Jiang Z. Biochemical characterization of a novel β-galactosidase from Lacticaseibacillus zeae and its application in synthesis of lacto-N-tetraose. J Dairy Sci 2023; 106:6623-6634. [PMID: 37210349 DOI: 10.3168/jds.2023-23221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/02/2023] [Indexed: 05/22/2023]
Abstract
Lacto-N-tetraose (LNT) is one of the most important components of human milk oligosaccharides, which has various beneficial health effects. β-Galactosidase is an important enzyme used in dairy processing. The transglycosylation activity of β-galactosidases offers an attractive approach for LNT synthesis. In this study, we reported for the first time the biochemical characterization of a novel β-galactosidase (LzBgal35A) from Lacticaseibacillus zeae. LzBgal35A belongs to glycoside hydrolases (GH) family 35 and shared the highest identity of 59.9% with other reported GH 35 members. The enzyme was expressed as soluble protein in Escherichia coli. The purified LzBgal35A displayed optimal activity at pH 4.5 and 55°C. It was stable within the pH range of 3.5 to 7.0 and up to 60°C. Moreover, LzBgal35A could catalyze the synthesis of LNT via transferring the galactose residue from o-nitrophenyl-β-galactopyranoside to lacto-N-triose II. Under optimal conditions, the conversion rate of LNT reached 45.4% (6.4 g/L) within 2 h, which was by far the highest yield of LNT synthesized through a β-galactosidase-mediated transglycosylation reaction. This study demonstrated that LzBgal35A has great potential application in LNT synthesis.
Collapse
Affiliation(s)
- Ting Li
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Jing Li
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Qiaojuan Yan
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China; College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Shaoqing Yang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Zhengqiang Jiang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
17
|
Ali MY, Liaqat F, Khazi MI, Sethupathy S, Zhu D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides-A review. Int J Biol Macromol 2023; 249:125916. [PMID: 37527764 DOI: 10.1016/j.ijbiomac.2023.125916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Glycosyltransferases (GTs) catalyze the transfer of active monosaccharide donors to carbohydrates to create a wide range of oligosaccharide structures. GTs display strong regioselectivity and stereoselectivity in producing glycosidic bonds, making them extremely valuable in the in vitro synthesis of oligosaccharides. The synthesis of oligosaccharides by GTs often gives high yields; however, the enzyme activity may experience product inhibition. Additionally, the higher cost of nucleotide sugars limits the usage of GTs for oligosaccharide synthesis. In this review, we comprehensively discussed the structure and mechanism of GTs based on recent literature and the CAZY website data. To provide innovative ideas for the functional studies of GTs, we summarized several remarkable characteristics of GTs, including folding, substrate specificity, regioselectivity, donor sugar nucleotides, catalytic reversibility, and differences between GTs and GHs. In particular, we highlighted the recent advancements in multi-enzyme cascade reactions and co-immobilization of GTs, focusing on overcoming problems with product inhibition and cost issues. Finally, we presented various types of GT that have been successfully used for oligosaccharide synthesis. We concluded that there is still an opportunity for improvement in enzymatically produced oligosaccharide yield, and future research should focus on improving the yield and reducing the production cost.
Collapse
Affiliation(s)
- Mohamad Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Barnum CR, Paviani B, Couture G, Masarweh C, Chen Y, Huang YP, Mills DA, Lebrilla CB, Barile D, Yang M, Shih PM. Plant-based production of diverse human milk oligosaccharides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558286. [PMID: 37786679 PMCID: PMC10541580 DOI: 10.1101/2023.09.18.558286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates that aid in the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the ∼130 structurally diverse HMOs at scale has proven difficult. Here, we produce a vast diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high value HMOs, such as lacto-N-fucopentaose I, that have not yet been commercially produced using state-of-the-art microbial fermentative processes. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the cheap and sustainable production of HMOs.
Collapse
|
19
|
Hu M, Miao M, Li K, Luan Q, Sun G, Zhang T. Human milk oligosaccharide lacto-N-tetraose: Physiological functions and synthesis methods. Carbohydr Polym 2023; 316:121067. [PMID: 37321746 DOI: 10.1016/j.carbpol.2023.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention due to their unique role in boosting infant health. Among the HMOs, lacto-N-tetraose (LNT) is a significant constituent associated with various health benefits, such as prebiotic effects, antiadhesive antimicrobials, antiviral protection, and immune modulators. LNT has received a "Generally Recognized as Safe" status by the American Food and Drug Administration and was approved as a food ingredient for infant formula. However, the limited availability of LNT poses a major challenge for its application in food and medicine. In this review, we first explored the physiological functions of LNT. Next, we describe several synthesis methods for production of LNT, including chemical, enzymatic, and cell factory approaches, and summarize the pivotal research results. Finally, challenges and opportunities for the large-scale synthesis of LNT were discussed.
