1
|
Li Y, Li W, Zheng Y, Wang T, Pu R, Zhang Z. Desalting strategies for native mass spectrometry. Talanta 2025; 281:126824. [PMID: 39250868 DOI: 10.1016/j.talanta.2024.126824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
In native mass spectrometry (MS) salts are indispensable for preserving the native structures of biomolecules, but detrimental to mass sensitivity, resolution, and accuracy. Such a conflict makes desalting in native MS more challenging, distinctive, and sample-dependent than in peptide-centric MS. This review first briefly introduces the charged residue mechanism whereby native-like gaseous protein ions are released from electrospray droplets, revealing a higher degree of salt adduction than denatured proteins. Subsequently, this review summarizes and explores the existing strategies, underlying mechanisms and future perspectives of desalting in native MS. These strategies mainly focus on buffer exchange into volatile salts (offline and online approaches), addition of solution additives (e.g., anion, supercharging reagent, solution phase chelator and amino acid), use of submicron electrospray emitters (down to 60 nm), and other potential approaches (e.g., induced and electrophoretic nanoelectrospray ionization). The strategies of online buffer exchange and using nanoscale electrospray emitters are highlighted. This review would not only be a valuable addition to the field of sample preparation in MS, but would also serve as a beginner's guide to desalting in native MS.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Weijie Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ruijin Pu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
| |
Collapse
|
2
|
Opuni KFM, Ruß M, Geens R, Vocht LD, Wielendaele PV, Debuy C, Sterckx YGJ, Glocker MO. Mass spectrometry-complemented molecular modeling predicts the interaction interface for a camelid single-domain antibody targeting the Plasmodium falciparum circumsporozoite protein's C-terminal domain. Comput Struct Biotechnol J 2024; 23:3300-3314. [PMID: 39296809 PMCID: PMC11409006 DOI: 10.1016/j.csbj.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Bioanalytical methods that enable rapid and high-detail characterization of binding specificities and strengths of protein complexes with low sample consumption are highly desired. The interaction between a camelid single domain antibody (sdAbCSP1) and its target antigen (PfCSP-Cext) was selected as a model system to provide proof-of-principle for the here described methodology. Research design and methods The structure of the sdAbCSP1 - PfCSP-Cext complex was modeled using AlphaFold2. The recombinantly expressed proteins, sdAbCSP1, PfCSP-Cext, and the sdAbCSP1 - PfCSP-Cext complex, were subjected to limited proteolysis and mass spectrometric peptide analysis. ITEM MS (Intact Transition Epitope Mapping Mass Spectrometry) and ITC (Isothermal Titration Calorimetry) were applied to determine stoichiometry and binding strength. Results The paratope of sdAbCSP1 mainly consists of its CDR3 (aa100-118). PfCSP-Cext's epitope is assembled from its α-helix (aa40-52) and opposing loop (aa83-90). PfCSP-Cext's GluC cleavage sites E46 and E58 were shielded by complex formation, confirming the predicted epitope. Likewise, sdAbCSP1's tryptic cleavage sites R105 and R108 were shielded by complex formation, confirming the predicted paratope. ITEM MS determined the 1:1 stoichiometry and the high complex binding strength, exemplified by the gas phase dissociation reaction enthalpy of 50.2 kJ/mol. The in-solution complex dissociation constant is 5 × 10-10 M. Conclusions Combining AlphaFold2 modeling with mass spectrometry/limited proteolysis generated a trustworthy model for the sdAbCSP1 - PfCSP-Cext complex interaction interface.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Science, University of Ghana, P.O. Box LG43, Legon, Ghana
| | - Manuela Ruß
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Line De Vocht
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Christophe Debuy
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
3
|
Gandhi VD, Hua L, Lawrenz M, Latif M, Rolland AD, Campuzano IDG, Larriba-Andaluz C. Elucidating Protein Structures in the Gas Phase: Traversing Configuration Space with Biasing Methods. J Chem Theory Comput 2024; 20:9720-9733. [PMID: 39439194 DOI: 10.1021/acs.jctc.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Achieving accurate characterization of protein structures in the gas phase continues to be a formidable challenge. To tackle this issue, the present study employs Molecular Dynamics (MD) simulations in tandem with enhanced sampling techniques (methods designed to efficiently explore protein conformations). The objective is to identify suitable structures of proteins by contrasting their calculated Collision Cross-Section (CCS) with those observed experimentally. Significant discrepancies were observed between the initial MD-simulated and experimentally measured CCS values through Ion Mobility-Mass Spectrometry (IMS-MS). To bridge this gap, we employed two distinct enhanced sampling methods, Harmonic Biasing Potential and Adaptive Biasing Force, which help the proteins overcome energy barriers to adopt more compact configurations. These techniques leverage the radius of gyration as a reaction coordinate (guiding parameter), guiding the system toward compressed states that potentially match experimental configurations more closely. The guiding forces are only employed to overcome existing barriers and are removed to allow the protein to naturally arrive at a potential gas phase configuration. The results demonstrated close alignment (within ∼4%) between simulated and experimental CCS values despite using different strengths and/or methods, validating their efficacy. This work lays the groundwork for future studies aimed at optimizing biasing methods and expanding the collective variables used for more accurate gas-phase structural predictions.
