• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4657932)   Today's Articles (918)   Subscriber (51219)
For: Ahmad Z, Xie T, Maheshwari C, Grossman JC, Viswanathan V. Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. ACS Cent Sci 2018;4:996-1006. [PMID: 30159396 PMCID: PMC6107869 DOI: 10.1021/acscentsci.8b00229] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Indexed: 05/10/2023]
Number Cited by Other Article(s)
1
Xue P, Qiu R, Peng C, Peng Z, Ding K, Long R, Ma L, Zheng Q. Solutions for Lithium Battery Materials Data Issues in Machine Learning: Overview and Future Outlook. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410065. [PMID: 39556707 DOI: 10.1002/advs.202410065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Indexed: 11/20/2024]
2
Limon MSR, Ahmad Z. Heterogeneity in Point Defect Distribution and Mobility in Solid Ion Conductors. ACS APPLIED MATERIALS & INTERFACES 2024;16:50948-50960. [PMID: 39263738 DOI: 10.1021/acsami.4c12128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
3
Lomeli EG, Ransom B, Ramdas A, Jost D, Moritz B, Sendek AD, Reed EJ, Devereaux TP. Predicting Reactivity and Passivation of Solid-State Battery Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024;16:51584-51594. [PMID: 39277815 PMCID: PMC11441401 DOI: 10.1021/acsami.4c06095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
4
Zhang Y, Zhan T, Sun Y, Lu L, Chen B. Revolutionizing Solid-State NASICON Sodium Batteries: Enhanced Ionic Conductivity Estimation through Multivariate Experimental Parameters Leveraging Machine Learning. CHEMSUSCHEM 2024;17:e202301284. [PMID: 37934454 DOI: 10.1002/cssc.202301284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
5
Zhang S, Ma J, Dong S, Cui G. Designing All-Solid-State Batteries by Theoretical Computation: A Review. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
6
Gong S, Yan K, Xie T, Shao-Horn Y, Gomez-Bombarelli R, Ji S, Grossman JC. Examining graph neural networks for crystal structures: Limitations and opportunities for capturing periodicity. SCIENCE ADVANCES 2023;9:eadi3245. [PMID: 37948518 PMCID: PMC10637739 DOI: 10.1126/sciadv.adi3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
7
Huang J, Wu K, Xu G, Wu M, Dou S, Wu C. Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chem Soc Rev 2023. [PMID: 37365900 DOI: 10.1039/d2cs01029a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
8
Chen H, Zheng Y, Li J, Li L, Wang X. AI for Nanomaterials Development in Clean Energy and Carbon Capture, Utilization and Storage (CCUS). ACS NANO 2023. [PMID: 37267448 DOI: 10.1021/acsnano.3c01062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
9
Zhang B, Wang S, Gao F. Contrastive Metric Learning for Lithium Super-ionic Conductor Screening. SN COMPUTER SCIENCE 2022;3:465. [PMID: 37608869 PMCID: PMC10443933 DOI: 10.1007/s42979-022-01370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/12/2022] [Indexed: 08/24/2023]
10
Yao Z, Lum Y, Johnston A, Mejia-Mendoza LM, Zhou X, Wen Y, Aspuru-Guzik A, Sargent EH, Seh ZW. Machine learning for a sustainable energy future. NATURE REVIEWS. MATERIALS 2022;8:202-215. [PMID: 36277083 PMCID: PMC9579620 DOI: 10.1038/s41578-022-00490-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 05/28/2023]
11
Ghanekar PG, Deshpande S, Greeley J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat Commun 2022;13:5788. [PMID: 36184625 PMCID: PMC9527237 DOI: 10.1038/s41467-022-33256-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022]  Open
12
Gong S, Wang S, Xie T, Chae WH, Liu R, Shao-Horn Y, Grossman JC. Calibrating DFT Formation Enthalpy Calculations by Multifidelity Machine Learning. JACS AU 2022;2:1964-1977. [PMID: 36186569 PMCID: PMC9516701 DOI: 10.1021/jacsau.2c00235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
13
Wang Z, Sun Z, Yin H, Liu X, Wang J, Zhao H, Pang CH, Wu T, Li S, Yin Z, Yu XF. Data-Driven Materials Innovation and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022;34:e2104113. [PMID: 35451528 DOI: 10.1002/adma.202104113] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/19/2022] [Indexed: 05/07/2023]
14
Sun Y, Ayalasomayajula SM, Deva A, Lin G, García RE. Artificial intelligence inferred microstructural properties from voltage-capacity curves. Sci Rep 2022;12:13421. [PMID: 35927411 PMCID: PMC9352700 DOI: 10.1038/s41598-022-16942-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022]  Open
15
