1
|
Adhikary A, Joseph VF, Banerjee R, Nagotu S. Yeast Dnm1 G178R causes altered organelle dynamics and sheds light on the human DRP1 G149R disease mechanism. Mitochondrion 2025; 81:102006. [PMID: 39788359 DOI: 10.1016/j.mito.2025.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Mitochondrial morphology is a result of regulated opposite events called fission and fusion and requires the GTPase, dynamin-related protein 1 (DRP1/Dnm1), or its homologs. A recent clinical report identified a heterozygous missense mutation in the human DRP1 that replaces Glycine (G) 149 with Arginine (R) and results in debilitating conditions in the patient. In this study, we mimicked this mutation in yeast Dnm1 (G178R) and investigated the impact of the pathogenic mutation on the protein's function. We provide evidence that the substitution of G with R in the G3 motif of the GTPase domain, renders the protein non-functional and in a dominant-negative way. The mutation hampers the distribution, localization, and function of the protein. Cells expressing the mutant variant exhibit a block in mitochondrial fission and altered peroxisome morphology and number.
Collapse
Affiliation(s)
- Ankita Adhikary
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vivian Francis Joseph
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Alimohamadi H, Luo EWC, Yang R, Gupta S, Nolden KA, Mandal T, Blake Hill R, Wong GCL. Dynamins combine mechano-constriction and membrane remodeling to enable two-step mitochondrial fission via a 'snap-through' instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608723. [PMID: 39229060 PMCID: PMC11370335 DOI: 10.1101/2024.08.19.608723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitochondrial fission is controlled by dynamin proteins, the dysregulation of which is correlated with diverse diseases. Fission dynamins are GTP hydrolysis-driven mechanoenzymes that self-oligomerize into helical structures that constrict membrane to achieve fission, but details are not well understood. However, dynamins can also remodel membranes by inducing negative Gaussian curvature, the type of curvature required for completion of fission. Here, we examine how these drastically different mechanisms synergistically exert their influences on a membrane, via a mechanical model calibrated with small-angle X-ray scattering structural data. We find that free dynamin can trigger a "snap-through instability" that enforces a shape transition from an oligomer-confined cylindrical membrane to a drastically narrower catenoid-shaped neck within the spontaneous hemi-fission regime, in a manner that depends critically on the length of the confined tube. These results indicate how the combination of dynamin assembly, and paradoxically disassembly, can lead to diverse pathways to scission.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - R. Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, CO, 80045, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing Multifunctional Viral and Eukaryotic Proteins for Generating Scission Necks in Membranes. ACS NANO 2024; 18:15545-15556. [PMID: 38838261 DOI: 10.1021/acsnano.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is M2 viroporin, a proton pump from the influenza A virus that is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging small-angle X-ray scattering structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemifission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Gnyliukh N, Johnson A, Nagel MK, Monzer A, Babić D, Hlavata A, Alotaibi SS, Isono E, Loose M, Friml J. Role of the dynamin-related protein 2 family and SH3P2 in clathrin-mediated endocytosis in Arabidopsis thaliana. J Cell Sci 2024; 137:jcs261720. [PMID: 38506228 PMCID: PMC11112126 DOI: 10.1242/jcs.261720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.
Collapse
Affiliation(s)
- Nataliia Gnyliukh
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Aline Monzer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - David Babić
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Annamaria Hlavata
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Erika Isono
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| |
Collapse
|
5
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
6
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing multifunctional viral and eukaryotic proteins for generating scission necks in membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574447. [PMID: 38260291 PMCID: PMC10802413 DOI: 10.1101/2024.01.05.574447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is the M2 viroporin, a proton pump from the influenza A virus which is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging Small-Angle X-ray Scattering (SAXS) structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemi-fission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
|
7
|
Banerjee R, Mukherjee A, Adhikary A, Sharma S, Hussain MS, Ali ME, Nagotu S. Insights into the role of the conserved GTPase domain residues T62 and S277 in yeast Dnm1. Int J Biol Macromol 2023; 253:127381. [PMID: 37838106 DOI: 10.1016/j.ijbiomac.2023.127381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/10/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Mitochondrial division is a highly regulated process. The master regulator of this process is the multi-domain, conserved protein called Dnm1 in yeast. In this study, we systematically analyzed two residues, T62 and S277, reported to be putatively phosphorylated in the GTPase domain of the protein. These residues lie in the G2 and G5 motifs of the GTPase domain. Both residues are important for the function of the protein, as evident from in vivo and in vitro analysis of the non-phosphorylatable and phosphomimetic variants. Dnm1T62A/D and Dnm1S277A/D showed differences with respect to the protein localization and puncta dynamics in vivo, albeit both were non-functional as assessed by mitochondrial morphology and GTPase activity. Overall, the secondary structure of the protein variants was unaltered, but local conformational changes were observed. Interestingly, both Dnm1T62A/D and Dnm1S277A/D exhibited dominant-negative behavior when expressed in cells containing endogenous Dnm1. To our knowledge, we report for the first time a single residue (S277) change that does not alter the localization of Dnm1 but makes it non-functional in a dominant-negative manner. Intriguingly, the two residues analyzed in this study are present in the same domain but exhibit variable effects when mutated to alanine or aspartic acid.