Collapse
Affiliation(s)
- Viraj D Gandhi
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Leyan Hua
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Morgan Lawrenz
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Mohsen Latif
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Iain D G Campuzano
- Molecular Analytics, AMGEN Research, Thousand Oaks, California 91320, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| |
Collapse
|
4
|
Lee KJ, Jordan JS, Williams ER. Is Native Mass Spectrometry in Ammonium Acetate Really Native? Protein Stability Differences in Biochemically Relevant Salt Solutions. Anal Chem 2024; 96:17586-17593. [PMID: 39453378 DOI: 10.1021/acs.analchem.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ammonium acetate is widely used in native mass spectrometry to provide adequate ionic strength without adducting to protein ions, but different ions can preferentially stabilize or destabilize the native form of proteins in solution. The stability of bovine serum albumin (BSA) was investigated in 50 mM solutions of a variety of salts using electrospray emitters with submicron tips to desalt protein ions. The charge-state distribution of BSA is narrow (+14 to +18) in ammonium acetate (AmmAc), whereas it is much broader (+13 to +42) in solutions containing sodium acetate (NaAc), ammonium chloride (AmmCl), potassium chloride (KCl), and sodium chloride (NaCl). The average charge state and percent of unfolded protein increase in these respective solutions, indicating greater extents of protein destabilization and conformational changes. In contrast, no high charge states of either bovine carbonic anhydrase II or IgG1 were formed in AmmAc or NaCl despite their similar melting temperatures to BSA, indicating that the presence of unfolded BSA in some of these solutions is not an artifact of the electrospray ionization process. The charge states formed from the nonvolatile salt solutions do not change significantly for up to 7 min of electrospray, but higher charging occurs after 10 min, consistent with solution acidification. Formation of unfolded BSA in NaAc but not in AmmAc indicates that the cation identity, not acidification, is responsible for structural differences in these two solutions. Temperature-dependent measurements show both increased charging and aggregation at lower temperatures in NaCl:Tris than in AmmAc, consistent with lower protein stability in the former solution. These results are consistent with the order of these ions in the Hofmeister series and indicate that data on protein stability in AmmAc may not be representative of solutions containing nonvolatile salts that are directly relevant to biology.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
5
|
Zheng X, Zhu H, Zhao X, Wang J, Li Q, Zhao X. Emerging affinity methods for protein-drug interaction analysis. J Pharm Biomed Anal 2024; 249:116371. [PMID: 39047466 DOI: 10.1016/j.jpba.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The study of protein-drug interaction plays a crucial role in understanding drug mechanisms, identifying new drug targets and biomarkers, and facilitating drug development and disease treatment. In recent years, significant progress has been made in various protein-drug interaction research methods due to the rapid development and in-depth application of mass spectrometry, nuclear magnetic resonance, Raman spectroscopy, and other technologies. The progress has enhanced the sensitivity, precision, accuracy, and applicability of analytical methods, enabling the establishment of drug-protein interaction networks. This review discusses various emerging research methods, such as native mass spectrometry, infrared spectroscopy, nuclear magnetic resonance and spectrum, biosensor technologies employing surface enhanced Raman, electrochemistry, and magneto resistive signals, as well as affinity magnetic levitation and affinity chromatography. The article also delves into the principles, applications, advantages, and limitations of these technologies.