Mistry A, Yu Z, Peters BL, Fang C, Wang R, Curtiss LA, Balsara NP, Cheng L, Srinivasan V. Toward Bottom-Up Understanding of Transport in Concentrated Battery Electrolytes. ACS CENTRAL SCIENCE 2022;8:880-890. [PMID: 35912355 PMCID: PMC9335914 DOI: 10.1021/acscentsci.2c00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
16
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem Rev 2022;122:13478-13515. [PMID: 35862246 DOI: 10.1021/acs.chemrev.2c00061] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
17
Xie T, France-Lanord A, Wang Y, Lopez J, Stolberg MA, Hill M, Leverick GM, Gomez-Bombarelli R, Johnson JA, Shao-Horn Y, Grossman JC. Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties. Nat Commun 2022;13:3415. [PMID: 35701416 PMCID: PMC9197847 DOI: 10.1038/s41467-022-30994-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022]  Open
18
Lv C, Zhou X, Zhong L, Yan C, Srinivasan M, Seh ZW, Liu C, Pan H, Li S, Wen Y, Yan Q. Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022;34:e2101474. [PMID: 34490683 DOI: 10.1002/adma.202101474] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/24/2021] [Indexed: 06/13/2023]
19
Heath GA, Ravikumar D, Hansen B, Kupets E. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules - status, challenges, and opportunities. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022;72:478-539. [PMID: 35687330 DOI: 10.1080/10962247.2022.2068878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
20
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022;122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
21
Browne S, Waghmare UV, Singh A. Opportunities and challenges for 2D heterostructures in battery applications: a computational perspective. NANOTECHNOLOGY 2022;33:272501. [PMID: 35344940 DOI: 10.1088/1361-6528/ac61c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
22
Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. MATERIALS 2022;15:ma15031157. [PMID: 35161101 PMCID: PMC8840428 DOI: 10.3390/ma15031157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
23
Satpati A, Kandregula GR, Ramanujam K. Machine Learning enabled High-Throughput Screening of Inorganic Solid Electrolytes for Regulating Dendritic Growth in Lithium Metal Anodes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01827f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Li S, Liu Y, Chen D, Jiang Y, Nie Z, Pan F. Encoding the atomic structure for machine learning in materials science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
25
Gong S, Wang S, Zhu T, Chen X, Yang Z, Buehler MJ, Shao-Horn Y, Grossman JC. Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning Physics and Physics-Simplified Learning. JACS AU 2021;1:1904-1914. [PMID: 34841409 PMCID: PMC8611661 DOI: 10.1021/jacsau.1c00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 06/13/2023]
26
Chen X, Liu X, Shen X, Zhang Q. Applying Machine Learning to Rechargeable Batteries: From the Microscale to the Macroscale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
27
Raman G. Study of the Relationship between Synthesis Descriptors and the Type of Zeolite Phase Formed in ZSM‐43 Synthesis by Using Machine Learning. ChemistrySelect 2021. [DOI: 10.1002/slct.202102890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
28
Jin L, Ji Y, Wang H, Ding L, Li Y. First-principles materials simulation and design for alkali and alkaline metal ion batteries accelerated by machine learning. Phys Chem Chem Phys 2021;23:21470-21483. [PMID: 34570138 DOI: 10.1039/d1cp02963k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
Lombardo T, Duquesnoy M, El-Bouysidy H, Årén F, Gallo-Bueno A, Jørgensen PB, Bhowmik A, Demortière A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson P, Franco AA. Artificial Intelligence Applied to Battery Research: Hype or Reality? Chem Rev 2021;122:10899-10969. [PMID: 34529918 PMCID: PMC9227745 DOI: 10.1021/acs.chemrev.1c00108] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
30
Choi E, Jo J, Kim W, Min K. Searching for Mechanically Superior Solid-State Electrolytes in Li-Ion Batteries via Data-Driven Approaches. ACS APPLIED MATERIALS & INTERFACES 2021;13:42590-42597. [PMID: 34472845 DOI: 10.1021/acsami.1c07999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
31
Mao J, Miao J, Lu Y, Tong Z. Machine learning of materials design and state prediction for lithium ion batteries. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
32
Zhou L, Yao AM, Wu Y, Hu Z, Huang Y, Hong Z. Machine Learning Assisted Prediction of Cathode Materials for Zn‐Ion Batteries. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