Collapse
Affiliation(s)
- Miaomiao Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kewen Li
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Qingmin Luan
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd., Yucheng, Shandong 251200, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
21
|
Liao Y, Wu J, Li Z, Wang J, Yuan L, Lao C, Chen X, Yao J. Metabolic Engineering of Escherichia coli for High-Level Production of Lacto- N-neotetraose and Lacto- N-tetraose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37467490 DOI: 10.1021/acs.jafc.3c02997] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Lacto-N-neotetraose (LNnT) and lacto-N-tetraose (LNT) are important oligosaccharides found in breast milk and are commonly used as nutritional supplements in infant formula. We used metabolic engineering techniques to optimize the modified Escherichia coli BL21 star (DE3) strain for efficient synthesis of LNnT and LNT using β-1,4-galactosyltransferase (HpgalT) from Helicobacter pylori and β-1,3-galactosyltransferase (SewbdO) from Salmonella enterica subsp. salamae serovar, respectively. Further, we optimized the expression of three key genes, lgtA, galE, and HpgalT (SewbdO), to synthesize LNnT or LNT and deleted several genes (ugd, ushA, agp, wcaJ, otsA, and wcaC) to block competition in the UDP-galactose synthesis pathway. The optimized strain produced LNnT or LNT with a titer of 22.07 or 48.41 g/L, respectively, in a supplemented batch culture, producing 0.41 or 0.73 g/L/h, respectively. The strategies used in this study contribute to the development of cell factories for high-level LNnT and LNT and their derivatives.
Collapse
Affiliation(s)
- Yingxue Liao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan 232000, China
| | - Zhongkui Li
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jin Wang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Caiwen Lao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan 232000, China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Yang L, Zhu Y, Meng J, Zhang W, Mu W. Recent progress in fucosylated derivatives of lacto- N-tetraose and lacto- N-neotetraose. Crit Rev Food Sci Nutr 2023; 64:10384-10396. [PMID: 37341681 DOI: 10.1080/10408398.2023.2224431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable attention owing to their unique physiological functions. Two important tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), are core structures of HMOs. Their safety has been evaluated and they can be added to infant formula as functional ingredients. The fucosylated derivatives of LNT and LNnT, mainly lacto-N-fucopentaose (LNFP) I, LNFP II, LNFP III, and lacto-N-difucohexaose I, exhibit prominent physiological characteristics, including modificating the intestinal microbiota, immunomodulation, anti-bacterial activities, and antiviral infection. However, they have received lesser attention than 2'-fucosyllactose. As precursors, LNT and LNnT are connected to one or two fucosyl units through α1,2/3/4 glycosidic bonds, forming a series of compounds with complex structures. These complex fucosylated oligosaccharides can be biologically synthesized using enzymatic and cell factory approaches. This review summarizes the occurrence, physiological effects, and biosynthesis of fucosylated LNT and LNnT derivatives and their future development.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
23
|
Yang S, Wu C, Yan Q, Li X, Jiang Z. Nondigestible Functional Oligosaccharides: Enzymatic Production and Food Applications for Intestinal Health. Annu Rev Food Sci Technol 2023; 14:297-322. [PMID: 36972156 DOI: 10.1146/annurev-food-052720-114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.