Collapse
Affiliation(s)
- Xinxin Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huiting Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
6
|
Phan M, Chandrashekaran IR, Akhtar N, Konstantinidou E, Devine SM, Doak BC, Nebl T, Creek DJ, Scanlon MJ, Norton RS. Multiplexed Native Mass Spectrometry Determination of Ligand Selectivity for Fatty Acid-Binding Proteins. ACS Med Chem Lett 2024; 15:1071-1079. [PMID: 39015264 PMCID: PMC11247632 DOI: 10.1021/acsmedchemlett.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Although multiple approaches for characterizing protein-ligand interactions are available in target-based drug discovery, their throughput for determining selectivity is quite limited. Herein, we describe the application of native mass spectrometry for rapid, multiplexed screening of the selectivity of eight small-molecule ligands for five fatty acid-binding protein isoforms. Using high-resolution mass spectrometry, we were able to identify and quantify up to 20 different protein species in a single spectrum. We show that selectivity profiles generated by native mass spectrometry are in good agreement with those of traditional solution-phase techniques such as isothermal titration calorimetry and fluorescence polarization. Furthermore, we propose strategies for effective investigation of selectivity by native mass spectrometry, thus highlighting the potential of this technique to be used as an orthogonal method to traditional biophysical approaches for rapid, multiplexed screening of protein-ligand complexes.
Collapse
Affiliation(s)
- Michelle
Q. Phan
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Indu R. Chandrashekaran
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Naureen Akhtar
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Evgenia Konstantinidou
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bradley C. Doak
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas Nebl
- Biologics
Research and Development Group, Biomedical Manufacturing Program, CSIRO, Clayton, Victoria 3168, Australia
| | - Darren J. Creek
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
XUE J, LIU Z, WANG F. [Applications of native mass spectrometry and ultraviolet photodissociation in protein structure and interaction analysis]. Se Pu 2024; 42:681-692. [PMID: 38966976 PMCID: PMC11224945 DOI: 10.3724/sp.j.1123.2024.01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 07/06/2024] Open
Abstract
Dynamic changes in the structures and interactions of proteins are closely correlated with their biological functions. However, the precise detection and analysis of these molecules are challenging. Native mass spectrometry (nMS) introduces proteins or protein complexes into the gas phase by electrospray ionization, and then performs MS analysis under near-physiological conditions that preserve the folded state of proteins and their complexes in solution. nMS can provide information on stoichiometry, assembly, and dissociation constants by directly determining the relative molecular masses of protein complexes through high-resolution MS. It can also integrate various MS dissociation technologies, such as collision-induced dissociation (CID), surface-induced dissociation (SID), and ultraviolet photodissociation (UVPD), to analyze the conformational changes, binding interfaces, and active sites of protein complexes, thereby revealing the relationship between their interactions and biological functions. UVPD, especially 193 nm excimer laser UVPD, is a rapidly evolving MS dissociation method that can directly dissociate the covalent bonds of protein backbones with a single pulse. It can generate different types of fragment ions, while preserving noncovalent interactions such as hydrogen bonds within these ions, thereby enabling the MS analysis of protein structures with single-amino-acid-site resolution. This review outlines the applications and recent progress of nMS and UVPD in protein dynamic structure and interaction analyses. It covers the nMS techniques used to analyze protein-small-molecule ligand interactions, the structures of membrane proteins and their complexes, and protein-protein interactions. The discussion on UVPD includes the analysis of gas-phase protein structures and interactions, as well as alterations in protein dynamic structures, and interactions resulting from mutations and ligand binding. Finally, this review describes the future development prospects for protein analysis by nMS and new-generation advanced extreme UV light sources with higher brightness and shorter pulses.
Collapse
|
8
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
10
|
Pham PC, Taylor M, Nguyen GTH, Beltran J, Bennett JL, Ho J, Donald WA. Binding of Per- and Polyfluoroalkyl Substances to β-Lactoglobulin from Bovine Milk. Chem Res Toxicol 2024; 37:757-770. [PMID: 38625865 DOI: 10.1021/acs.chemrestox.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are known for their high environmental persistence and potential toxicity. The presence of PFAS has been reported in many dairy products. However, the mechanisms underlying the accumulation of PFAS in these products remain unclear. Here, we used native mass spectrometry and molecular dynamics simulations to probe the interactions between 19 PFAS of environmental concern and two isoforms of the major bovine whey protein β-lactoglobulin (β-LG). We observed that six of these PFAS bound to both protein isoforms with low- to mid-micromolar dissociation constants. Based on quantitative, competitive binding experiments with endogenous ligands, PFAS can bind orthosterically and preferentially to β-LG's hydrophobic ligand-binding calyx. β-Cyclodextrin can also suppress binding of PFAS to β-LG owing to the ability of β-cyclodextrin to directly sequester PFAS from solution. This research sheds light on PFAS-β-LG binding, suggesting that such interactions could impact lipid-fatty acid transport in bovine mammary glands at high PFAS concentrations. Furthermore, our results highlight the potential use of β-cyclodextrin in mitigating PFAS binding, providing insights toward the development of strategies to reduce PFAS accumulation in dairy products and other biological systems.
Collapse
Affiliation(s)
- P Chi Pham
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mackenzie Taylor
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jeunesse Beltran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
12
|
Villacob RA, Feizi N, Beno SC, Solouki T. Collision-Induced Unfolding, Tandem MS, Bottom-up Proteomics, and Interactomics for Identification of Protein Complexes in Native Surface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:13-30. [PMID: 38095581 DOI: 10.1021/jasms.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS). This multiprong analysis is achieved by acquiring NSMS, MS/MS, ion mobility (IM), and bottom-up proteomics data from a single surface extracted sample. The validity of this multiprong approach was confirmed by the successful characterization of nine surface-deposited proteins, with molecular weights ranging from 8 to 147 kDa, in two separate mixtures. Bottom-up proteomics provided a list of proteins to match against observed proteins in NSMS and their detected subunits in tandem MS. The method was applied to characterize endogenous proteins from untreated chicken liver samples. The subcapsular liver sampling for NSMS analysis allowed for the detection of endogenous proteins with molecular weights of up to ∼220 kDa. Moreover, using IM-MS, collision cross sections and collision-induced unfolding pathways of enzymatic proteins and protein complexes of up to 145 kDa were obtained.
Collapse
Affiliation(s)
- Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Neda Feizi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sarah C Beno
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
13
|
Quinn RJ, Mak T, Littler DR, Rossjohn J, Liu M. Discovery of Anti-SARS-CoV-2 Nsp9 Binders from Natural Products by a Native Mass Spectrometry Approach. JOURNAL OF NATURAL PRODUCTS 2023; 86:2630-2637. [PMID: 37993134 DOI: 10.1021/acs.jnatprod.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The search for effective antiviral agents against SARS-CoV-2 remains a critical global endeavor. In this study, we focused on the viral nucleocapsid protein Nsp9, which is a key player in viral RNA replication and an attractive drug target. Employing a two-pronged approach, an in-house natural product library was screened using native mass spectrometry to identify compounds capable of binding to Nsp9. From the initial screening, apart from the previously reported hit oridonin (protein binding ratio of 0.56 in the initial screening, Kd = 7.2 ± 1.0 μM), we have identified a second Nsp9-interacting compound, the diterpenoid ryanodine, with a protein binding ratio of 0.3 and a Kd of 48.05 ± 5.03 μM. To gain deeper insights into the binding interactions and to explore potential structural requirements, the collision-induced affinity selection mass spectrometry (CIAS-MS) approach allowed us to identify six known oridonin analogues produced by the plant Rabdosia rubescens, each with varying affinities to Nsp9. Native MS validation of their individual binding activities to Nsp9 revealed that all analogues exhibited reduced affinity compared to oridonin. Structural-activity relationship analysis highlighted key functional groups, including 1-OH, 6-OH, 7-OH, and the enone moiety, which are crucial for Nsp9 binding. Combined data from our native mass spectrometry and CIAS-MS approaches provide valuable insights into the molecular interactions between Nsp9 and these compounds.
Collapse
Affiliation(s)
- Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
14
|
Davis BTV, Velyvis A, Vahidi S. Fluorinated Ethylamines as Electrospray-Compatible Neutral pH Buffers for Native Mass Spectrometry. Anal Chem 2023; 95:17525-17532. [PMID: 37997939 DOI: 10.1021/acs.analchem.3c02640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Native electrospray ionization mass spectrometry (ESI-MS) has emerged as a potent tool for examining the native-like structures of macromolecular complexes. Despite its utility, the predominant "buffer" used, ammonium acetate (AmAc) with pKa values of 4.75 for acetic acid and 9.25 for ammonium, provides very little buffering capacity within the physiological pH range of 7.0-7.4. ESI-induced redox reactions alter the pH of the liquid within the ESI capillary. This can result in protein unfolding or weakening of pH-sensitive interactions. Consequently, the discovery of volatile, ESI-compatible buffers, capable of effectively maintaining pH within a physiological range, is of high importance. Here, we demonstrate that 2,2-difluoroethylamine (DFEA) and 2,2,2-trifluoroethylamine (TFEA) offer buffering capacity at physiological pH where AmAc falls short, with pKa values of 7.2 and 5.5 for the conjugate acids of DFEA and TFEA, respectively. Native ESI-MS experiments on model proteins cytochrome c and myoglobin electrosprayed with DFEA and TFEA demonstrated the preservation of noncovalent protein-ligand complexes in the gas phase. Protein stability assays and collision-induced unfolding experiments further showed that neither DFEA nor TFEA destabilized model proteins in solution or in the gas phase. Finally, we demonstrate that multisubunit protein complexes such as alcohol dehydrogenase and concanavalin A can be studied in the presence of DFEA or TFEA using native ESI-MS. Our findings establish DFEA and TFEA as new ESI-compatible neutral pH buffers that promise to bolster the use of native ESI-MS for the analysis of macromolecular complexes, particularly those sensitive to pH fluctuations.