Collapse
Affiliation(s)
- Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Agradeep Mukherjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ankita Adhikary
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shikha Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Md Saddam Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Alimohamadi H, de Anda J, Lee MW, Schmidt NW, Mandal T, Wong GCL. How Cell-Penetrating Peptides Behave Differently from Pore-Forming Peptides: Structure and Stability of Induced Transmembrane Pores. J Am Chem Soc 2023; 145:26095-26105. [PMID: 37989570 DOI: 10.1021/jacs.3c08014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Peptide-induced transmembrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions, and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore-forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small-angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that although AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Nolden KA, Harwig MC, Hill RB. Human Fis1 directly interacts with Drp1 in an evolutionarily conserved manner to promote mitochondrial fission. J Biol Chem 2023; 299:105380. [PMID: 37866629 PMCID: PMC10694664 DOI: 10.1016/j.jbc.2023.105380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Mitochondrial fission protein 1 (Fis1) and dynamin-related protein 1 (Drp1) are the only two proteins evolutionarily conserved for mitochondrial fission, and directly interact in Saccharomyces cerevisiae to facilitate membrane scission. However, it remains unclear if a direct interaction is conserved in higher eukaryotes as other Drp1 recruiters, not present in yeast, are known. Using NMR, differential scanning fluorimetry, and microscale thermophoresis, we determined that human Fis1 directly interacts with human Drp1 (KD = 12-68 μM), and appears to prevent Drp1 assembly, but not GTP hydrolysis. Similar to yeast, the Fis1-Drp1 interaction appears governed by two structural features of Fis1: its N-terminal arm and a conserved surface. Alanine scanning mutagenesis of the arm identified both loss-of-function and gain-of-function alleles with mitochondrial morphologies ranging from highly elongated (N6A) to highly fragmented (E7A), demonstrating a profound ability of Fis1 to govern morphology in human cells. An integrated analysis identified a conserved Fis1 residue, Y76, that upon substitution to alanine, but not phenylalanine, also caused highly fragmented mitochondria. The similar phenotypic effects of the E7A and Y76A substitutions, along with NMR data, support that intramolecular interactions occur between the arm and a conserved surface on Fis1 to promote Drp1-mediated fission as in S. cerevisiae. These findings indicate that some aspects of Drp1-mediated fission in humans derive from direct Fis1-Drp1 interactions that are conserved across eukaryotes.
Collapse
Affiliation(s)
- Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan C Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
10
|
Posey AE, Ross KA, Bagheri M, Lanum EN, Khan MA, Jennings CE, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from dynamin-related protein 1 promotes liquid-liquid phase separation that enhances its interaction with cardiolipin-containing membranes. Protein Sci 2023; 32:e4787. [PMID: 37743569 PMCID: PMC10578129 DOI: 10.1002/pro.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" important for regulation. For the mitochondrial fission dynamin, dynamin-related protein 1, a regulatory role for the variable domain (VD) is demonstrated by gain- and loss-of-function mutations, yet the basis for this is unclear. Here, the isolated VD is shown to be intrinsically disordered and undergo a cooperative transition in the stabilizing osmolyte trimethylamine N-oxide. However, the osmolyte-induced state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, which appears to promote phase separation. Since dynamin-related protein 1 is found assembled into discrete punctate structures on the mitochondrial surface, the inference from the present work is that these structures might arise from a condensed state involving the VD that may enable rapid tuning of mechanoenzyme assembly necessary for fission.
