1
|
Mao X, Ou M, Zhao W, Shi M, Zheng L. Enhanced durability of Pd/CeO 2-C via metal-support interaction for oxygen reduction reaction. NANOTECHNOLOGY 2024; 35:475701. [PMID: 39173656 DOI: 10.1088/1361-6528/ad726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
It is a challenge to improve the long-term durability of Pd-based electrocatalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, Pd/CeO2-C-T (T= 800 °C, 900 °C and 1000 °C) hybrid catalysts with metal-support interaction are prepared from Ce-based metal organic framework precursor. Abundant tiny CeO2nanoclusters are produced to form nanorod structures with uniformly distributed carbon through a calcination process. Meanwhile, both carbon and CeO2nanoclusters have good contact with the following deposited surfactant-free Pd nanoclusters. Benefited from the large specific surface area, good conductivity and structure integrity, Pd/CeO2-C-900 exhibits the best electrocatalytic ORR performance: onset potential of 0.968 V and half-wave potential of 0.857 V, outperforming those obtained on Pd/C counterpart. In addition, the half-wave potential only shifts 7 mV after 6000 cycles of accelerated durability testing, demonstrating robust durability.
Collapse
Affiliation(s)
- Xinbiao Mao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Mingyu Ou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Wenjun Zhao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Meiqin Shi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Lingxia Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Guo Y, Zheng F, Wang T, Liu X, Tian X, Qu K, Wang L, Li R, Kang W, Li Z, Li H. Construction of Pd-Te Intermetallic Compounds to Achieve Ultrastable Oxygen Reduction Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36363-36372. [PMID: 38954684 DOI: 10.1021/acsami.4c05655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Palladium (Pd)-transition metal alloys have the potential to regulate the intermediate surface adsorption strength in oxygen reduction reactions (ORR), making them a promising substitute for platinum-based catalysts. Nonetheless, prolonged electrochemical cycling can lead to the depletion of transition metals, resulting in structural degradation and poor durability. Herein, the synthesis of alloy catalysts (Pd25%Te75%) containing Pd and the metalloid tellurium (Te) through a one-step reduction method is reported. Characterizations of powder X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy demonstrated both uniform dispersion and strong binding force of elements within the PdTe alloy, along with providing crystallographic details of associated compounds. Based on density functional theory calculations, PdTe had a more negative d-band center than that of pure Pd, which reduces the adsorption capacity between active sites and intermediates in the ORR, and therefore enhances reaction kinetics. The Pd25%Te75% exhibited excellent ORR activity, and its onset and half-wave potentials were ∼0.98 and ∼0.90 V, respectively, at 1600 rpm within the O2-saturated 1.0 M KOH. Significantly, accelerated durability tests achieved exceptional stability, and half-wave potential just decayed by 4 mV after 30000 consecutive cycles. Moreover, this study aims to promote the preparation of Pd and metalloid alloys for other energy conversion applications.
Collapse
Affiliation(s)
- Yajie Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Fuxian Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinyang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaotan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Konggang Qu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Lei Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Rui Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Wenjun Kang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zongge Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Haibo Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
3
|
Zhang WY, Ma XY, Jiang TW, Xu X, Ni B, Chen B, Wang Y, Jiang K, Cai WB. Atomic Layer Deposition of TiO 2 on Si Window Enables In Situ ATR-SEIRAS Measurements in Strong Alkaline Electrolytes. Anal Chem 2024; 96:10111-10115. [PMID: 38869290 DOI: 10.1021/acs.analchem.4c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The Si window is the most widely used internal reflection element (IRE) for electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), yet local chemical etching on Si by concentrated OH- anions bottlenecks the reliable application of this method in strong alkaline electrolytes. In this report, atomic layer deposition of a 25 nm nonconductive TiO2 barrier layer on the reflecting plane of a Si prism is demonstrated to address this challenge. In situ ATR-SEIRAS measurement on a Au film electrode with the Si/TiO2 composite IRE in 1 M NaOH reveals reversible global spectral features without spectral distortion at 1000-1300 cm-1, in stark contrast to those obtained with a bare Si window. By applying this structured ATR-SEIRAS, ethanol electrooxidation on a Pt/C catalyst in 1 and 5 M NaOH is explored, manifesting that such high pH values prevent the adsorption of as-formed acetate in the C2 pathway but not that of CO intermediate in the C1 pathway.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xian-Yin Ma
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Tian-Wen Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xindi Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Baoxin Ni
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Chen
- YUNMAO Technology Co., Ltd, Xiamen 361000, China
| | - Yunyu Wang
- YUNMAO Technology Co., Ltd, Xiamen 361000, China
| | - Kun Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Zheng Z, Dong K, Yang X, Yuan Q. Crystalline-Amorphous Heterophase PdMoCrW Tetrametallene: Highly Efficient Oxygen Reduction Electrocatalysts for a Long-Term Zn-Air Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11307-11316. [PMID: 38739878 DOI: 10.1021/acs.langmuir.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metallenes have received sustained attention owing to their unique microstructure characteristics and compelling catalytic applications, but the synthesis of multielement crystalline-amorphous metallenes remains a formidable challenge. Herein, we report a one-step wet chemical reduction method to synthesize composition-tunable crystalline-amorphous heterophase PdMoCrW tetrametallene. As-synthesized PdMoCrW tetrametallene is composed of approximately six to seven atomic layers and has flexible crimpiness, a crystalline-amorphous heterophase structure, and high-valence metal species. Time-dependent experiments show that PdMoCrW tetrametallene follows a three-step growth mechanism that includes nucleation, lateral growth, and atom diffusion, respectively. The novel ultrathin structure, optimized Pd electronic structure, and hydrophilic surface together greatly promote the activity and stability of PdMoCrW tetrametallene in the alkaline oxygen reduction reaction. Pd75.9Mo9.4Cr8.9W5.8/C exhibits excellent mass and specific activities of 2.81 A mgPd-1 and 4.05 mA cm-2, which are 20.07/14.46 and 23.42/16.20 times higher than those of commercial Pt/C and Pd/C, respectively. Furthermore, a Zn-air battery assembled using Pd75.9Mo9.4Cr8.9W5.8/C as a cathode catalyst achieves a peak power density of 156 mW cm-2 and an ultralong durability of 329 h. This study reports an effective strategy for constructing crystalline-amorphous quaternary metallenes to advance non-Pt electrocatalysts toward oxygen reduction reaction (ORR) performance and for a Zn-air battery.