Collapse
Affiliation(s)
- Shaoqing Yang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Chenxuan Wu
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China;
| |
Collapse
|
24
|
Zhao L, Ma Z, Wang Q, Hu M, Zhang J, Chen L, Shi G, Ding Z. Engineering the Thermostability of Sucrose Synthase by Reshaping the Subunit Interaction Contributes to Efficient UDP-Glucose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3832-3841. [PMID: 36795895 DOI: 10.1021/acs.jafc.2c08642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The restricted availability of UDP-glucose, an essential precursor that targets oligo/polysaccharide and glycoside synthesis, makes its practical application difficult. Sucrose synthase (Susy), which catalyzes one-step UDP-glucose synthesis, is a promising candidate. However, due to poor thermostability of Susy, mesophilic conditions are required for synthesis, which slow down the process, limit productivity, and prevent scaled and efficient UDP-glucose preparation. Here, we obtained an engineered thermostable Susy (mutant M4) from Nitrosospira multiformis through automated prediction and greedy accumulation of beneficial mutations. The mutant improved the T1/2 value at 55 °C by 27-fold, resulting in UDP-glucose synthesis at 37 g/L/h of space-time yield that met industrial biotransformation standards. Furthermore, global interaction between mutant M4 subunits was reconstructed by newly formed interfaces according to molecular dynamics simulations, with residue Trp162 playing an important role in strengthening the interface interaction. This work enabled effective, time-saving UDP-glucose production and paved the way for rational thermostability engineering of oligomeric enzymes.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Manfeng Hu
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingxiang Zhang
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
26
|
Yang L, Zhu Y, Zhang W, Mu W. Recent progress in health effects and biosynthesis of lacto- N-tetraose, the most dominant core structure of human milk oligosaccharide. Crit Rev Food Sci Nutr 2023; 64:6802-6811. [PMID: 36744615 DOI: 10.1080/10408398.2023.2175197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human milk oligosaccharides (HMOs), which are a group of complex carbohydrates highly abundant in human milk, have been recognized as critical functional biomolecules for infant health. Lacto-N-tetraose (LNT) is one of the most abundant HMO members and the most dominant core structure of HMO. The promising physiological effects of LNT have been well documented, including prebiotic property, antiadhesive antimicrobial activity, and antiviral effect. Its safety has been evaluated and it has been commercially added to infant formula as a functional ingredient. Because of great commercial importance of LNT, increasing attention has been paid to its highly efficient biological production. In particular, microbial synthesis based on metabolic engineering displays obvious advantages in large-scale production of LNT. This review contains important information about the recent progress in physiological effects, safety evaluation, and biosynthesis of LNT.
Collapse
Affiliation(s)
- Longhao Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Microbial Production of Human Milk Oligosaccharides. Molecules 2023; 28:molecules28031491. [PMID: 36771155 PMCID: PMC9921495 DOI: 10.3390/molecules28031491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are complex nonnutritive sugars present in human milk. These sugars possess prebiotic, immunomodulatory, and antagonistic properties towards pathogens and therefore are important for the health and well-being of newborn babies. Lower prevalence of breastfeeding around the globe, rising popularity of nutraceuticals, and low availability of HMOs have inspired efforts to develop economically feasible and efficient industrial-scale production platforms for HMOs. Recent progress in synthetic biology and metabolic engineering tools has enabled microbial systems to be a production system of HMOs. In this regard, the model organism Escherichia coli has emerged as the preferred production platform. Herein, we summarize the remarkable progress in the microbial production of HMOs and discuss the challenges and future opportunities in unraveling the scope of production of complex HMOs. We focus on the microbial production of five HMOs that have been approved for their commercialization.
Collapse
|
28
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
29
|
Scull CE, Luo M, Jennings S, Taylor CM, Wang G. Cftr deletion in mouse epithelial and immune cells differentially influence the intestinal microbiota. Commun Biol 2022; 5:1130. [PMID: 36289287 PMCID: PMC9605958 DOI: 10.1038/s42003-022-04101-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening genetic disorder, caused by mutations in the CF transmembrane-conductance regulator gene (cftr) that encodes CFTR, a cAMP-activated chloride and bicarbonate channel. Clinically, CF lung disease dominates the adult patient population. However, its gastrointestinal illness claims the early morbidity and mortality, manifesting as intestinal dysbiosis, inflammation and obstruction. As CF is widely accepted as a disease of epithelial dysfunction, it is unknown whether CFTR loss-of-function in immune cells contributes to these clinical outcomes. Using cftr genetic knockout and bone marrow transplantation mouse models, we performed 16S rRNA gene sequencing of the intestinal microbes. Here we show that cftr deletion in both epithelial and immune cells collectively influence the intestinal microbiota. However, the immune defect is a major factor determining the dysbiosis in the small intestine, while the epithelial defect largely influences that in the large intestine. This finding revises the current concept by suggesting that CF epithelial defect and immune defect play differential roles in CF intestinal disease.
Collapse
Affiliation(s)
- Callie E Scull
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Scott Jennings
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
30
|
Zheng J, Xu H, Fang J, Zhang X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydr Polym 2022; 291:119564. [DOI: 10.1016/j.carbpol.2022.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023]
|
31
|
Hu M, Li M, Li C, Zhang T. Biosynthesis of Lacto-N-fucopentaose I in Escherichia coli by metabolic pathway rational design. Carbohydr Polym 2022; 297:120017. [DOI: 10.1016/j.carbpol.2022.120017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
32
|
Li Z, Zhu Y, Zhang P, Zhang W, Mu W. Pathway Optimization and Uridine 5'-Triphosphate Regeneration for Enhancing Lacto- N-Tetraose Biosynthesis in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7727-7735. [PMID: 35723433 DOI: 10.1021/acs.jafc.2c02426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, human milk oligosaccharides (HMOs) have attracted increasing attention and display great commercial importance, especially for the infant formula industry. Lacto-N-tetraose (LNT) is an important neutral HMO commercially added in infant formula and a core structure for synthesizing complex HMOs. Previously, a novel LNT-generating β-1,3-galactosyltransferase from Pseudogulbenkiania ferrooxidans was identified and used for construction of an LNT-producing engineered Escherichia coli. In this work, LNT biosynthesis was further enhanced by pathway optimization and uridine 5'-triphosphate (UTP) regeneration. The main strategies included genomic integration of UDP-glucose 4-epimerase-encoding gene, fine-tuning of the LNT pathway-related genes, blocking of competitive pathways related to UDP-galactose, and overexpression of UTP supply related genes. The maximal LNT titer reached 6.16 and 57.5 g/L by shake-flask and fed-batch fermentation, respectively.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Pan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
33
|
Ooi KE, Zhang XW, Kuo CY, Liu YJ, Yu CC. Chemoenzymatic Synthesis of Asymmetrically Branched Human Milk Oligosaccharide Lacto-N-Hexaose. Front Chem 2022; 10:905105. [PMID: 35711960 PMCID: PMC9194828 DOI: 10.3389/fchem.2022.905105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
We herein reported the first chemoenzymatic synthesis of lacto-N-hexaose (LNH) by combining chemical carbohydrate synthesis with a selectively enzymatic glycosylation strategy. A tetrasaccharide core structure GlcNH2β1→3 (GlcNAcβ1→6) Galβ1→4Glc, a key precursor for subsequent enzymatic glycan extension toward asymmetrically branched human milk oligosaccharides, was synthesized in this work. When the order of galactosyltransferase-catalyzed reactions was appropriately arranged, the β1,4-galactosyl and β1,3-galactosyl moieties could be sequentially assembled on the C6-arm and C3-arm of the tetrasaccharide, respectively, to achieve an efficient LNH synthesis. Lacto-N-neotetraose (LNnH), another common human milk oligosaccharide, was also synthesized en route to the target LNH.
Collapse
Affiliation(s)
- Kai-Eng Ooi
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Xiu-Wen Zhang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Cheng-Yu Kuo
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Ying-Jia Liu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- *Correspondence: Ching-Ching Yu,
| |
Collapse
|
34
|
Wang S, Zhang J, Wei F, Li W, Wen L. Facile Synthesis of Sugar Nucleotides from Common Sugars by the Cascade Conversion Strategy. J Am Chem Soc 2022; 144:9980-9989. [PMID: 35583341 DOI: 10.1021/jacs.2c03138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sugar nucleotides are essential glycosylation donors in the carbohydrate metabolism. Naturally, most sugar nucleotides are derived from a limited number of common sugar nucleotides by de novo biosynthetic pathways, undergoing single or multiple reactions such as dehydration, epimerization, isomerization, oxidation, reduction, amination, and acetylation reactions. However, it is widely believed that such complex bioconversions are not practical for synthetic use due to the high preparation cost and great difficulties in product isolation. Therefore, most of the discovered sugar nucleotides are not readily available. Here, based on de novo biosynthesis mainly, 13 difficult-to-access sugar nucleotides were successfully prepared from two common sugars D-Man and sucrose in high yields, at a multigram scale, and without the need for tedious purification manipulations. This work demonstrated that de novo biosynthesis, although undergoing complex reactions, is also practical and cost-effective for synthetic use by employing a cascade conversion strategy.
Collapse
Affiliation(s)
- Shasha Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| |
Collapse
|
35
|
Bai Y, Yang X, Yu H, Chen X. Substrate and Process Engineering for Biocatalytic Synthesis and Facile Purification of Human Milk Oligosaccharides. CHEMSUSCHEM 2022; 15:e202102539. [PMID: 35100486 PMCID: PMC9272545 DOI: 10.1002/cssc.202102539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Indexed: 05/08/2023]
Abstract
Innovation in process development is essential for applying biocatalysis in industrial and laboratory production of organic compounds, including beneficial carbohydrates such as human milk oligosaccharides (HMOs). HMOs have attracted increasing attention for their potential application as key ingredients in products that can improve human health. To efficiently access HMOs through biocatalysis, a combined substrate and process engineering strategy is developed, namely multistep one-pot multienzyme (MSOPME) design. The strategy allows access to a pure tagged HMO in a single reactor with a single C18-cartridge purification process, despite the length of the target. Its efficiency is demonstrated in the high-yielding (71-91 %) one-pot synthesis of twenty tagged HMOs (83-155 mg), including long-chain oligosaccharides with or without fucosylation or sialylation up to nonaoses from a lactoside without the isolation of the intermediate oligosaccharides. Gram-scale synthesis of an important HMO derivative - tagged lacto-N-fucopentaose-I (LNFP-I) - proceeds in 84 % yield. Tag removal is carried out in high efficiency (94-97 %) without the need for column purification to produce the desired natural HMOs with a free reducing end. The method can be readily adapted for large-scale synthesis and automation to allow quick access to HMOs, other glycans, and glycoconjugates.