33
Liu Y, Zhou Q, Cui G. Machine Learning Boosting the Development of Advanced Lithium Batteries. SMALL METHODS 2021;5:e2100442. [PMID: 34927866 DOI: 10.1002/smtd.202100442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Indexed: 06/14/2023]
34
Chen X, Liu X, Shen X, Zhang Q. Applying Machine Learning to Rechargeable Batteries: From the Microscale to the Macroscale. Angew Chem Int Ed Engl 2021;60:24354-24366. [PMID: 34190388 DOI: 10.1002/anie.202107369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 11/11/2022]
35
Mistry A, Franco AA, Cooper SJ, Roberts SA, Viswanathan V. How Machine Learning Will Revolutionize Electrochemical Sciences. ACS ENERGY LETTERS 2021;6:1422-1431. [PMID: 33869772 PMCID: PMC8042659 DOI: 10.1021/acsenergylett.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
36
Liu Y, Zhang R, Wang J, Wang Y. Current and future lithium-ion battery manufacturing. iScience 2021;24:102332. [PMID: 33889825 PMCID: PMC8050716 DOI: 10.1016/j.isci.2021.102332] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]  Open
37
Wu YJ, Tanaka T, Komori T, Fujii M, Mizuno H, Itoh S, Takada T, Fujita E, Xu Y. Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020;21:712-725. [PMID: 33209090 PMCID: PMC7594868 DOI: 10.1080/14686996.2020.1824985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
38
Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. Proc Natl Acad Sci U S A 2020;117:26672-26680. [PMID: 33037154 DOI: 10.1073/pnas.2008841117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
39
Venturi V, Parks HL, Ahmad Z, Viswanathan V. Machine learning enabled discovery of application dependent design principles for two-dimensional materials. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/aba002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
40
Shen L, Shi P, Hao X, Zhao Q, Ma J, He YB, Kang F. Progress on Lithium Dendrite Suppression Strategies from the Interior to Exterior by Hierarchical Structure Designs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020;16:e2000699. [PMID: 32459890 DOI: 10.1002/smll.202000699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/10/2020] [Indexed: 06/11/2023]
41
Baktash A, Reid JC, Yuan Q, Roman T, Searles DJ. Shaping the Future of Solid-State Electrolytes through Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020;32:e1908041. [PMID: 32141672 DOI: 10.1002/adma.201908041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/29/2019] [Indexed: 05/21/2023]
42
Predicting the state of charge and health of batteries using data-driven machine learning. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-0156-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
43
Summers AZ, Gilmer JB, Iacovella CR, Cummings PT, MCabe C. MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films. J Chem Theory Comput 2020;16:1779-1793. [DOI: 10.1021/acs.jctc.9b01183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
44
Zheng Y, Yao Y, Ou J, Li M, Luo D, Dou H, Li Z, Amine K, Yu A, Chen Z. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev 2020;49:8790-8839. [DOI: 10.1039/d0cs00305k] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
45
Ishikawa A, Sodeyama K, Igarashi Y, Nakayama T, Tateyama Y, Okada M. Machine learning prediction of coordination energies for alkali group elements in battery electrolyte solvents. Phys Chem Chem Phys 2019;21:26399-26405. [PMID: 31793954 DOI: 10.1039/c9cp03679b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
46
Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. NATURE MATERIALS 2019;18:1278-1291. [PMID: 31427742 DOI: 10.1038/s41563-019-0431-3] [Citation(s) in RCA: 555] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/13/2019] [Indexed: 05/18/2023]
47
Ohno H. Neural network-based transductive regression model. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.105682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
48
Iovanac NC, Savoie BM. Improved Chemical Prediction from Scarce Data Sets via Latent Space Enrichment. J Phys Chem A 2019;123:4295-4302. [DOI: 10.1021/acs.jpca.9b01398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
49
Makeev MA, Rajput NN. Computational screening of electrolyte materials: status quo and open problems. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
50
Intelligent predicting of salt pond’s ion concentration based on support vector regression and neural network. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-03979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA