1
|
Monteiro J, Dunne H, McKelvey K. Delivery of carbon dioxide to an electrode surface using a nanopipette. Faraday Discuss 2024. [PMID: 39470746 DOI: 10.1039/d4fd00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
We have developed a new scanning probe approach for the delivery of a gas-phase reactant to the surface of an electrocatalyst through a self-replenishing bubble located at the end of a scanning probe. This approach enables local electrocatalytic rates to be detected under very-high mass transport rates due to the small distance between the gas-phase reactant in the bubble and the electrocatalyst surface. Here we report experiments for the delivery of carbon dioxide to a gold ultramicroelectrode surface using a micron-scale nanopipette. The approach curve profiles that we measure suggest a complex interplay between carbon dioxide reduction and hydrogen evolution which is mediated by both the probe-electrode distance and the potential of the gold ultramicroelectrode.
Collapse
Affiliation(s)
- Jaimy Monteiro
- School of Chemical and Physical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Harry Dunne
- School of Physics, Trinity College Dublin, Dublin 2, Ireland.
| | - Kim McKelvey
- School of Chemical and Physical Sciences and MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
2
|
Afsahi N, Zhang Z, Faez S, Noël JM, Panda MR, Majumder M, Naseri N, Lemineur JF, Kanoufi F. Seeing nanoscale electrocatalytic reactions at individual MoS 2 particles under an optical microscope: probing sub-mM oxygen reduction reaction. Faraday Discuss 2024. [PMID: 39451059 PMCID: PMC11504976 DOI: 10.1039/d4fd00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 10/26/2024]
Abstract
MoS2 is a promising electrocatalytic material for replacing noble metals. Nanoelectrochemistry studies, such as using nanoelectrochemical cell confinement, have particularly helped in demonstrating the preferential electrocatalytic activity of MoS2 edges. These findings have been accompanied by considerable research efforts to synthesize edge-abundant nanomaterials. However, to fully apprehend their electrocatalytic performance, at the single particle level, new instrumental developments are also needed. Here, we feature a highly sensitive refractive index based optical microscopy technique, namely interferometric scattering microscopy (iSCAT), for monitoring local electrochemistry at single MoS2 petal-like sub-microparticles. This work focuses on the oxygen reduction reaction (ORR), which operates at low current densities and thus requires high-sensitivity imaging techniques. By employing a precipitation reaction to reveal the ORR activity and utilizing the high spatial resolution and contrast of iSCAT, we achieve the sensitivity required to evaluate the ORR activity at single MoS2 particles.
Collapse
Affiliation(s)
- Nikan Afsahi
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Zhu Zhang
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Manas Ranjan Panda
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Naimeh Naseri
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
- Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
| | | | | |
Collapse
|
3
|
Zhao JW, Li Y, Luan D, Lou XWD. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
4
|
Wang XZ, Chen Y, Cao XM, Li RY, Chen WY, Li Y, Guo DS. Ligand-Insertion Strategy for Constructing 2D Conjugated Metal-Organic Framework with Large Pore Size for Electrochemical Analytics. Angew Chem Int Ed Engl 2024:e202413115. [PMID: 39317992 DOI: 10.1002/anie.202413115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have shown great promise in various electrochemical applications due to their intrinsic electrical conductivity. A large pore aperture is a favorable feature of this type of material because it facilitates the mass transport of chemical species and electrolytes. In this work, we propose a ligand insertion strategy in which a linear ligand is inserted into the linkage between multitopic ligands, extending the metal ion into a linear unit of -M-ligand-M-, for the construction of 2D c-MOFs with large pore apertures, utilizing only small ligands. As a proof-of-concept trial of this strategy, a 2D c-MOF with mesopores of 3.2 nm was synthesized using commercially available ligands hexahydrotriphenylene and 2,5-dihydroxybenzoquinone. The facilitation of the diffusion of redox species by the large pore size of this MOF was demonstrated through a series of probes. With this feature, it showed superior performance in the electrochemical analysis of a variety of biological species.
Collapse
Affiliation(s)
- Xiu-Zhen Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yue Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiao-Min Cao
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ru-Yi Li
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wei-Yan Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yue Li
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2024:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Salek S, Byers JC. Influence of Particle Size on Mass Transport during the Oxygen Reduction Reaction at Single Silver Particles Using Scanning Electrochemical Cell Microscopy. J Phys Chem Lett 2024; 15:8494-8500. [PMID: 39133521 DOI: 10.1021/acs.jpclett.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Single entity electrochemical measurements enable insight into the electrocatalytic activity of individual particles based on composition, shape, and crystallographic orientation. In addition to structural effects, particle size can further influence electrocatalytic activity and reaction mechanisms through mass transport effects. In this work, electrodeposition was used to grow well-separated silver particles of varying sizes from 100 to 500 nm in radius. Using a multimicroscopy approach of scanning electrochemical cell microscopy combined with scanning electron microscopy, the electrocatalytic current of individual silver particles toward the oxygen reduction reaction was evaluated as a function of their size. It was found that the current density increased with decreasing particle radius, which was correlated to the mass transport of oxygen to the silver particle, demonstrating the importance of size dependent mass transport effects that can occur at the single particle level using scanning electrochemical cell microscopy and opening new opportunities for quantitative electrocatalysis measurements.
Collapse
Affiliation(s)
- Samaneh Salek
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Joshua C Byers
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
7
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Qi Z, Lu Z, Guo X, Jiang J, Liu S, Sun J, Wang X, Zhu J, Fu Y. Constructing Directional Electrostatic Potential Difference via Gradient Nitrogen Doping for Efficient Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401221. [PMID: 38593294 DOI: 10.1002/smll.202401221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Nitrogen doping has been recognized as an important strategy to enhance the oxygen reduction reaction (ORR) activity of carbon-encapsulated transition metal catalysts (TM@C). However, previous reports on nitrogen doping have tended to result in a random distribution of nitrogen atoms, which leads to disordered electrostatic potential differences on the surface of carbon layers, limiting further control over the materials' electronic structure. Herein, a gradient nitrogen doping strategy to prepare nitrogen-deficient graphene and nitrogen-rich carbon nanotubes encapsulated cobalt nanoparticles catalysts (Co@CNTs@NG) is proposed. The unique gradient nitrogen doping leads to a gradual increase in the electrostatic potential of the carbon layer from the nitrogen-rich region to the nitrogen-deficient region, facilitating the directed electron transfer within these layers and ultimately optimizing the charge distribution of the material. Therefore, this strategy effectively regulates the density of state and work function of the material, further optimizing the adsorption of oxygen-containing intermediates and enhancing ORR activity. Theoretical and experimental results show that under controlled gradient nitrogen doping, Co@CNTs@NG exhibits significantly ORR performance (Eonset = 0.96 V, E1/2 = 0.86 V). At the same time, Co@CNTs@NG also displays excellent performance as a cathode material for Zn-air batteries, with peak power density of 132.65 mA cm-2 and open-circuit voltage (OCV) of 1.51 V. This work provides an effective gradient nitrogen doping strategy to optimize the ORR performance.
Collapse
Affiliation(s)
- Zhijie Qi
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhenjie Lu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiangjie Guo
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Jiang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shujun Liu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
9
|
Wang J, Chen T, Jeon M, Oppenheim JJ, Tan B, Kim J, Dincă M. Superior Charge Transport in Ni-Diamine Conductive MOFs. J Am Chem Soc 2024; 146:20500-20507. [PMID: 39007301 DOI: 10.1021/jacs.4c06935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Two-dimensional conductive metal-organic frameworks (2D cMOFs) are an emerging class of crystalline van der Waals layered materials with tunable porosity and high electrical conductivity. They have been used in a variety of applications, such as energy storage and conversion, chemiresistive sensing, and quantum information. Although designing new conductive 2D cMOFs and studying their composition/structure-property relationships have attracted significant attention, there are still very few examples of 2D cMOFs that exhibit room-temperature electrical conductivity above 1 S cm-1, the value exhibited by activated carbon, a well-known porous and conductive material that serves in myriad applications. When such high conductivities are achieved, Ni-diamine linkages are often involved, yet Ni-diamine MOFs remain difficult to access. Here, we report two new 2D cMOFs made through ortho-diamine connections: M3(HITT)2 (M = Ni, Cu; HITT = 2,3,7,8,12,13-hexaiminotetraazanaphthotetraphene). The electrical conductivity of Ni3(HITT)2 reaches 4.5 S cm-1 at 298 K, whereas the conductivity of Cu3(HITT)2 spans from 0.05 (2Cu+Cu2+) to 10-6 (3Cu2+) upon air oxidation, much lower than that of Ni3(HITT)2. Spectroscopic analysis reveals that Ni3(HITT)2 exhibits significantly stronger in-plane π-d conjugation and higher density of charge carriers compared to Cu3(HITT)2, accounting for the higher electrical conductivity of Ni3(HITT)2. Cu2+/Cu+ mixed valency modulates the energy level and carrier density of Cu3(HITT)2, allowing for a variation of electrical conductivity over 4 orders of magnitude. This work provides a deeper understanding of the influence of metal nodes on electrical conductivity and confirms ortho-diamine linkers as privileged among ligands for 2D cMOFs.
Collapse
Affiliation(s)
- Jiande Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingyu Jeon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bowen Tan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Gaudin LF, Wright IR, Harris-Lee TR, Jayamaha G, Kang M, Bentley CL. Five years of scanning electrochemical cell microscopy (SECCM): new insights and innovations. NANOSCALE 2024; 16:12345-12367. [PMID: 38874335 DOI: 10.1039/d4nr00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) is a nanopipette-based technique which enables measurement of localised electrochemistry. SECCM has found use in a wide range of electrochemical applications, and due to the wider uptake of this technique in recent years, new applications and techniques have been developed. This minireview has collected all SECCM research articles published in the last 5 years, to demonstrate and celebrate the recent advances, and to make it easier for SECCM researchers to remain well-informed. The wide range of SECCM applications is demonstrated, which are categorised here into electrocatalysis, electroanalysis, photoelectrochemistry, biological materials, energy storage materials, corrosion, electrosynthesis, and instrumental development. In the collection of this library of SECCM studies, a few key trends emerge. (1) The range of materials and processes explored with SECCM has grown, with new applications emerging constantly. (2) The instrumental capabilities of SECCM have grown, with creative techniques being developed from research groups worldwide. (3) The SECCM research community has grown significantly, with adoption of the SECCM technique becoming more prominent.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - India R Wright
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - Thom R Harris-Lee
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - Gunani Jayamaha
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Minkyung Kang
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
11
|
Tetteh EB, Krysiak OA, Savan A, Kim M, Zerdoumi R, Chung TD, Ludwig A, Schuhmann W. Long-Range SECCM Enables High-Throughput Electrochemical Screening of High Entropy Alloy Electrocatalysts at Up-To-Industrial Current Densities. SMALL METHODS 2024; 8:e2301284. [PMID: 38155148 DOI: 10.1002/smtd.202301284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Indexed: 12/30/2023]
Abstract
High-entropy alloys (HEAs), especially in the form of compositional complex solid solutions (CCSS), have gained attention in the field of electrocatalysis. However, exploring their vast composition space concerning their electrocatalytic properties imposes significant challenges. Scanning electrochemical cell microscopy (SECCM) offers high-speed electrochemical analysis on surface areas with a lateral resolution down to tens of nm. However, high-precision piezo positioners often used for the motion of the tip limit the area of SECCM scans to the motion range of the piezo positioners which is typically a few tens of microns. To bridge this experimental gap, the study proposes a long-range SECCM system with a rapid gas-exchange environmental cell for high-throughput electrochemical characterization of 100 mm diameter HEA thin-film material libraries (ML) obtained by combinatorial co-sputtering. Due to the gas-liquid interface at the positioned SECCM droplet on the sample, high-throughput evaluation under industrial current density conditions becomes feasible. This allows the direct correlation between electrocatalytic activity and material composition with high statistical reliability. The multidimensional data obtained accelerates materials discovery, development, and optimization.
Collapse
Affiliation(s)
- Emmanuel Batsa Tetteh
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Olga A Krysiak
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Moonjoo Kim
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ridha Zerdoumi
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
- Center for Interface-Dominated High-Performance Materials, ZGH; Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
12
|
Hu C, Zheng N. ACS Central Science Virtual Issue on Advanced Materials and Processes for Building Low-Carbon Energy Systems. ACS CENTRAL SCIENCE 2024; 10:1118-1124. [PMID: 38947199 PMCID: PMC11212126 DOI: 10.1021/acscentsci.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
13
|
Ross RD, Lee K, Quintana Cintrón GJ, Xu K, Sheng H, Schmidt JR, Jin S. Stable Pentagonal Layered Palladium Diselenide Enables Rapid Electrosynthesis of Hydrogen Peroxide. J Am Chem Soc 2024; 146:15718-15729. [PMID: 38818811 DOI: 10.1021/jacs.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e- ORR) is promising for various practical applications, such as wastewater treatment. However, few electrocatalysts are active and selective for 2e- ORR yet are also resistant to catalyst leaching under realistic operating conditions. Here, a joint experimental and computational study reveals active and stable 2e- ORR catalysis in neutral media over layered PdSe2 with a unique pentagonal puckered ring structure type. Computations predict active and selective 2e- ORR on the basal plane and edge of PdSe2, but with distinct kinetic behaviors. Electrochemical measurements of hydrothermally synthesized PdSe2 nanoplates show a higher 2e- ORR activity than other Pd-Se compounds (Pd4Se and Pd17Se15). PdSe2 on a gas diffusion electrode can rapidly accumulate H2O2 in buffered neutral solution under a high current density. The electrochemical stability of PdSe2 is further confirmed by long device operational stability, elemental analysis of the catalyst and electrolyte, and synchrotron X-ray absorption spectroscopy. This work establishes a new efficient and stable 2e- ORR catalyst at practical current densities and opens catalyst designs utilizing the unique layered pentagonal structure motif.
Collapse
Affiliation(s)
- R Dominic Ross
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kwanpyung Lee
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gerardo J Quintana Cintrón
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kaylin Xu
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
15
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
16
|
Wang Y, Han C, Ma L, Duan T, Du Y, Wu J, Zou JJ, Gao J, Zhu XD, Zhang YC. Recent Progress of Transition Metal Selenides for Electrochemical Oxygen Reduction to Hydrogen Peroxide: From Catalyst Design to Electrolyzers Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309448. [PMID: 38362699 DOI: 10.1002/smll.202309448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Hydrogen peroxide (H2O2) is a highly value-added and environmental-friendly chemical with various applications. The production of H2O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process. High selectivity Catalysts combining with superior activity are critical for the efficient electrosynthesis of H2O2. Earth-abundant transition metal selenides (TMSs) being discovered as a classic of stable, low-cost, highly active and selective catalysts for electrochemical 2e- ORR. These features come from the relatively large atomic radius of selenium element, the metal-like properties and the abundant reserves. Moreover, compared with the advanced noble metal or single-atom catalysts, the kinetic current density of TMSs for H2O2 generation is higher in acidic solution, which enable them to become suitable catalyst candidates. Herein, the recent progress of TMSs for ORR to H2O2 is systematically reviewed. The effects of TMSs electrocatalysts on the activity, selectivity and stability of ORR to H2O2 are summarized. It is intended to provide an insight from catalyst design and corresponding reaction mechanisms to the device setup, and to discuss the relationship between structure and activity.
Collapse
Affiliation(s)
- Yingnan Wang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Caidi Han
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Li Ma
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266237, China
| | - Tigang Duan
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, 266237, China
| | - Yue Du
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Jinting Wu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yong-Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
17
|
Hong T, Lee C, Bak Y, Park G, Lee H, Kang S, Bae TH, Yoon DK, Park JG. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309469. [PMID: 38174621 DOI: 10.1002/smll.202309469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Property optimization through orientation control of metal-organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post-synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu3(HHTP)2 crystals and the formation of aggregated microstructures, which leads to an ≈5000-fold increase in the conductivity of the composite. Notably, the composite thin-films containing aligned Cu3(HHTP)2 crystals exhibit significant conductivity of ≈10-3 S cm-1 despite the low concentration (≈1 wt.%) of conductive Cu3(HHTP)2. The use of an electric field to align Cu3(HHTP)2 crystals can rapidly generate various desired patterns that exhibit on-demand tunable collective charge transport anisotropy. The findings provide valuable insights toward the manipulation and utilization of conductive MOFs with anisotropic crystal structures for various applications such as adhesive electrical interconnects and microelectronics.
Collapse
Affiliation(s)
- Taegyun Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunguk Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Jayamaha G, Maleki M, Bentley CL, Kang M. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). Analyst 2024; 149:2542-2555. [PMID: 38632960 DOI: 10.1039/d4an00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| | - Mahin Maleki
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia
| | - Minkyung Kang
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
19
|
Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH 3 Sensing. Angew Chem Int Ed Engl 2024; 63:e202401679. [PMID: 38389160 DOI: 10.1002/anie.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian-Ze Xiao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
20
|
Choi JY, Check B, Fang X, Blum S, Pham HTB, Tayman K, Park J. Photocatalytic Hydrogen Peroxide Production through Functionalized Semiconductive Metal-Organic Frameworks. J Am Chem Soc 2024. [PMID: 38602882 DOI: 10.1021/jacs.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hydrogen peroxide (H2O2) holds significance as a vital chemical with the potential to serve as an energy carrier. Compared with the conventional anthraquinone process, photocatalytic H2O2 production has emerged as an appealing alternative because of its energy efficiency and environmental sustainability. However, the existing photocatalysts suffer from low catalytic efficiency, limited tunability of optical properties, and reliance on sacrificial agents due to high energy loss caused by inefficient charge separation. Therefore, developing catalysts with tunable optical properties and efficient charge separation is desirable. In this work, we introduce postsynthetic functionalization into an electrically conductive metal-organic framework, namely, DPT-MOF. Leveraging DPT (3,6-di(4-pyridyl)-1,2,4,5-tetrazine) as a pillar ligand, we exploited click-type chemistry to manipulate band position and charge separation efficiency, allowing for photocatalytic nonsacrificial H2O2 production. Notably, the fluorine-functionalized MOF exhibited the highest H2O2 production rate of 1676 μmol g-1 h-1 under visible light in O2-saturated water among our other samples. This high production rate is attributed to the tuned electronic structure and prolonged charge lifetime facilitated by the fluorine groups. This work highlights the effectiveness of postsynthetic methodology in tuning optical properties, opening a promising avenue for advancing the field of semiconductive MOF-based photocatalysis.
Collapse
Affiliation(s)
- Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Brianna Check
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xiaoyu Fang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Samson Blum
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kyle Tayman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
21
|
Un HI, Lu Y, Li J, Dong R, Feng X, Sirringhaus H. Controlling Film Formation and Host-Guest Interactions to Enhance the Thermoelectric Properties of Nickel-Nitrogen-Based 2D Conjugated Coordination Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312325. [PMID: 38227294 DOI: 10.1002/adma.202312325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Indexed: 01/17/2024]
Abstract
2D conjugated coordination polymers (cCPs) based on square-planar transition metal-complexes (such as MO4, M(NH)4, and MS4, M = metal) are an emerging class of (semi)conducting materials that are of great interest for applications in supercapacitors, catalysis, and thermoelectrics. Finding synthetic approaches to high-performance nickel-nitrogen (Ni-N) based cCP films is a long-standing challenge. Here, a general, dynamically controlled on-surface synthesis that produces highly conductive Ni-N-based cCP films is developed and the thermoelectric properties as a function of the molecular structure and their dependence on interactions with ambient atmosphere are studied. Among the four studied cCPs with different ligand sizes hexaminobenzene- and hexaaminotriphenylene-based films exhibit record electrical conductivity (100-200 S cm-1) in this Ni-N based cCP family, which is one order of magnitude higher than previous reports, and the highest thermoelectric power factors up to 10 µW m-1 K-2 among reported 2D cCPs. The transport physics of these films is studied and it is shown that depending on the host-guest interaction with oxygen/water the majority carrier type and the value of the Seebeck coefficient can be largely regulated. The high conductivity is likely reflecting good interconnectivity between (small) ordered domains and grain boundaries supporting disordered metallic transport.
Collapse
Affiliation(s)
- Hio-Ieng Un
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Yang Lu
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
- University of Strasbourg, CNRS, ISIS, UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, 67000, France
| | - Jiaxuan Li
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Renhao Dong
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
22
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
23
|
Zhou G, Chen K, Liang G, Long J. Confined covalent organic framework anchored Fe sites derived highly uniform electrocatalysts for rechargeable aqueous and solid-state Zn-air batteries. J Colloid Interface Sci 2023; 651:794-804. [PMID: 37572615 DOI: 10.1016/j.jcis.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/30/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Exploiting clean, highly efficient energy storage and conversion device like Zn-air battery is of significance for alleviating the energy and environmental crises of this society. Metal organic coordination polymers/frameworks have been regarded as ideal templates to synthesize non-noble metal catalysts for a long time. However, the high density of metal nodes inevitably leads to the heavy aggregation of metal nanoparticles during thermolysis transformation process, which greatly hinders the maximizing of electrochemical performances. Herein, covalent organic framework (COF) has been employed to anchor the quantificational Fe ions (COF-Fe) and then confined into the macropores of g-C3N4 to improve the dispersion of metal active sites and avoid severe aggregation during high temperature pyrolysis. After calcination, the metal nanoparticles highly dispersed Fe-CFN catalysts can be obtained. The optimal Fe-CFN-800 catalysts exhibit excellent ORR and OER performances with the potential difference between ORR and OER of merely 0.723 V. Moreover, experimental way and DFT theoretical calculations are also employed to disclose the reaction mechanism. Finally, the all-solid-state and aqueous Zn-air batteries assembled with the optimized Fe-CFN-800 as cathode present excellent performances with high peak power density, flexible rate performance, strong discharge stability and long-term charge-discharge cycling performance.
Collapse
Affiliation(s)
- Guangliang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China
| | - Keyu Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China
| | - Guangming Liang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China
| | - Jilan Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China.
| |
Collapse
|
24
|
Pedersen A, Bagger A, Barrio J, Maillard F, Stephens IEL, Titirici MM. Atomic metal coordinated to nitrogen-doped carbon electrocatalysts for proton exchange membrane fuel cells: a perspective on progress, pitfalls and prospectives. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:23211-23222. [PMID: 38013915 PMCID: PMC10629202 DOI: 10.1039/d3ta04711c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells require reduced construction costs to improve commercial viability, which can be fueled by elimination of platinum as the O2 reduction electrocatalyst. The past 10 years has seen significant developments in synthesis, characterisation, and electrocatalytic performance of the most promising alternative electrocatalyst; single metal atoms coordinated to nitrogen-doped carbon (M-N-C). In this Perspective we recap some of the important achievements of M-N-Cs in the last decade, as well as discussing current knowledge gaps and future research directions for the community. We provide a new outlook on M-N-C stability and atomistic understanding with a set of original density functional theory simulations.
Collapse
Affiliation(s)
- Angus Pedersen
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Alexander Bagger
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Physics, Technical University of Denmark Kongens Lyngby 2800 Denmark
| | - Jesús Barrio
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Frédéric Maillard
- University Grenoble Alpes, University Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University 2-1-1 Katahira, Aobaku Sendai Miyagi 980-8577 Japan
| |
Collapse
|
25
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
26
|
Moharramnejad M, Malekshah RE, Ehsani A, Gharanli S, Shahi M, Alvan SA, Salariyeh Z, Azadani MN, Haribabu J, Basmenj ZS, Khaleghian A, Saremi H, Hassani Z, Momeni E. A review of recent developments of metal-organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interface Sci 2023; 316:102908. [PMID: 37148581 DOI: 10.1016/j.cis.2023.102908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Metal-organic frameworks (MOFs), also called porous coordination polymers, represent a class of crystalline porous materials made up of organic ligands and metal ions/metal clusters. Herein, an overview of the preparation of different metal-organic frameworks and the recent advances in MOF-based stimuli-responsive drug delivery systems (DDSs) with the drug release mechanisms including pH-, temperature-, ion-, magnetic-, pressure-, adenosine-triphosphate (ATP)-, H2S-, redox-, responsive, and photoresponsive MOF were rarely introduced. The combination therapy containing of two or more treatments can be enhanced treatment effectiveness through overcoming limitations of monotherapy. Photothermal therapy (PTT) combined with chemotherapy (CT), chemotherapy in combination with PTT or other combinations were explained to overcome drug resistance and side effects in normal cells as well as enhancing the therapeutic response. Integrated platforms containing of photothermal/drug-delivering functions with magnetic resonance imaging (MRI) properties exhibited great advantages in cancer therapy.
Collapse
Affiliation(s)
- Mojtaba Moharramnejad
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran; Young Researcher and Elite Group, University of Qom, Qom, Iran
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Chemistry, Semnan University, Semnan, Iran.
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Sajjad Gharanli
- Department of Chemical Engineering, Faculty of Engineering, Qom University, Qom, Iran
| | - Mehrnaz Shahi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Saeed Alvani Alvan
- Bachelor of Chemical Engineering, Azad Varamin University, Peshwa branch, Iran
| | | | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Saremi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Zahra Hassani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Elham Momeni
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
27
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
28
|
Zhang C, Yuan L, Liu C, Li Z, Zou Y, Zhang X, Zhang Y, Zhang Z, Wei G, Yu C. Crystal Engineering Enables Cobalt-Based Metal-Organic Frameworks as High-Performance Electrocatalysts for H 2O 2 Production. J Am Chem Soc 2023; 145:7791-7799. [PMID: 36896469 DOI: 10.1021/jacs.2c11446] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Metal-organic frameworks (MOFs) with highly adjustable structures are an emerging family of electrocatalysts in two-electron oxygen reduction reaction (2e-ORR) for H2O2 production. However, the development of MOF-based 2e-ORR catalysts with high H2O2 selectivity and production rate remains challenging. Herein, an elaborate design with fine control over MOFs at both atomic and nano-scale is demonstrated, enabling the well-known Zn/Co bimetallic zeolite imidazole frameworks (ZnCo-ZIFs) as excellent 2e-ORR electrocatalysts. Experimental results combined with density functional theory simulation have shown that the atomic level control can regulate the role of water molecules participating in the ORR process, and the morphology control over desired facet exposure adjusts the coordination unsaturation degree of active sites. The structural regulation at two length scales leads to synchronous control over both the kinetics and thermodynamics for ORR on bimetallic ZIF catalysts. The optimized ZnCo-ZIF with a Zn/Co molar ratio of 9/1 and predominant {001} facet exposure exhibits a high 2e- selectivity of ∼100% and a H2O2 yield of 4.35 mol gcat-1 h-1. The findings pave a new avenue toward the development of multivariate MOFs as advanced 2e-ORR electrocatalysts.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zimeng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yue Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zhiqiang Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Tetteh EB, Valavanis D, Daviddi E, Xu X, Santana Santos C, Ventosa E, Martín-Yerga D, Schuhmann W, Unwin PR. Fast Li-ion Storage and Dynamics in TiO 2 Nanoparticle Clusters Probed by Smart Scanning Electrochemical Cell Microscopy. Angew Chem Int Ed Engl 2023; 62:e202214493. [PMID: 36469735 DOI: 10.1002/anie.202214493] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Anatase TiO2 is a promising material for Li-ion (Li+ ) batteries with fast charging capability. However, Li+ (de)intercalation dynamics in TiO2 remain elusive and reported diffusivities span many orders of magnitude. Here, we develop a smart protocol for scanning electrochemical cell microscopy (SECCM) with in situ optical microscopy (OM) to enable the high-throughput charge/discharge analysis of single TiO2 nanoparticle clusters. Directly probing active nanoparticles revealed that TiO2 with a size of ≈50 nm can store over 30 % of the theoretical capacity at an extremely fast charge/discharge rate of ≈100 C. This finding of fast Li+ storage in TiO2 particles strengthens its potential for fast-charging batteries. More generally, smart SECCM-OM should find wide applications for high-throughput electrochemical screening of nanostructured materials.
Collapse
Affiliation(s)
- Emmanuel Batsa Tetteh
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK.,Analytical Chemistry-, Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | | | - Enrico Daviddi
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK
| | - Carla Santana Santos
- Analytical Chemistry-, Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Edgar Ventosa
- Department of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | | | - Wolfgang Schuhmann
- Analytical Chemistry-, Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV47AL, UK
| |
Collapse
|
30
|
Limani N, Batsa Tetteh E, Kim M, Quast T, Scorsone E, Jousselme B, Schuhmann W, Cornut R. Scrutinizing Intrinsic Oxygen Reduction Reaction Activity of a Fe−N−C Catalyst via Scanning Electrochemical Cell Microscopy. ChemElectroChem 2023. [DOI: 10.1002/celc.202201095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Ndrina Limani
- Universite Paris-Saclay CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Emmanuel Batsa Tetteh
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Moonjoo Kim
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | | | - Bruno Jousselme
- Universite Paris-Saclay CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Renaud Cornut
- Universite Paris-Saclay CEA, CNRS, NIMBE, LICSEN Gif-sur-Yvette 91191 France
| |
Collapse
|
31
|
Smith MR, Martin CB, Arumuganainar S, Gilman A, Koel BE, Sarazen ML. Mechanistic Elucidations of Highly Dispersed Metalloporphyrin Metal-Organic Framework Catalysts for CO 2 Electroreduction. Angew Chem Int Ed Engl 2023; 62:e202218208. [PMID: 36584349 DOI: 10.1002/anie.202218208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Immobilization of porphyrin complexes into crystalline metal-organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from -0.6 V to -1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.
Collapse
Affiliation(s)
- Michael R Smith
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Clare B Martin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sonia Arumuganainar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ari Gilman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bruce E Koel
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Haldar R, Ghosh A, Maji TK. Charge transfer in metal-organic frameworks. Chem Commun (Camb) 2023; 59:1569-1588. [PMID: 36655919 DOI: 10.1039/d2cc05522h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs, also known as porous coordination polymers or PCPs) are a novel class of crystalline porous material. The tailorable porous structure, in terms of size, geometry and function, has attracted the attention of researchers across all disciplines of materials science. One of the many exciting aspects of MOFs is that through directional and reversible coordination bonding, organic linkers (chromophores with metal-coordinating functional groups) and metal ions (and clusters) can be spatially organized in a preconceived geometry. The well-defined spatial geometry of the metals and linkers is very advantageous for optoelectronic functions (solar cells, light-emitting diodes, photocatalysts) of the materials. This feature article evaluates the scope of charge transfer (CT) interactions in MOFs, involving the organic linkers and metal ion or cluster components. Irrespective of the type (size, shape, electronic property) of organic chromophores involved, MOFs provide an insightful path to design and make the CT process efficient. The selected examples of MOFs with CT characteristics do not only illustrate the design principles but render a pathway towards understanding the complex photophysical processes and implementing those for future optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Ritesh Haldar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Hyderabad 500046, India.
| | - Adrija Ghosh
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. .,Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
33
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
34
|
Stodolka M, Park J. Unlocking Efficient O 2 Electroreduction in Conductive MOFs via Enhanced Mass Transport. ACS CENTRAL SCIENCE 2022; 8:877-879. [PMID: 35912359 PMCID: PMC9335911 DOI: 10.1021/acscentsci.2c00773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Michael Stodolka
- Department of Chemistry, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|