Collapse
Affiliation(s)
- Ammon E. Posey
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
- Present address:
Department of Biomedical EngineeringWashington UniversitySt. LouisMissouriUSA
| | - Kyle A. Ross
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Mehran Bagheri
- Department of PhysicsUniversity of OttawaOttawaOntarioUSA
| | - Elizabeth N. Lanum
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Misha A. Khan
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | - Megan C. Harwig
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Nolan W. Kennedy
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Vincent J. Hilser
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - R. Blake Hill
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
11
|
Alimohamadi H, de Anda J, Lee MW, Schmidt NW, Mandal T, Wong GCL. How cell penetrating peptides behave differently from pore forming peptides: structure and stability of induced transmembrane pores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550729. [PMID: 37546874 PMCID: PMC10402029 DOI: 10.1101/2023.07.26.550729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Peptide induced trans-membrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that whereas AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.
Collapse
|
12
|
Posey AE, Bagheri M, Ross KA, Lanum EN, Khan MA, Jennings CM, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from the mitochondrial fission mechanoenzyme Drp1 promotes liquid-liquid phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542732. [PMID: 37398258 PMCID: PMC10312466 DOI: 10.1101/2023.05.29.542732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" (VD) important for regulation. For the mitochondrial fission dynamin, Drp1, a regulatory role for the VD is demonstrated by mutations that can elongate, or fragment, mitochondria. How the VD encodes inhibitory and stimulatory activity is unclear. Here, isolated VD is shown to be intrinsically disordered (ID) yet undergoes a cooperative transition in the stabilizing osmolyte TMAO. However, the TMAO stabilized state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, raising the possibility that phase separation may enable rapid tuning of Drp1 assembly necessary for fission.
Collapse
|
13
|
Nolden KA, Harwig MC, Hill RB. Human Fis1 directly interacts with Drp1 in an evolutionarily conserved manner to promote mitochondrial fission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539292. [PMID: 37205551 PMCID: PMC10187221 DOI: 10.1101/2023.05.03.539292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondrial Fission Protein 1 (Fis1) and Dynamin Related Protein 1 (Drp1) are the only two proteins evolutionarily conserved for mitochondrial fission, and directly interact in S. cerevisiae to facilitate membrane scission. However, it remains unclear if a direct interaction is conserved in higher eukaryotes as other Drp1 recruiters, not present in yeast, are known. Using NMR, differential scanning fluorimetry, and microscale thermophoresis, we determined that human Fis1 directly interacts with human Drp1 ( K D = 12-68 µM), and appears to prevent Drp1 assembly, but not GTP hydrolysis. Similar to yeast, the Fis1-Drp1 interaction appears governed by two structural features of Fis1: its N-terminal arm and a conserved surface. Alanine scanning mutagenesis of the arm identified both loss- and gain-of-function alleles with mitochondrial morphologies ranging from highly elongated (N6A) to highly fragmented (E7A) demonstrating a profound ability of Fis1 to govern morphology in human cells. An integrated analysis identified a conserved Fis1 residue, Y76, that upon substitution to alanine, but not phenylalanine, also caused highly fragmented mitochondria. The similar phenotypic effects of the E7A and Y76A substitutions, along with NMR data, support that intramolecular interactions occur between the arm and a conserved surface on Fis1 to promote Drp1-mediated fission as in S. cerevisiae . These findings indicate that some aspects of Drp1-mediated fission in humans derive from direct Fis1-Drp1 interactions that are conserved across eukaryotes.
Collapse
|
14
|
Wang H, Peng Z, Wang C, Zhu Y, Xia F, Sun H. Thymol and
trans
‐cinnamaldehyde induce apoptosis through a metacaspase‐dependent mitochondrial pathway in food‐spoilage yeast
Zygosaccharomyces rouxii. J Food Sci 2022; 87:4119-4136. [DOI: 10.1111/1750-3841.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Huxuan Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Zhonghua Peng
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Cong Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Yanan Zhu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Fei Xia
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Hongmin Sun
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| |
Collapse
|
15
|
Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45216, United States of America.
| |
Collapse
|
16
|
Thorsen MK, Lai A, Lee MW, Hoogerheide DP, Wong GCL, Freed JH, Heldwein EE. Highly Basic Clusters in the Herpes Simplex Virus 1 Nuclear Egress Complex Drive Membrane Budding by Inducing Lipid Ordering. mBio 2021; 12:e0154821. [PMID: 34425706 PMCID: PMC8406295 DOI: 10.1128/mbio.01548-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 02/01/2023] Open
Abstract
During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.
Collapse
Affiliation(s)
- Michael K. Thorsen
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex Lai
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Michelle W. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Banerjee R, Kumar A, Satpati P, Nagotu S. Mimicking human Drp1 disease-causing mutations in yeast Dnm1 reveals altered mitochondrial dynamics. Mitochondrion 2021; 59:283-295. [PMID: 34157431 DOI: 10.1016/j.mito.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
The dynamin-related protein 1 (Drp1) and its homologs in various eukaryotes are essential to maintain mitochondrial morphology and regulate mitochondrial division. Several mutations in different domains of Drp1 have been reported, which result in debilitating conditions. Four such disease-causing mutations of the middle domain of Drp1 were mimicked in the yeast dynamin-related GTPase (Dnm1) and were characterized in this study. Mitochondrial morphology and protein function were observed to be altered to a variable extent in cells expressing the mutated variants of Dnm1. Several aspects related to the protein such as punctate formation, localization to mitochondria, dynamic behavior and structure were analyzed by microscopy, biochemical studies and molecular dynamics simulations. Significant effects on the protein structure and function were observed in cells expressing A430D and G397D mutations. Overall, our data provide insight into the molecular and cellular alterations resulting from middle domain mutations in Dnm1.
Collapse
Affiliation(s)
- Riddhi Banerjee
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Abhishek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
18
|
Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, Wang J, Waschek JA, Ferguson AL, Lee KF, Yount NY, Yeaman MR, Wong GCL. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci U S A 2021; 118:e1917623117. [PMID: 33372152 PMCID: PMC7817161 DOI: 10.1073/pnas.1917623117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Liana C Chan
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Huiyuan Wang
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Juelline Lieng
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Mandy Hung
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Jennifer Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Nannette Y Yount
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Michael R Yeaman
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509;
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
19
|
Chen X, Yang X, de Anda J, Huang J, Li D, Xu H, Shields KS, Džunková M, Hansen J, Patel IJ, Yee EU, Golenbock DT, Grant MA, Wong GCL, Kelly CP. Clostridioides difficile Toxin A Remodels Membranes and Mediates DNA Entry Into Cells to Activate Toll-Like Receptor 9 Signaling. Gastroenterology 2020; 159:2181-2192.e1. [PMID: 32841647 PMCID: PMC8720510 DOI: 10.1053/j.gastro.2020.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Clostridioides difficile toxin A (TcdA) activates the innate immune response. TcdA co-purifies with DNA. Toll-like receptor 9 (TLR9) recognizes bacterial DNA to initiate inflammation. We investigated whether DNA bound to TcdA activates an inflammatory response in murine models of C difficile infection via activation of TLR9. METHODS We performed studies with human colonocytes and monocytes and macrophages from wild-type and TLR9 knockout mice incubated with TcdA or its antagonist (ODN TTAGGG) or transduced with vectors encoding TLR9 or small-interfering RNAs. Cytokine production was measured with enzyme-linked immunosorbent assay. We studied a transduction domain of TcdA (TcdA57-80), which was predicted by machine learning to have cell-penetrating activity and confirmed by synchrotron small-angle X-ray scattering. Intestines of CD1 mice, C57BL6J mice, and mice that express a form of TLR9 that is not activated by CpG DNA were injected with TcdA, TLR9 antagonist, or both. Enterotoxicity was estimated based on loop weight to length ratios. A TLR9 antagonist was tested in mice infected with C difficile. We incubated human colon explants with an antagonist of TLR9 and measured TcdA-induced production of cytokines. RESULTS The TcdA57-80 protein transduction domain had membrane remodeling activity that allowed TcdA to enter endosomes. TcdA-bound DNA entered human colonocytes. TLR9 was required for production of cytokines by cultured cells and in human colon explants incubated with TcdA. TLR9 was required in TcdA-induced mice intestinal secretions and in the survival of mice infected by C difficile. Even in a protease-rich environment, in which only fragments of TcdA exist, the TcdA57-80 domain organized DNA into a geometrically ordered structure that activated TLR9. CONCLUSIONS TcdA from C difficile can bind and organize bacterial DNA to activate TLR9. TcdA and TcdA fragments remodel membranes, which allows them to access endosomes and present bacterial DNA to and activate TLR9. Rather than inactivating the ability of DNA to bind TLR9, TcdA appears to chaperone and organize DNA into an inflammatory, spatially periodic structure.
Collapse
Affiliation(s)
- Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Xiaotong Yang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Institute of Microbiology and Immunology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun Huang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Department of Colorectal Surgery, the 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Li
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Xu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelsey S. Shields
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mária Džunková
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Joshua Hansen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Eric U. Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Douglas T. Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marianne A. Grant
- Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA,Corresponding Authors: Xinhua Chen, PhD, , or Gerard C. L. Wong, PhD,
| | - Ciarán P. Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Lee EY, Srinivasan Y, de Anda J, Nicastro LK, Tükel Ç, Wong GCL. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation. Front Immunol 2020; 11:1629. [PMID: 32849553 PMCID: PMC7412598 DOI: 10.3389/fimmu.2020.01629] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological self-assembly is a concept that is classically associated with amyloids, such as amyloid-β (Aβ) in Alzheimer's disease and α-synuclein in Parkinson's disease. In prokaryotic organisms, amyloids are assembled extracellularly in a similar fashion to human amyloids. Pathogenicity of amyloids is attributed to their ability to transform into several distinct structural states that reflect their downstream biological consequences. While the oligomeric forms of amyloids are thought to be responsible for their cytotoxicity via membrane permeation, their fibrillar conformations are known to interact with the innate immune system to induce inflammation. Furthermore, both eukaryotic and prokaryotic amyloids can self-assemble into molecular chaperones to bind nucleic acids, enabling amplification of Toll-like receptor (TLR) signaling. Recent work has shown that antimicrobial peptides (AMPs) follow a strikingly similar paradigm. Previously, AMPs were thought of as peptides with the primary function of permeating microbial membranes. Consistent with this, many AMPs are facially amphiphilic and can facilitate membrane remodeling processes such as pore formation and fusion. We show that various AMPs and chemokines can also chaperone and organize immune ligands into amyloid-like ordered supramolecular structures that are geometrically optimized for binding to TLRs, thereby amplifying immune signaling. The ability of amphiphilic AMPs to self-assemble cooperatively into superhelical protofibrils that form structural scaffolds for the ordered presentation of immune ligands like DNA and dsRNA is central to inflammation. It is interesting to explore the notion that the assembly of AMP protofibrils may be analogous to that of amyloid aggregates. Coming full circle, recent work has suggested that Aβ and other amyloids also have AMP-like antimicrobial functions. The emerging perspective is one in which assembly affords a more finely calibrated system of recognition and response: the detection of single immune ligands, immune ligands bound to AMPs, and immune ligands spatially organized to varying degrees by AMPs, result in different immunologic outcomes. In this framework, not all ordered structures generated during multi-stepped AMP (or amyloid) assembly are pathological in origin. Supramolecular structures formed during this process serve as signatures to the innate immune system to orchestrate immune amplification in a proportional, situation-dependent manner.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lauren K Nicastro
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States.,California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Chemokine CCL28 Is a Potent Therapeutic Agent for Oropharyngeal Candidiasis. Antimicrob Agents Chemother 2020; 64:AAC.00210-20. [PMID: 32423961 DOI: 10.1128/aac.00210-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is a commensal organism that causes life-threatening or life-altering opportunistic infections. Treatment of Candida infections is limited by the paucity of antifungal drug classes. Naturally occurring antimicrobial peptides are promising agents for drug development. CCL28 is a CC chemokine that is abundant in saliva and has in vitro antimicrobial activity. In this study, we examine the in vivo Candida killing capacity of CCL28 in oropharyngeal candidiasis as well as the spectrum and mechanism of anti-Candida activity. In the mouse model of oropharyngeal candidiasis, application of wild-type CCL28 reduces oral fungal burden in severely immunodeficient mice without causing excessive inflammation or altering tissue neutrophil recruitment. CCL28 is effective against multiple clinical strains of C. albicans Polyamine protein transporters are not required for CCL28 anti-Candida activity. Both structured and unstructured CCL28 proteins show rapid and sustained fungicidal activity that is superior to that of clinical antifungal agents. Application of wild-type CCL28 to C. albicans results in membrane disruption as measured by solute movement, enzyme leakage, and induction of negative Gaussian curvature on model membranes. Membrane disruption is reduced in CCL28 lacking the functional C-terminal tail. Our results strongly suggest that CCL28 can exert antifungal activity in part via membrane permeation and has potential for development as an anti-Candida therapeutic agent without inflammatory side effects.
Collapse
|
22
|
Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Seleem MN, Pinilla C, de la Fuente-Nunez C, Lazaridis T, Dai T, Houghten RA, Hancock REW, Tegos GP. The value of antimicrobial peptides in the age of resistance. THE LANCET. INFECTIOUS DISEASES 2020; 20:e216-e230. [PMID: 32653070 DOI: 10.1016/s1473-3099(20)30327-3] [Citation(s) in RCA: 611] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Accelerating growth and global expansion of antimicrobial resistance has deepened the need for discovery of novel antimicrobial agents. Antimicrobial peptides have clear advantages over conventional antibiotics which include slower emergence of resistance, broad-spectrum antibiofilm activity, and the ability to favourably modulate the host immune response. Broad bacterial susceptibility to antimicrobial peptides offers an additional tool to expand knowledge about the evolution of antimicrobial resistance. Structural and functional limitations, combined with a stricter regulatory environment, have hampered the clinical translation of antimicrobial peptides as potential therapeutic agents. Existing computational and experimental tools attempt to ease the preclinical and clinical development of antimicrobial peptides as novel therapeutics. This Review identifies the benefits, challenges, and opportunities of using antimicrobial peptides against multidrug-resistant pathogens, highlights advances in the deployment of novel promising antimicrobial peptides, and underlines the needs and priorities in designing focused development strategies taking into account the most advanced tools available.
Collapse
Affiliation(s)
- Maria Magana
- Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ana L Santos
- Department of Chemistry, Rice University, Houston, TX, USA; Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Leon Leanse
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Fernandez
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Steven Bradfute
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Artem Cherkasov
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Clemencia Pinilla
- Torrey Pines Institute for Molecular Studies, Port St Lucie, FL, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Themis Lazaridis
- Department of Chemistry, The City College of New York, New York, NY, USA; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, NY, USA
| | - Tianhong Dai
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - George P Tegos
- Reading Hospital, Tower Health, West Reading, PA, USA; Micromoria, Venture X Marlborough, Marlborough, MA, USA.
| |
Collapse
|
23
|
Dishman AF, Lee MW, de Anda J, Lee EY, He J, Huppler AR, Wong GCL, Volkman BF. Switchable Membrane Remodeling and Antifungal Defense by Metamorphic Chemokine XCL1. ACS Infect Dis 2020; 6:1204-1213. [PMID: 32243126 PMCID: PMC7258946 DOI: 10.1021/acsinfecdis.0c00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Antimicrobial peptides (AMPs) are
a class of molecules which generally
kill pathogens via preferential cell membrane disruption. Chemokines
are a family of signaling proteins that direct immune cell migration
and share a conserved α–β tertiary structure. Recently,
it was found that a subset of chemokines can also function as AMPs,
including CCL20, CXCL4, and XCL1. It is therefore surprising that
machine learning based analysis predicts that CCL20 and CXCL4’s
α-helices are membrane disruptive, while XCL1’s helix
is not. XCL1, however, is the only chemokine known to be a metamorphic
protein which can interconvert reversibly between two distinct native
structures (a β-sheet dimer and the α–β chemokine
structure). Here, we investigate XCL1’s antimicrobial mechanism
of action with a focus on the role of metamorphic folding. We demonstrate
that XCL1 is a molecular “Swiss army knife” that can
refold into different structures for distinct context-dependent functions:
whereas the α–β chemokine structure controls cell
migration by binding to G-Protein Coupled Receptors (GPCRs), we find
using small angle X-ray scattering (SAXS) that only the β-sheet
and unfolded XCL1 structures can induce negative Gaussian curvature
(NGC) in membranes, the type of curvature topologically required for
membrane permeation. Moreover, the membrane remodeling activity of
XCL1’s β-sheet structure is strongly dependent on membrane
composition: XCL1 selectively remodels bacterial model membranes but
not mammalian model membranes. Interestingly, XCL1 also permeates
fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense
which requires Th17 mediated cell-based responses. These observations
suggest that metamorphic XCL1 is capable of a versatile multimodal
form of antimicrobial defense.
Collapse
Affiliation(s)
- Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Michelle W. Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ernest Y. Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jie He
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Anna R. Huppler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 United States
| |
Collapse
|
24
|
Lee MW, de Anda J, Kroll C, Bieniossek C, Bradley K, Amrein KE, Wong GCL. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183302. [PMID: 32311341 DOI: 10.1016/j.bbamem.2020.183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
All antibiotics have to engage bacterial amphiphilic barriers such as the lipopolysaccharide-rich outer membrane or the phospholipid-based inner membrane in some manner, either by disrupting them outright and/or permeating them and thereby allow the antibiotic to get into bacteria. There is a growing class of cyclic antibiotics, many of which are of bacterial origin, that exhibit activity against Gram-negative bacteria, which constitute an urgent problem in human health. We examine a diverse collection of these cyclic antibiotics, both natural and synthetic, which include bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids, in order to identify what they have in common when they interact with bacterial lipid membranes. We find that they virtually all have the ability to induce negative Gaussian curvature (NGC) in bacterial membranes, the type of curvature geometrically required for permeation mechanisms such as pore formation, blebbing, and budding. This is interesting since permeation of membranes is a function usually ascribed to antimicrobial peptides (AMPs) from innate immunity. As prototypical test cases of cyclic antibiotics, we analyzed amino acid sequences of bactenecin, polymyxin B, and capreomycin using our recently developed machine-learning classifier trained on α-helical AMP sequences. Although the original classifier was not trained on cyclic antibiotics, a modified classifier approach correctly predicted that bactenecin and polymyxin B have the ability to induce NGC in membranes, while capreomycin does not. Moreover, the classifier was able to recapitulate empirical structure-activity relationships from alanine scans in polymyxin B surprisingly well. These results suggest that there exists some common ground in the sequence design of hybrid cyclic antibiotics and linear AMPs.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Carsten Kroll
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kenneth Bradley
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt E Amrein
- Roche Pharma Research and Early Development Pharmaceutical Science, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
25
|
Kennedy NW, Picton LK, Hill RB. Isolation and Analysis of Mitochondrial Fission Enzyme DNM1 from Saccharomyces cerevisiae. Methods Mol Biol 2020; 2159:3-15. [PMID: 32529359 PMCID: PMC8040746 DOI: 10.1007/978-1-0716-0676-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mitochondrial fission, an essential process for mitochondrial and cellular homeostasis, is accomplished by evolutionarily conserved members of the dynamin superfamily of large GTPases. These enzymes couple the hydrolysis of guanosine triphosphate to the mechanical work of membrane remodeling that ultimately leads to membrane scission. The importance of mitochondrial dynamins is exemplified by mutations in the human family member that causes neonatal lethality. In this chapter, we describe the subcloning, purification, and preliminary characterization of the budding yeast mitochondrial dynamin, DNM1, from Saccharomyces cerevisiae, which is the first mitochondrial dynamin isolated from native sources. The yeast-purified enzyme exhibits assembly-stimulated hydrolysis of GTP similar to other fission dynamins, but differs from the enzyme isolated from non-native sources.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lora K Picton
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Chabanon M, Rangamani P. Geometric coupling of helicoidal ramps and curvature-inducing proteins in organelle membranes. J R Soc Interface 2019; 16:20190354. [PMID: 31480932 DOI: 10.1098/rsif.2019.0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular membranes display an incredibly diverse range of shapes, both in the plasma membrane and at membrane bound organelles. These morphologies are intricately related to cellular functions, enabling and regulating fundamental membrane processes. However, the biophysical mechanisms at the origin of these complex geometries are not fully understood from the standpoint of membrane-protein coupling. In this study, we focused on a minimal model of helicoidal ramps representative of specialized endoplasmic reticulum compartments. Given a helicoidal membrane geometry, we asked what is the distribution of spontaneous curvature required to maintain this shape at mechanical equilibrium? Based on the Helfrich energy of elastic membranes with spontaneous curvature, we derived the shape equation for minimal surfaces, and applied it to helicoids. We showed the existence of switches in the sign of the spontaneous curvature associated with geometric variations of the membrane structures. Furthermore, for a prescribed gradient of spontaneous curvature along the exterior boundaries, we identified configurations of the helicoidal ramps that are confined between two infinitely large energy barriers. Overall our results suggest possible mechanisms for geometric control of helicoidal ramps in membrane organelles based on curvature-inducing proteins.
Collapse
Affiliation(s)
- Morgan Chabanon
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA, USA
| |
Collapse
|
27
|
Hong J, Lu X, Deng Z, Xiao S, Yuan B, Yang K. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation, and Disturbance on the Membrane. Molecules 2019; 24:molecules24091775. [PMID: 31067828 PMCID: PMC6539814 DOI: 10.3390/molecules24091775] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial peptides (AMPs), as a key component of the immune defense systems of organisms, are a promising solution to the serious threat of drug-resistant bacteria to public health. As one of the most representative and extensively studied AMPs, melittin has exceptional broad-spectrum activities against microorganisms, including both Gram-positive and Gram-negative bacteria. Unfortunately, the action mechanism of melittin with bacterial membranes, especially the underlying physics of peptide-induced membrane poration behaviors, is still poorly understood, which hampers efforts to develop melittin-based drugs or agents for clinical applications. In this mini-review, we focus on recent advances with respect to the membrane insertion behavior of melittin mostly from a computational aspect. Membrane insertion is a prerequisite and key step for forming transmembrane pores and bacterial killing by melittin, whose occurrence is based on overcoming a high free-energy barrier during the transition of melittin molecules from a membrane surface-binding state to a transmembrane-inserting state. Here, intriguing simulation results on such transition are highlighted from both kinetic and thermodynamic aspects. The conformational changes and inter-peptide cooperation of melittin molecules, as well as melittin-induced disturbances to membrane structure, such as deformation and lipid extraction, are regarded as key factors influencing the insertion of peptides into membranes. The associated intermediate states in peptide conformations, lipid arrangements, membrane structure, and mechanical properties during this process are specifically discussed. Finally, potential strategies for enhancing the poration ability and improving the antimicrobial performance of AMPs are included as well.