Collapse
Affiliation(s)
- Zhe Zheng
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kaiyu Dong
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
5
|
Guo W, Yang R, Fan J, Xiang X, Du X, Shi N, Bao J, Han M. Component-controlled synthesis of Pd xSn y nanocrystals on carbon nanotubes as advanced electrocatalysts for oxygen reduction reaction. RSC Adv 2024; 14:771-778. [PMID: 38174283 PMCID: PMC10759278 DOI: 10.1039/d3ra07657a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Pd-based bimetallic or multimetallic nanocrystals are considered to be potential electrocatalysts for cathodic oxygen reduction reaction (ORR) in fuel cells. Although much advance has been made, the synthesis of component-controlled Pd-Sn alloy nanocrystals or corresponding nanohybrids is still challenging, and the electrocatalytic ORR properties are not fully explored. Herein, component-controlled synthesis of PdxSny nanocrystals (including Pd3Sn, Pd2Sn, Pd3Sn2, and PdSn) has been realized, which are in situ grown or deposited on pre-treated multi-walled carbon nanotubes (CNTs) to form well-coupled nanohybrids (NHs) by a facile one-pot non-hydrolytic system thermolysis method. In alkaline media, all the resultant PdxSny/CNTs NHs are effective at catalyzing ORR. Among them, the Pd3Sn/CNTs NHs exhibit the best catalytic activity with the half-wave potential of 0.85 V (vs. RHE), good cyclic stability, and excellent methanol-tolerant capability due to the suited Pd-Sn alloy component and its strong interaction or efficient electronic coupling with CNTs. This work is conducive to the advancement of Pd-based nanoalloy catalysts by combining component engineering and a hybridization strategy and promoting their application in clean energy devices.
Collapse
Affiliation(s)
- Weibin Guo
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Rui Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China
| | - Jiayao Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Xing Xiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Xuehui Du
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Naien Shi
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Min Han
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| |
Collapse
|
6
|
Kang K, Hu X, Zhang P, Zhang Y, Zhu S, Lei K, Jiang K, Zheng S. Mo-doped PdCu nanoparticles as high-performance catalysts for oxygen reduction reactions. Dalton Trans 2023; 52:17810-17817. [PMID: 37971039 DOI: 10.1039/d3dt02773b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The instability of palladium-based binary alloys hinders their wide application in the oxygen reduction processes. Here, we prepared Mo-doped PdCu nanoparticles with controllable dopant content and valence. Further research has revealed that Mo, particularly Mo5+, may effectively suppress the oxidation of Pd and Cu, optimize the oxygen binding of Pd, and increase catalytic activity and stability. In particular, Mo-PdCu-1/C with the highest Mo5+ content shows the best oxygen reduction reaction (ORR) mass activity (1.20 A mg-1Pd), which is 4.8 times higher than that of PdCu/C. It also exhibits outstanding stability, retaining 80.8% of the original mass activity after 20 000 cycles. This study clearly explains the mechanism by which Mo doping affects the performance and provides a reference for further optimization of catalyst performance for fuel cell industrialization.
Collapse
Affiliation(s)
- Kailu Kang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Hu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Pei Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yangyang Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shan Zhu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kaixiang Lei
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kezhu Jiang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shijian Zheng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300401, China
| |
Collapse
|
7
|
Wang C, Shi Y, Qin D, Xia Y. Bimetallic core-shell nanocrystals: opportunities and challenges. NANOSCALE HORIZONS 2023; 8:1194-1204. [PMID: 37376971 DOI: 10.1039/d3nh00098b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
With mastery over the colloidal synthesis of monometallic nanocrystals, a combination of two distinct metals with intricate architectures has emerged as a new direction of innovation. Among the diverse architectures, the one with a core-shell structure has attracted the most scientific endeavors owing to its merits of high controllability and variability. Along with the new hopes arising from the addition of a shell composed of a different metal, there comes unexpected complications for the surface composition, hindering both structural understanding and application performance. In this Focus article, we present a brief overview of the opportunities provided by the bimetallic core-shell nanocrystals, followed by a discussion of the technical challenge to elucidate the true composition of the outermost surface. Some of the promising solutions are then highlighted as well, aiming to inspire future efforts toward this frontier of research.
Collapse
Affiliation(s)
- Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
8
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
9
|
Chen Q, Jin H, Cheng T, Wang Z, Ren Y, Tian J, Zhu Y. Small amounts of main group metal atoms matter: ultrathin Pd-based alloy nanowires enabling high activity and stability towards efficient oxygen reduction reaction and ethanol oxidation. NANOSCALE 2023; 15:3772-3779. [PMID: 36723133 DOI: 10.1039/d2nr07101k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proton-exchange membrane fuel cells are considered as promising energy-conversion devices. Alloying 3d transition metals with noble metals not only highly improves the performance of noble metal-based catalysts towards electrocatalytic reactions in fuel cells due to d-d hybridization interaction but also decreases the total cost. However, the rapid leaching of transition metal atoms leads to a fast decay of the activity, which seriously affects the performance of the fuel cell. Herein, alloyed Pd-main group metal (e.g. Pb, Bi, Sn) ultrathin nanowires were realized by a facile one-step wet-chemical strategy. The content of the main group metal could be tuned in a certain range while maintaining the same one-dimensional ultrathin nanowire morphology, which provided a large surface area and many more active sites. These Pd-based alloys showed a significant improvement in electrocatalytic activity and durability towards the oxygen reaction reaction as well as ethanol oxidation reaction. Optimal activity occurred when a small amount of main group metal existed, which could be explained through calculations by a strong p-d hybridization interaction between the main group metal and Pd to optimize the surface electronic structure collaboratively. Besides, high stability was achieved, which could be ascribed to the increased antioxidant activity of Pd by the main group metal. Furthermore, the low amount of the main group metal atoms also prevented them from leaching out of the crystal lattice.
Collapse
Affiliation(s)
- Qiaoli Chen
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Hui Jin
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tianchun Cheng
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Zhi Wang
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yaoyao Ren
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jinshu Tian
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yihan Zhu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
10
|
Scandura G, Kumari P, Palmisano G, Karanikolos GN, Orwa J, Dumée LF. Nanoporous Dealloyed Metal Materials Processing and Applications─A Review. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gabriele Scandura
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Priyanka Kumari
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Julius Orwa
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Ludovic F. Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membrane and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wu H, Zhong H, Pan Y, Li H, Peng Y, Yang L, Luo S, Banham D, Zeng J. Highly stable and active Pt-skinned octahedral PtCu/C for oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Bueno SLA, Leonardi A, Kar N, Chatterjee K, Zhan X, Chen C, Wang Z, Engel M, Fung V, Skrabalak SE. Quinary, Senary, and Septenary High Entropy Alloy Nanoparticle Catalysts from Core@Shell Nanoparticles and the Significance of Intraparticle Heterogeneity. ACS NANO 2022; 16:18873-18885. [PMID: 36255141 DOI: 10.1021/acsnano.2c07787] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidally prepared core@shell nanoparticles (NPs) were converted to monodisperse high entropy alloy (HEA) NPs by annealing, including quinary, senary, and septenary phases comprised of PdCuPtNi with Co, Ir, Rh, Fe, and/or Ru. Intraparticle heterogeneity, i.e., subdomains within individual NPs with different metal distributions, was observed for NPs containing Ir and Ru, with the phase stabilities of the HEAs studied by atomistic simulations. The quinary HEA NPs were found to be durable catalysts for the oxygen reduction reaction, with all but the PdCuPtNiIr NPs presenting better activities than commercial Pt. Density functional theory (DFT) calculations for PdCuPtNiCo and PdCuPtNiIr surfaces (the two extremes in performance) found agreement with experiment by weighting the adsorption energy contributions by the probabilities of each active site based on their DFT energies. This finding highlights how intraparticle heterogeneity, which we show is likely overlooked in many systems due to analytical limitations, can be leveraged toward efficient catalysis.
Collapse
Affiliation(s)
- Sandra L A Bueno
- Department of Chemistry, Indiana University─Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Alberto Leonardi
- ISIS Neutron and Muon Facility, UKRI-Science and Technical Facility Council, Harwell Science Campus, Didcot, OX11 0YJOxfordshire, U.K
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University Erlangen-Nuremberg, Cauerstrasse 3, 91058Erlangen, Germany
| | - Nabojit Kar
- Department of Chemistry, Indiana University─Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Kaustav Chatterjee
- Department of Chemistry, Indiana University─Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Xun Zhan
- Department of Chemistry, Indiana University─Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Changqiang Chen
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois61801, United States
| | - Zhiyu Wang
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin Avenue, Urbana, Illinois61801, United States
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University Erlangen-Nuremberg, Cauerstrasse 3, 91058Erlangen, Germany
| | - Victor Fung
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University─Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| |
Collapse
|
13
|
Xu W, Yoon D, Yang Y, Xiong Y, Li H, Zeng R, Muller DA, Abruña HD. MOF-Derived Bimetallic Pd-Co Alkaline ORR Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44735-44744. [PMID: 36153946 DOI: 10.1021/acsami.2c10074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of highly active, durable, and low-cost electrocatalysts for the oxygen reduction reaction (ORR) has been of paramount importance for advancing and commercializing fuel cell technologies. Here, we report on a novel family of Pd-Co binary alloys (PdxCo, x = 1-6) embedded in bimetallic organic framework (BMOF)-derived polyhedral carbon supports. BMOF-derived Pd3Co, annealed at 300-400 °C, exhibited the most promising ORR activity among the family of materials studied, with a half-wave potential (E1/2) of 0.977 V vs RHE and a mass activity of 0.86 mA/μgPd in 1 M KOH, both values being superior to those of commercial Pd/C electrocatalysts. Moreover, it maintained robust durability after 20,000 potential cycles with a minimal degradation in E1/2 of 10 mV. The enhanced performance and stability are ascribed to the uniform elemental distribution of Pd and Co and the Co-containing N-doped carbon (Co-N-C) structures. In anion exchange membrane fuel cell (AEMFC) tests, the peak power density of the cell employing a BMOF-derived Pd3Co cathode reached 1.1 W/cm2 at an ultralow Pd loading of 0.04 mgPd/cm2. Strategies developed herein provide promising insights into the rational design and synthesis of highly active and durable ORR electrocatalysts for alkaline fuel cells.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Dasol Yoon
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Xie M, Zhang B, Jin Z, Li P, Yu G. Atomically Reconstructed Palladium Metallene by Intercalation-Induced Lattice Expansion and Amorphization for Highly Efficient Electrocatalysis. ACS NANO 2022; 16:13715-13727. [PMID: 35947035 DOI: 10.1021/acsnano.2c05190] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As an emerging class of materials with distinctive physicochemical properties, metallenes are deemed as efficient catalysts for energy-related electrocatalytic reactions. Engineering the lattice strain, electronic structure, crystallinity, and even surface porosity of metallene provides a great opportunity to further enhance its catalytic performance. Herein, we rationally developed a reconstruction strategy of Pd metallenes at atomic scale to generate a series of nonmetallic atom-intercalated Pd metallenes (M-Pdene, M = H, N, C) with lattice expansion and S-doped Pd metallene (S-Pdene) with an amorphous structure. Catalytic performance evaluation demonstrated that N-Pdene exhibited the highest mass activities of 7.96 A mg-1, which was 10.6 and 8.5 time greater than those of commercial Pd/C and Pt/C, respectively, for methanol oxidation reaction (MOR). Density functional theory calculations suggested that the well-controlled lattice tensile strain as well as the strong p-d hybridization interaction between N and Pd resulted in enhanced OH adsorption and weakened CO adsorption for efficient MOR catalysis on N-Pdene. When tested as hydrogen evolution reaction (HER) catalysts, the amorphous S-Pdene delivered superior activity and durability relative to the crystalline counterparts because of the disordered Pd surface with a further elongated bond length and a downshifted d-band center. This work provides an effective strategy for atomic engineering of metallene nanomaterials with high performance as electrocatalysts.
Collapse
Affiliation(s)
- Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Ying J, Lenaerts S, Symes MD, Yang X. Hierarchical Design in Nanoporous Metals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106117. [PMID: 35900062 PMCID: PMC9507373 DOI: 10.1002/advs.202106117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Indexed: 05/28/2023]
Abstract
Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and TechnologySun Yat‐sen University (SYSU)Zhuhai519082P. R. China
| | - Silvia Lenaerts
- Research Group of Sustainable Energy and Air Purification (DuEL), Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Mark D. Symes
- WestCHEM, School of ChemistryUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
16
|
Wang H, Chen H, Yin S, Mao Q, Li C, Xu Y, Li X, Wang Z, Wang L. B, P-co-doped PdCu nanothorn assemblies for enhanced oxygen reduction electrolysis. NANOTECHNOLOGY 2022; 33:455401. [PMID: 35878585 DOI: 10.1088/1361-6528/ac83c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Nonmetal doping is a promising strategy to improve electrocatalytic performance of noble metal based catalysts for oxygen reduction reaction (ORR). Herein, we report a facile method to fabricate PdCuBP nanothorn assemblies (PdCuBP NTAs) by co-doping B and P into pre-synthesized PdCu NTAs using NaBH4and NaH2PO2as B source and P source, respectively. The metal-nonmetal structure and multi-branched morphology can optimize oxygen adsorption energy and avoid catalyst migration, agglomeration and Ostwald ripening. As such, the obtained PdCuBP NTAs exhibit efficient activity and excellent long-term stability for ORR. This research offers an excellent strategy for co-doping nonmetal elements into metal nanocrystals with controllable composition and structure to improve electrocatalytic ORR performance.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hongyong Chen
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
17
|
Wang C, An C, Qin C, Gomaa H, Deng Q, Wu S, Hu N. Noble Metal-Based Catalysts with Core-Shell Structure for Oxygen Reduction Reaction: Progress and Prospective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2480. [PMID: 35889703 PMCID: PMC9316484 DOI: 10.3390/nano12142480] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023]
Abstract