Collapse
Affiliation(s)
- Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, 95616, Davis, California, USA
| |
Collapse
|
36
|
Sugita T, Koketsu K. Transporter Engineering Enables the Efficient Production of Lacto- N-triose II and Lacto- N-tetraose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5106-5114. [PMID: 35426313 DOI: 10.1021/acs.jafc.2c01369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lacto-N-triose (LNT II) and lacto-N-tetraose (LNT) are human milk oligosaccharides (HMOs) with various potential functions for infants. HMO production by Escherichia coli fermentation has attracted attention in recent years. However, little is known about the cellular export of HMOs. In this study, we identified four endogenous E. coli transporter genes (setA, setB, ydeA, and mdfA), overexpression of which significantly increased the efficiency of LNT II production. The setA-enhanced strain accumulated 34.2 g/L LNT II in a 3 L bioreactor. In the production of LNT, which uses LNT II as an intermediate, disruption of setA remarkably decreased the LNT II accumulation and enhanced the titer of LNT. Furthermore, by heterologous expression of extracellular β-1,3-N-acetylglucosaminidase from Bifidobacterium bifidum, which degrades LNT II, we eliminated LNT II completely. This study shows that regulation of sugar efflux transporters in E. coli can increase the production of HMOs and decrease the amounts of undesired byproducts.
Collapse
Affiliation(s)
- Tomotoshi Sugita
- Kirin Central Research Institute, Kirin Holdings Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| | - Kento Koketsu
- Kirin Central Research Institute, Kirin Holdings Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa 251-8555, Kanagawa, Japan
| |
Collapse
|
37
|
Fu X, Gadi MR, Wang S, Han J, Liu D, Chen X, Yin J, Li L. General Tolerance of Galactosyltransferases toward UDP‐galactosamine Expands Their Synthetic Capability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuan Fu
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
- Center for Diagnostics & Therapeutics Georgia State University Atlanta GA 30303 USA
| | | | - Shuaishuai Wang
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Jinghua Han
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Ding Liu
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| | - Xi Chen
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Jun Yin
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
- Center for Diagnostics & Therapeutics Georgia State University Atlanta GA 30303 USA
| | - Lei Li
- Department of Chemistry Georgia State University Atlanta GA 30303 USA
| |
Collapse
|
38
|
Fu X, Gadi MR, Wang S, Han J, Liu D, Chen X, Yin J, Li L. General Tolerance of Galactosyltransferases toward UDP-galactosamine Expands Their Synthetic Capability. Angew Chem Int Ed Engl 2021; 60:26555-26560. [PMID: 34661966 PMCID: PMC8720041 DOI: 10.1002/anie.202112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Accessing large numbers of structurally diverse glycans and derivatives is essential to functional glycomics. We showed a general tolerance of galactosyltransferases toward uridine-diphosphate-galactosamine (UDP-GalN), which is not a commonly used sugar nucleotide donor. The property was harnessed to develop a two-step chemoenzymatic strategy for facile synthesis of novel and divergent N-acetylgalactosamine (GalNAc)-glycosides and derivatives in preparative scales. The discovery and the application of the new property of existing glycosyltransferases expand their catalytic capabilities in generating novel carbohydrate linkages, thus prompting the synthesis of diverse glycans and glycoconjugates for biological studies.
Collapse
Affiliation(s)
- Xuan Fu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jinghua Han
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Jun Yin
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
39
|
Zhang L, Yu H, Bai Y, Mishra B, Yang X, Wang J, Yu EB, Li R, Chen X. A Neoglycoprotein-Immobilized Fluorescent Magnetic Bead Suspension Multiplex Array for Galectin-Binding Studies. Molecules 2021; 26:6194. [PMID: 34684775 PMCID: PMC8541226 DOI: 10.3390/molecules26206194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform. A glycan-BSA-bead array containing BSA and 50 glycan-BSA conjugates with tuned glycan valency was generated. The binding profiles of six plant lectins with binding preference towards Gal and/or GalNAc, as well as human galectin-3 and galectin-8, were readily obtained. Our results provide useful information to understand the multivalent glycan-binding properties of human galectins. The neoglycoprotein-immobilized fluorescent magnetic bead suspension multiplex array is a robust and flexible platform for rapid analysis of glycan and GBP interactions and will find broad applications.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Bijoyananda Mishra
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Xiaoxiao Yang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Jing Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Evan B. Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Riyao Li
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA; (L.Z.); (H.Y.); (Y.B.); (B.M.); (X.Y.); (J.W.); (E.B.Y.); (R.L.)
| |
Collapse
|
40
|
Hu D, Wu H, Zhu Y, Zhang W, Mu W. Engineering Escherichia coli for highly efficient production of lacto-N-triose II from N-acetylglucosamine, the monomer of chitin. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:198. [PMID: 34625117 PMCID: PMC8501739 DOI: 10.1186/s13068-021-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Lacto-N-triose II (LNT II), an important backbone for the synthesis of different human milk oligosaccharides, such as lacto-N-neotetraose and lacto-N-tetraose, has recently received significant attention. The production of LNT II from renewable carbon sources has attracted worldwide attention from the perspective of sustainable development and green environmental protection. RESULTS In this study, we first constructed an engineered E. coli cell factory for producing LNT II from N-acetylglucosamine (GlcNAc) feedstock, a monomer of chitin, by introducing heterologous β-1,3-acetylglucosaminyltransferase, resulting in a LNT II titer of 0.12 g L-1. Then, lacZ (lactose hydrolysis) and nanE (GlcNAc-6-P epimerization to ManNAc-6-P) were inactivated to further strengthen the synthesis of LNT II, and the titer of LNT II was increased to 0.41 g L-1. To increase the supply of UDP-GlcNAc, a precursor of LNT II, related pathway enzymes including GlcNAc-6-P deacetylase, glucosamine synthase, and UDP-N-acetylglucosamine pyrophosphorylase, were overexpressed in combination, optimized, and modulated. Finally, a maximum titer of 15.8 g L-1 of LNT II was obtained in a 3-L bioreactor with optimal enzyme expression levels and β-lactose and GlcNAc feeding strategy. CONCLUSIONS Metabolic engineering of E. coli is an effective strategy for LNT II production from GlcNAc feedstock. The titer of LNT II could be significantly increased by modulating the gene expression strength and blocking the bypass pathway, providing a new utilization for GlcNAc to produce high value-added products.
Collapse
Affiliation(s)
- Duoduo Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
41
|
Zhu Y, Li Z, Luo G, Wu H, Zhang W, Mu W. Metabolic Engineering of Escherichia coli for Efficient Biosynthesis of Lacto- N-tetraose Using a Novel β-1,3-Galactosyltransferase from Pseudogulbenkiania ferrooxidans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11342-11349. [PMID: 34436880 DOI: 10.1021/acs.jafc.1c04059] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human milk oligosaccharides (HMOs) attract considerable interest in recent years because of their particular role in infant health. Lacto-N-tetraose (LNT), one of the most abundant HMOs, has been commercially added in the infant formula as a functional fortifier. In this study, a novel LNT-producing β-1,3-galactosyltransferase (β-1,3-GalT) from Pseudogulbenkiania ferrooxidans was screened from 14 putative candidates, and a highly LNT-producing metabolically engineered Escherichia coli strain was constructed based on a previously constructed lacto-N-triose II (LNT II)-producing strain, by strengthening UDP-galactose synthesis and introduction of P. ferrooxidans β-1,3-GalT. The engineered strain produced 3.11 and 25.49 g/L LNT in shake-flask and fed-batch cultivation, with the molar conversion ratio of LNT II to LNT of 88.15 and 85.09%, respectively. The productivity and specific yield of LNT in fed-batch cultivation were measured to be 0.61 g/L·h and 0.76 g/g dry cell weight, respectively. To the best of our knowledge, it is the highest LNT yield ever reported.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
42
|
Abstract
Few classes of natural products rival the structural audacity of oligosaccharides. Their complexity, however, has stood as an immense roadblock to translational research, as access to homogeneous material from nature is challenging. Thus, while carbohydrates are critical to the myriad functional and structural aspects of the biological sciences, their behavior is largely descriptive. This challenge presents an attractive opportunity for synthetic chemistry, particularly in the area of human milk science. First, there is an inordinate need for synthesizing homogeneous human milk oligosaccharides (HMOs). Superimposed on this goal is the mission of conducting syntheses at scale to enable animal studies. Herein, we present a personalized rumination of our involvement, and that of our colleagues, which has led to the synthesis and characterization of HMOs and mechanistic probes. Along the way, we highlight chemical, chemoenzymatic, and synthetic biology based approaches. We close with a discussion on emergent challenges and opportunities for synthesis, broadly defined, in human milk science.
Collapse
Affiliation(s)
- Lianyan L Xu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
43
|
Zhu Y, Luo G, Wan L, Meng J, Lee SY, Mu W. Physiological effects, biosynthesis, and derivatization of key human milk tetrasaccharides, lacto- N-tetraose, and lacto- N-neotetraose. Crit Rev Biotechnol 2021; 42:578-596. [PMID: 34346270 DOI: 10.1080/07388551.2021.1944973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human milk oligosaccharides (HMOs) have recently attracted ever-increasing interest because of their versatile physiological functions. In HMOs, two tetrasaccharides, lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), constitute the essential components, each accounting 6% (w/w) of total HMOs. Also, they serve as core structures for fucosylation and sialylation, generating functional derivatives and elongation generating longer chains of core structures. LNT, LNnT, and their fucosylated and/or sialylated derivatives account for more than 30% (w/w) of total HMOs. For derivatization, LNT and LNnT can be modified into a series of complex fucosylated and/or sialylated HMOs by transferring fucose residues at α1,2-, α1,3-, and α1,3/4-linkage and/or sialic acid residues at α2,3- and α2,6-linkage. Such structural diversity allows these HMOs to possess great commercial value and an application potential in the food and pharmaceutical industries. In this review, we first elaborate the physiological functions of these tetrasaccharides and derivatives. Next, we extensively review recent developments in the biosynthesis of LNT, LNnT, and their derivatives in vitro and in vivo by employing advanced enzymatic reaction systems and metabolic engineering strategies. Finally, future perspectives in the synthesis of these HMOs using enzymatic and metabolic engineering approaches are presented.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea.,BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Lu M, Mosleh I, Abbaspourrad A. Engineered Microbial Routes for Human Milk Oligosaccharides Synthesis. ACS Synth Biol 2021; 10:923-938. [PMID: 33909411 DOI: 10.1021/acssynbio.1c00063] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human milk oligosaccharides (HMOs) are one of the important ingredients in human milk, which have attracted great interest due to their beneficial effect on the health of newborns. The large-scale production of HMOs has been researched using engineered microbial routes due to the availability, safety, and low cost of host strains. In addition, the development of molecular biology technology and metabolic engineering has promoted the effectiveness of HMOs production. According to current reports, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), and some fucosylated HMOs with complex structures have been produced via the engineered microbial route, with 2'-FL having been produced the most. However, due to the uncertainty of metabolic patterns, the selection of host strains has certain limitations. Aside from that, the expression of appropriate glycosyltransferase in microbes is key to the synthesis of different HMOs. Therefore, finding a safe and efficient glycosyltransferase has to be addressed when using engineered microbial pathways. In this review, the latest research on the production of HMOs using engineered microbial routes is reported. The selection of host strains and adapting different metabolic pathways helped researchers designing engineered microbial routes that are more conducive to HMOs production.
Collapse
Affiliation(s)
- Mengyao Lu
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| | - Imann Mosleh
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, 411 Tower Road, Ithaca, New York 14853, United States
| |
Collapse
|
45
|
Zhang A, Sun L, Bai Y, Yu H, McArthur JB, Chen X, Atsumi S. Microbial production of human milk oligosaccharide lactodifucotetraose. Metab Eng 2021; 66:12-20. [PMID: 33812022 DOI: 10.1016/j.ymben.2021.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
Human milk oligosaccharides (HMOs) are potent bioactive compounds that modulate neonatal health and are of interest for development as potential drug treatments for adult diseases. The potential of these molecules, their limited access from natural sources, and difficulty in large-scale isolation of individual HMOs for studies and applications have motivated the development of chemical syntheses and in vitro enzymatic catalysis strategies. Whole cell biocatalysts are emerging as alternative self-regulating production platforms that have the potential to reduce the cost for enzymatic synthesis of HMOs. Whole cell biocatalysts for the production of short-chained, linear and small monofucosylated HMOs have been reported but those for fucosylated structures with higher complexity have not been explored. In this study, we established a strategy for producing a difucosylated HMO, lactodifucotetraose (LDFT), from lactose and L-fucose in Escherichia coli. We used two bacterial fucosyltransferases with narrow acceptor selectivity to drive the sequential fucosylation of lactose and intermediate 2'-fucosyllactose (2'-FL) to produce LDFT. Deletion of substrate degradation pathways that decoupled cellular growth from LDFT production, enhanced expression of native substrate transporters and modular induction of the genes in the LDFT biosynthetic pathway allowed complete conversion of lactose into LDFT and minor quantities of the side product 3-fucosyllactose (3-FL). Overall, 5.1 g/L of LDFT was produced from 3 g/L lactose and 3 g/L L-fucose in 24 h. Our results demonstrate promising applications of engineered microbial biosystems for the production of multi-fucosylated HMOs for biochemical studies.
Collapse
Affiliation(s)
- Angela Zhang
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Lei Sun
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA; School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Na L, Li R, Chen X. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2021. [PMID: 33310623 DOI: 10.1186/10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
Affiliation(s)
- Lan Na
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|
47
|
Zhu Y, Wan L, Meng J, Luo G, Chen G, Wu H, Zhang W, Mu W. Metabolic Engineering of Escherichia coli for Lacto- N-triose II Production with High Productivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3702-3711. [PMID: 33755468 DOI: 10.1021/acs.jafc.1c00246] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lacto-N-triose II (LNT II), a core structural unit of human milk oligosaccharides (HMOs), has attracted substantial attention for its nutraceutical potentials and applications in the production of complex HMOs. In this study, Escherichia coli was metabolically engineered to efficiently produce LNT II using glycerol as a carbon source and lactose as a substrate. The UDP-N-acetylglucosamine (UDP-GlcNAc) biosynthesis pathway was strengthened, and β-1,3-N-acetylglucosaminyltransferase (LgtA) was introduced to construct an LNT II-producing base strain. To increase the titer and yield of LNT II, combinatorial optimization of the copy number and the ribosomal binding site sequence was performed to tune the gene expression strength and translation rates of the pathway enzymes. Next, multipoint mutations were introduced to glucosamine-6-phosphatesynthase (GlmS) to relieve the feedback inhibition. Then, a series of engineered strains were constructed by blocking the futile pathways by the deletion of the relevant genes. Finally, the culture conditions were optimized. LNT II titer was improved step-by-step from 0.53 to 5.52 g/L in shake-flask cultivations. Fed-batch culture of the final engineered strain produced 46.2 g/L of LNT II, with an LNT II productivity and content of 0.77 g/(L·h) and 0.95 g/g dry cell weight, respectively.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Geng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
48
|
Castejón-Vilatersana M, Faijes M, Planas A. Transglycosylation Activity of Engineered Bifidobacterium Lacto- N-Biosidase Mutants at Donor Subsites for Lacto- N-Tetraose Synthesis. Int J Mol Sci 2021; 22:3230. [PMID: 33810098 PMCID: PMC8004761 DOI: 10.3390/ijms22063230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 01/11/2023] Open
Abstract
The health benefits of human milk oligosaccharides (HMOs) make them attractive targets as supplements for infant formula milks. However, HMO synthesis is still challenging and only two HMOs have been marketed. Engineering glycoside hydrolases into transglycosylases may provide biocatalytic routes to the synthesis of complex oligosaccharides. Lacto-N-biosidase from Bifidobacterium bifidum (LnbB) is a GH20 enzyme present in the gut microbiota of breast-fed infants that hydrolyzes lacto-N-tetraose (LNT), the core structure of the most abundant type I HMOs. Here we report a mutational study in the donor subsites of the substrate binding cleft with the aim of reducing hydrolytic activity and conferring transglycosylation activity for the synthesis of LNT from p-nitrophenyl β-lacto-N-bioside and lactose. As compared with the wt enzyme with negligible transglycosylation activity, mutants with residual hydrolase activity within 0.05% to 1.6% of the wild-type enzyme result in transglycosylating enzymes with LNT yields in the range of 10-30%. Mutations of Trp394, located in subsite -1 next to the catalytic residues, have a large impact on the transglycosylation/hydrolysis ratio, with W394F being the best mutant as a biocatalyst producing LNT at 32% yield. It is the first reported transglycosylating LnbB enzyme variant, amenable to further engineering for practical enzymatic synthesis of LNT.
Collapse
Affiliation(s)
| | - Magda Faijes
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain;
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain;
| |
Collapse
|
49
|
Mahour R, Marichal‐Gallardo PA, Rexer TFT, Reichl U. Multi‐enzyme Cascades for the
In Vitro
Synthesis of Guanosine Diphosphate L‐Fucose. ChemCatChem 2021. [DOI: 10.1002/cctc.202001854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Reza Mahour
- Department of Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg Germany
| | - Pavel A. Marichal‐Gallardo
- Department of Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg Germany
| | - Thomas F. T. Rexer
- Department of Bioprocess Engineering Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstrasse 1 39106 Magdeburg
- Otto-von-Guericke-University Magdeburg Chair of Bioprocess Engineering Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
50
|
Huang YT, Su YC, Wu HR, Huang HH, Lin EC, Tsai TW, Tseng HW, Fang JL, Yu CC. Sulfo-Fluorous Tagging Strategy for Site-Selective Enzymatic Glycosylation of para-Human Milk Oligosaccharides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yu-Ting Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yi-Chia Su
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center at National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsin-Hui Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Jia-Lin Fang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| |
Collapse
|