Collapse
Affiliation(s)
- Jiajia Hong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Shufeng Xiao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
28
|
Lee EY, Zhang C, Di Domizio J, Jin F, Connell W, Hung M, Malkoff N, Veksler V, Gilliet M, Ren P, Wong GCL. Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9. Nat Commun 2019; 10:1012. [PMID: 30833557 PMCID: PMC6399285 DOI: 10.1038/s41467-019-08868-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/27/2018] [Indexed: 01/14/2023] Open
Abstract
Amphiphilicity in ɑ-helical antimicrobial peptides (AMPs) is recognized as a signature of potential membrane activity. Some AMPs are also strongly immunomodulatory: LL37-DNA complexes potently amplify Toll-like receptor 9 (TLR9) activation in immune cells and exacerbate autoimmune diseases. The rules governing this proinflammatory activity of AMPs are unknown. Here we examine the supramolecular structures formed between DNA and three prototypical AMPs using small angle X-ray scattering and molecular modeling. We correlate these structures to their ability to activate TLR9 and show that a key criterion is the AMP's ability to assemble into superhelical protofibril scaffolds. These structures enforce spatially-periodic DNA organization in nanocrystalline immunocomplexes that trigger strong recognition by TLR9, which is conventionally known to bind single DNA ligands. We demonstrate that we can "knock in" this ability for TLR9 amplification in membrane-active AMP mutants, which suggests the existence of tradeoffs between membrane permeating activity and immunomodulatory activity in AMP sequences.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Changsheng Zhang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Jeremy Di Domizio
- Department of Dermatology, Lausanne University Hospital CHUV, 1011, Lausanne, Switzerland
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Will Connell
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mandy Hung
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicolas Malkoff
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Veronica Veksler
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital CHUV, 1011, Lausanne, Switzerland
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Teng X, Yau E, Sing C, Hardwick JM. Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Res 2018; 18:5083179. [PMID: 30165592 PMCID: PMC6149368 DOI: 10.1093/femsyr/foy095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.
Collapse
Affiliation(s)
- Xinchen Teng
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu Province, People's Republic of China
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| | - Eric Yau
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - Cierra Sing
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| |
Collapse
|
30
|
Lee MW, Lee EY, Ferguson AL, Wong GCL. Machine learning antimicrobial peptide sequences: Some surprising variations on the theme of amphiphilic assembly. Curr Opin Colloid Interface Sci 2018; 38:204-213. [PMID: 31093008 DOI: 10.1016/j.cocis.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antimicrobial peptides (AMPs) collectively constitute a key component of the host innate immune system. They span a diverse space of sequences and can be α-helical, β-sheet, or unfolded in structure. Despite a wealth of knowledge about them from decades of experiments, it remains difficult to articulate general principles governing such peptides. How are they different from other molecules that are also cationic and amphiphilic? What other functions, in immunity and otherwise, are enabled by these simple sequences? In this short review, we present some recent work that engages these questions using methods not usually applied to AMP studies, such as machine learning. We find that not only do AMP-like sequences confer membrane remodeling activity to an unexpectedly broad range of protein classes, their cationic and amphiphilic signature also allows them to act as meta-antigens and self-assemble with immune ligands into nanocrystalline complexes for multivalent presentation to Toll-like receptors.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Ernest Y Lee
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Andrew L Ferguson
- Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, United States
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
31
|
Lee MW, Lee EY, Wong GCL. What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 2018; 29:2127-2139. [PMID: 29771496 DOI: 10.1021/acs.bioconjchem.8b00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A common bioengineering strategy to add function to a given molecule is by conjugation of a new moiety onto that molecule. Adding multiple functions in this way becomes increasingly challenging and leads to composite molecules with larger molecular weights. In this review, we attempt to gain a new perspective by looking at this problem in reverse, by examining nature's strategies of multiplexing different functions into the same pleiotropic molecule using emerging analysis techniques such as machine learning. We concentrate on examples from the innate immune system, which employs a finite repertoire of molecules for a broad range of tasks. An improved understanding of how diverse functions are multiplexed into a single molecule can inspire new approaches for the deterministic design of multifunctional molecules.
Collapse
|