With the deterioration of the ecological environment and the depletion of fossil energy, fuel cells, representing a new generation of clean energy, have received widespread attention. This review summarized recent progress in noble metal-based core-shell catalysts for oxygen reduction reactions (ORRs) in proton exchange membrane fuel cells (PEMFCs). The novel testing methods, performance evaluation parameters and research methods of ORR were briefly introduced. The effects of the preparation method, temperature, kinds of doping elements and the number of shell layers on the ORR performances of noble metal-based core-shell catalysts were highlighted. The difficulties of mass production and the high cost of noble metal-based core-shell nanostructured ORR catalysts were also summarized. Thus, in order to promote the commercialization of noble metal-based core-shell catalysts, research directions and prospects on the further development of high performance ORR catalysts with simple synthesis and low cost are presented.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Cuihua An
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Chunling Qin
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
18
|
Montserrat-Sisó G, Wickman B. PdNi thin films for hydrogen oxidation reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Shi Y, Schimmenti R, Zhu S, Venkatraman K, Chen R, Chi M, Shao M, Mavrikakis M, Xia Y. Solution-Phase Synthesis of PdH 0.706 Nanocubes with Enhanced Stability and Activity toward Formic Acid Oxidation. J Am Chem Soc 2022; 144:2556-2568. [PMID: 35108015 DOI: 10.1021/jacs.1c10199] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Palladium is one of the few metals capable of forming hydrides, with the catalytic properties being dependent on the elemental composition and spatial distribution of H atoms in the lattice. Herein, we report a facile method for the complete transformation of Pd nanocubes into a stable phase made of PdH0.706 by treating them with aqueous hydrazine at a concentration as low as 9.2 mM. Using formic acid oxidation (FAO) as a model reaction, we systematically investigated the structure-catalytic property relationship of the resultant nanocubes with different degrees of hydride formation. The current density at 0.4 V was enhanced by four times when the nanocubes were completely converted from Pd to PdH0.706. On the basis of a set of slab models with PdH(100) overlayers on Pd(100), we conducted density functional theory calculations to demonstrate that the degree of hybrid formation could influence both the activity and selectivity toward FAO by modulating the relative stability of formate (HCOO) and carboxyl (COOH) intermediates. This work provides a viable strategy for augmenting the performance of Pd-based catalysts toward various reactions without altering the loading of this scarce metal.
Collapse
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, PR China
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, PR China
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Sahoo L, Garg R, Kaur K, Vinod CP, Gautam UK. Ultrathin Twisty PdNi Alloy Nanowires as Highly Active ORR Electrocatalysts Exhibiting Morphology-Induced Durability over 200 K Cycles. NANO LETTERS 2022; 22:246-254. [PMID: 34978836 DOI: 10.1021/acs.nanolett.1c03704] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Even though the anion exchange membrane fuel cells have many advantages, the stability of their electrocatalysts for oxygen reduction reaction (ORR) has remained remarkably poor. We report here on the ultrathin twisty PdNi-alloy nanowires (NWs) exhibiting a very low reaction overpotential with an E1/2 ∼ 0.95 V versus RHE in alkaline media maintained over 200 K cycles, the highest ever recorded for an electrocatalyst. The mass activity of the used NWs is >10 times higher than fresh commercial Pt/C. Therein, Ni improves the Pd d-band center for a more efficient ORR, and its leaching continuously regenerates the surface active sites. The twisty nanowire morphology imparts multiple anchor points on the electrode surface to arrest their detachment or coalescence and extra stability from self-entanglement. The significance of the NW morphology was further confirmed from the high-temperature durability studies. The study demonstrates that tailoring the number of contact points to the electrode-surface may help realize commercial-grade stability in the highly active electrocatalysts.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Reeya Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Komalpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - C P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-NCL, Pune 411008, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| |
Collapse
|
22
|
Kalanthoden AN, Zahir MH, Aziz MA, Al-Najar B, Rani SK, Shaikh MN. Palladium Nanoparticles Supported on Cellulosic Paper as Multifunctional Catalyst for Coupling and Hydrogenation Reactions. Chem Asian J 2021; 17:e202101195. [PMID: 34970847 DOI: 10.1002/asia.202101195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Indexed: 11/06/2022]
Abstract
Hallmark of a successful catalyst is its high efficiency, economic aspects, operational simplicity, extensive reusability, higher environment friendliness, and potential use in multiple industrial applications. Herein, a facile protocol involving a catalyst with Pd nanoparticles supported on cellulose paper (also known as a "dip-catalyst") for the hydrogenation of a series of quinolines, nitroarene, and C-C bond formation reactions in most benign solvents such as water is described. The mere insertion/removal of the "dip-catalyst" strip enables instantaneous start/stop of the reaction, which enhances its reusability and ease of separation of products. Cellulose paper (CP) strips decorated with Pd nanoparticles (Pd/CP) are prepared by the reduction of K2 PdCl4 soaked strips using formic acid as reductant. The resulting spherical shaped Pd particles, confirmed by scanning electron microscopy, form stable catalysis centers on the support. XRD signature confirms the crystallinity of the Pd nanoparticles and the TEM images display 15-20 nm size particles uniformly decorating CP. X-ray photoelectron spectroscopy indicates the formation of metallic Pd. The catalyst is tested for the C-C bond formation reactions. Pd/CP catalyzed Suzuki-Miyaura coupling reaction demonstrate >99% conversion with optimum selectivity. On the other hand, Mizoroki-Heck reaction produced 87% conversion with the reaction of 4-methoxycarbonyl phenylboronic acid and iodobenzene in ethanol:water (1 : 1 v/v) using KOH as base. The developed Pd/CP construct produces >99% of the pyridine-ring hydrogenated product on quinoline hydrogenation using tetrahydroxydiboron (THDB) as the hydrogen source. Diverse and highly reducible functional groups were also evaluated for transfer hydrogenation, which demonstrates a high efficiency in terms of both reactivity and selectivity. The used catalysts are recyclable for the multiple cycles.
Collapse
Affiliation(s)
- Abdul Nasar Kalanthoden
- B. S. Abdurrahman Crescent Institute of Science and Technology, Chennai,600048, Tamil Nadu, India
| | - Md Hasan Zahir
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Basmah Al-Najar
- Department of Physics, College of Science, University of Bahrain, Sakhir Campus, 32038, Bahrain
| | - S Kutti Rani
- B. S. Abdurrahman Crescent Institute of Science and Technology, Chennai,600048, Tamil Nadu, India
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
23
|
Ma Q, Jin H, Zhu J, Li Z, Xu H, Liu B, Zhang Z, Ma J, Mu S. Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102209. [PMID: 34687174 PMCID: PMC8655191 DOI: 10.1002/advs.202102209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The highly efficient energy conversion of the polymer-electrolyte-membrane fuel cell (PEMFC) is extremely limited by the sluggish oxygen reduction reaction (ORR) kinetics and poor electrochemical stability of catalysts. Hitherto, to replace costly Pt-based catalysts, non-noble-metal ORR catalysts are developed, among which transition metal-heteroatoms-carbon (TM-H-C) materials present great potential for industrial applications due to their outstanding catalytic activity and low expense. However, their poor stability during testing in a two-electrode system and their high complexity have become a big barrier for commercial applications. Thus, herein, to simplify the research, the typical Fe-N-C material with the relatively simple constitution and structure, is selected as a model catalyst for TM-H-C to explore and improve the stability of such a kind of catalysts. Then, different types of active sites (centers) and coordination in Fe-N-C are systematically summarized and discussed, and the possible attenuation mechanism and strategies are analyzed. Finally, some challenges faced by such catalysts and their prospects are proposed to shed some light on the future development trend of TM-H-C materials for advanced ORR catalysis.
Collapse
Affiliation(s)
- Qianli Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| | - Huihui Jin
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zilan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Hanwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Bingshuai Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Zhiwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Jingjing Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong LaboratoryXianhu Hydrogen ValleyFoshan528200P. R. China
| |
Collapse
|
24
|
Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. iScience 2021; 24:103332. [PMID: 34805792 PMCID: PMC8586809 DOI: 10.1016/j.isci.2021.103332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Deliberately optimizing the d-band position of an active component via electronic and lattice strain tuning is an effective way to boost its catalytic performance. We herein demonstrate this concept by constructing core-shell Au@NiPd nanoparticles with NiPd alloy shells of only three atomic layers through combining an Au catalysis with the galvanic replacement reaction. The Au core with larger electronegativity modulates the Pd electronic configuration, while the Ni atoms alloyed in the ultrathin shells neutralize the lattice stretching in Pd shells exerted by Au cores, equipping the active Pd metal with a favorable d-band position for electrochemical oxygen reduction reaction in an alkaline medium, for which core-shell Au@NiPd nanoparticles with a Ni/Pd atomic ratio of 3/7 exhibit a half-wave potential of 0.92 V, specific activity of 3.7 mA cm-2, and mass activity of 0.65 A mg-1 at 0.9 V, much better than most of the recently reported Pd-even Pt-based electrocatalysts.
Collapse
|
25
|
Zhang J, Wu L, Xu L, Sun D, Sun H, Tang Y. Recent advances in phosphorus containing noble metal electrocatalysts for direct liquid fuel cells. NANOSCALE 2021; 13:16052-16069. [PMID: 34549765 DOI: 10.1039/d1nr04218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct liquid fuel cells (DLFCs) are considered as satisfactory alternatives to traditional fossil fuels owing to their unique advantages, e.g. environmental friendliness and easy storage. Noble metal catalysts are widely used to improve the efficiency of DLFCs. However, the high cost, low utilization and poor stability of noble metals restricted their practical applications. Therefore, it is of great significance to explore cost-effective electrocatalysts and further improve their electrocatalytic performance. Reducing the content of noble metals by adding low-priced phosphorus (P) has been considered as an effective strategy, which is able to enhance their electrocatalytic activity and anti-poisoning ability through effectively changing the electronic density of active sites. In the past few years, tremendous P containing catalysts have been synthesized and utilized in DLFCs. In this review, we summarize the fundamentals of electrochemical reactions and present recent progress in P containing noble metal catalysts for DLFCs, including the discussion of their shape, composition and the relationship between P and active sites. Finally, the challenges and some potential directions in this field are pointed out.
Collapse
Affiliation(s)
- Jiachen Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Li Wu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
26
|
Zhou M, Guo J, Zhao B, Li C, Zhang L, Fang J. Improvement of Oxygen Reduction Performance in Alkaline Media by Tuning Phase Structure of Pd-Bi Nanocatalysts. J Am Chem Soc 2021; 143:15891-15897. [PMID: 34520192 DOI: 10.1021/jacs.1c08644] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tuning the crystal phase of bimetallic nanocrystals offers an alternative avenue to improving their electrocatalytic performance. Herein, we present a facile and one-pot synthesis approach that is used to enhance the catalytic activity and stability toward oxygen reduction reaction (ORR) in alkaline media via control of the crystal structure of Pd-Bi nanocrystals. By merely altering the types of Pd precursors under the same conditions, the monoclinic structured Pd5Bi2 and conventional face-centered cubic (fcc) structured Pd3Bi nanocrystals with comparable size and morphology can be precisely synthesized, respectively. Interestingly, the carbon-supported monoclinic Pd5Bi2 nanocrystals exhibit superior ORR activity in alkaline media, delivering a mass activity (MA) as high as 2.05 A/mgPd. After 10,000 cycles of ORR durability test, the monoclinic structured Pd5Bi2/C nanocatalysts still remain a MA of 1.52 A/mgPd, which is 3.6 times, 16.9 times, and 21.7 times as high as those of the fcc Pd3Bi/C counterpart, commercial Pd/C, and Pt/C electrocatalysts, respectively. Moreover, structural characterizations of the monoclinic Pd5Bi2/C nanocrystals after the durability test demonstrate the excellent retention of the original size, morphology, composition, and crystal phase, greatly alleviating the leaching of the Bi component. This work provides new insight for the synthesis of multimetallic catalysts with a metastable phase and demonstrates phase-dependent catalytic performance.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiangna Guo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Bo Zhao
- College of Arts & Sciences Microscopy, Texas Tech University, Lubbock, Texas 79409, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
27
|
Kundu A, Mallick S, Ghora S, Raj CR. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40172-40199. [PMID: 34424683 DOI: 10.1021/acsami.1c08462] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical reduction of oxygen to water and the evolution of oxygen from water are two important electrode reactions extensively studied for the development of electrochemical energy conversion and storage technologies based on oxygen electrocatalysis. The development of an inexpensive, highly active, and durable nonprecious-metal-based oxygen electrocatalyst is indispensable for emerging energy technologies, including anion exchange membrane fuel cells, metal-air batteries (MABs), water electrolyzers, etc. The activity of an oxygen electrocatalyst largely decides the overall energy storage performance of these devices. Although the catalytic activities of Pt and Ru/Ir-based catalysts toward an oxygen reduction reaction (ORR) and an oxygen evolution reaction (OER) are known, the high cost and lack of durability limit their extensive use for practical applications. This review article highlights the oxygen electrocatalytic activity of the emerging non-Pt and non-Ru/Ir oxygen electrocatalysts including transition-metal-based random alloys, intermetallics, metal-coordinated nitrogen-doped carbon (M-N-C), and transition metal phosphides, nitrides, etc., for the development of an air-breathing electrode for aqueous primary and secondary zinc-air batteries (ZABs). Rational surface and chemical engineering of these electrocatalysts is required to achieve the desired oxygen electrocatalytic activity. The surface engineering increases the number of active sites, whereas the chemical engineering enhances the intrinsic activity of the catalyst. The encapsulation or integration of the active catalyst with undoped or heteroatom-doped carbon nanostructures affords an enhanced durability to the active catalyst. In many cases, the synergistic effect between the heteroatom-doped carbon matrix and the active catalyst plays an important role in controlling the catalytic activity. The ORR activity of these catalysts is evaluated in terms of onset potential, number of electrons transferred, limiting current density, and durability. The bifunctional oxygen electrocatalytic activity and ZAB performance, on the other hand, are measured in terms of potential gap between the ORR and OER, ΔE = Ej10OER - E1/2ORR, specific capacity, peak power density, open circuit voltage, voltaic efficiency, and charge-discharge cycling stability. The nonprecious metal electrocatalyst-based ZABs are very promising and they deliver high power density, specific capacity, and round-trip efficiency. The active site for oxygen electrocatalysis and challenges associated with carbon support is briefly addressed. Despite the considerable progress made with the emerging electrocatalysts in recent years, several issues are yet to be addressed to achieve the commercial potential of rechargeable ZAB for practical applications.
Collapse
Affiliation(s)
- Aniruddha Kundu
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Mallick
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Santanu Ghora
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
28
|
Nanoporous Pd-Cu thin films as highly active and durable catalysts for oxygen reduction in alkaline media. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Electrochemical preparation of porous ZnCuNi by electrodeposition in ethaline deep eutectic solvent followed by anodic or cathodic dealloying in alkaline aqueous solutions for higher nitrate reduction activity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Yu H, Zhou T, Wang Z, Xu Y, Li X, Wang L, Wang H. Defect‐Rich Porous Palladium Metallene for Enhanced Alkaline Oxygen Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:12027-12031. [DOI: 10.1002/anie.202101019] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| |
Collapse
|
31
|
Yu H, Zhou T, Wang Z, Xu Y, Li X, Wang L, Wang H. Defect‐Rich Porous Palladium Metallene for Enhanced Alkaline Oxygen Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Tongqing Zhou
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang 310014 P. R. China
| |
Collapse
|
32
|
Ding Y, Zeng L, Xiao X, Chen T, Pan Y. Multifunctional Magnetic Nanoagents for Bioimaging and Therapy. ACS APPLIED BIO MATERIALS 2021; 4:1066-1076. [PMID: 35014468 DOI: 10.1021/acsabm.0c01099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multifunctional magnetic nanoagents (MMNs) have drawn increasing attention in cancer precision therapy, attributed to their good biocompatibility and the potential applications for multimodal imaging and multidisciplinary therapy. The noble metal or isotopes contained in MMNs could not only perform superparamagnetism, providing an outstanding magnetic targeting property for drug delivery, but also endow the MMNs with a magnetocaloric effect, photothermal performance, and radiotherapy sensitization, arriving at a multimode combination therapy for cancer. Also, the composite component can endow MMNs with various imaging performance, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), thereby achieving accurate image-guided therapy for cancer. However, the joint function of MMNs is closely correlated with their functional nanocomponents and nanostructures. In this article, we will systematically discuss the design, synthesis, and structure optimization of MMNs, as well as their potential in multimodal diagnosis and therapy, scientifically providing an integrated diagnosis and treatment of nanomedicine for the future cancer therapy.
Collapse
Affiliation(s)
- Yuxun Ding
- Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, Guangdong 518116, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lingli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaohui Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yue Pan
- Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, Guangdong 518116, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
33
|
Michaud SE, Riehs MT, Feng WJ, Lin CC, McCrory CCL. A CoV 2O 4 precatalyst for the oxygen evolution reaction: highlighting the importance of postmortem electrocatalyst characterization. Chem Commun (Camb) 2021; 57:883-886. [PMID: 33399146 DOI: 10.1039/d0cc06513g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vanadium-doped cobalt oxide materials have emerged as a promising class of catalysts for the oxygen evolution reaction. Previous studies suggest vanadium doping in crystalline Co spinel materials tunes the electronic structure and stabilizes surface intermediates. We report a CoV2O4 material that shows good activity for the oxygen evolution reaction. However, postmortem characterization of the catalyst material shows dissolution of vanadium resulting in an amorphous CoOx material, suggesting that this vanadium-free material, and not CoV2O4, is the active catalyst. This study highlights the importance of postmortem characterization prior to mechanistic and computational analysis for this class of materials.
Collapse
Affiliation(s)
- Samuel E Michaud
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Michael T Riehs
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Wei-Jie Feng
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chia-Cheng Lin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. and Institute of Mineral Resources Engineering, Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Charles C L McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
34
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Meléndez‐González PC, Sánchez‐Castro E, Alonso‐Lemus IL, Pérez‐Hernández R, Escobar‐Morales B, Garay‐Tapia AM, Pech‐Rodríguez WJ, Rodríguez‐Varela J. Bifunctional Pd‐CeO
2
Nanorods/C Nanocatalyst with High Electrochemical Stability and Catalytic Activity for the ORR and EOR in Alkaline Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202003755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Perla C. Meléndez‐González
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Esther Sánchez‐Castro
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
- Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Ivonne L. Alonso‐Lemus
- CONACYT Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| | - Raúl Pérez‐Hernández
- Estudios Ambientales Instituto Nacional de Investigaciones Nucleares Carr. México-Toluca. S/N. La Marquesa Ocoyoacac, Edo. De México C.P. 52750 México
| | - Beatriz Escobar‐Morales
- CONACYT, Energía Renovable Centro de Investigación Científica de Yucatán Calle 43 No. 130 Col. Chuburná de Hidalgo, Mérida Yucatán C.P. 97200 México
| | - Andrés M. Garay‐Tapia
- Centro de Investigación en Materiales Avanzados S.C. Unidad Monterrey Alianza Norte 202, Autopista Monterrey-Aeropuerto km 10, Parque PIIT, Apodaca Nuevo León C.P. 66628 México
| | - Wilian J. Pech‐Rodríguez
- Maestría en Ingeniería Universidad Politécnica de Victoria Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Cd Victoria Tamps. C.P.87138 México
| | - Javier Rodríguez‐Varela
- Programa de Nanociencias y Nanotecnología Cinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
- Programa de Sustentabilidad de los Recursos Naturales y Energía Cinvestav Unidad Saltillo 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe Coahuila, C.P 25900 México
| |
Collapse
|