Collapse
Affiliation(s)
- Bradley T V Davis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
15
|
Podgorski MN, Lee JHZ, Harbort JS, Nguyen GTH, Doherty DZ, Donald WA, Harmer JR, Bruning JB, Bell SG. Characterisation of the heme aqua-ligand coordination environment in an engineered peroxygenase cytochrome P450 variant. J Inorg Biochem 2023; 249:112391. [PMID: 37837941 DOI: 10.1016/j.jinorgbio.2023.112391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The cytochrome P450 enzymes (CYPs) are heme-thiolate monooxygenases that catalyse the insertion of an oxygen atom into the C-H bonds of organic molecules. In most CYPs, the activation of dioxygen by the heme is aided by an acid-alcohol pair of residues located in the I-helix of the enzyme. Mutation of the threonine residue of this acid-alcohol pair of CYP199A4, from the bacterium Rhodospeudomonas palustris HaA2, to a glutamate residue induces peroxygenase activity. In the X-ray crystal structures of this variant an interaction of the glutamate side chain and the distal aqua ligand of the heme was observed and this results in this ligand not being readily displaced in the peroxygenase mutant on the addition of substrate. Here we use a range of bulky hydrophobic and nitrogen donor containing ligands in an attempt to displace the distal aqua ligand of the T252E mutant of CYP199A4. Ligand binding was assessed by UV-visible absorbance spectroscopy, native mass spectrometry, electron paramagnetic resonance and X-ray crystallography. None of the ligands tested, even the nitrogen donor ligands which bind directly to the iron in the wild-type enzyme, resulted in displacement of the aqua ligand. Therefore, modification of the I-helix threonine residue to a glutamate residue results in a significant strengthening of the ferric distal aqua ligand. This ligand was not displaced using any of the ligands during this study and this provides a rationale as to why this mutant can shutdown the monooxygenase pathway of this enzyme and switch to peroxygenase activity.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joshua S Harbort
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jeffrey R Harmer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
16
|
Edwards AN, Blue AJ, Conforti JM, Cordes MS, Trakselis MA, Gallagher ES. Gas-phase stability and thermodynamics of ligand-bound, binary complexes of chloramphenicol acetyltransferase reveal negative cooperativity. Anal Bioanal Chem 2023; 415:6201-6212. [PMID: 37542535 DOI: 10.1007/s00216-023-04891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCATI) and several EcCATI:ligand-bound complexes. EcCATI readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCATI and Chl in a ternary, ligand-bound state (EcCATI:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCATI:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCATI even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCATI binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCATI when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCATI.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Anthony J Blue
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Jessica M Conforti
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
17
|
Konermann L, Liu Z, Haidar Y, Willans MJ, Bainbridge NA. On the Chemistry of Aqueous Ammonium Acetate Droplets during Native Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:13957-13966. [PMID: 37669319 DOI: 10.1021/acs.analchem.3c02546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Ammonium acetate (NH4Ac) is a widely used solvent additive in native electrospray ionization (ESI) mass spectrometry. NH4Ac can undergo proton transfer to form ammonia and acetic acid (NH4+ + Ac- → NH3 + HAc). The volatility of these products ensures that electrosprayed ions are free of undesired adducts. NH4Ac dissolution in water yields pH 7, providing "physiological" conditions. However, NH4Ac is not a buffer at pH 7 because NH4+ and Ac- are not a conjugate acid/base pair (Konermann, L. J. Am. Soc. Mass Spectrom. 2017, 28, 1827-1835.). In native ESI, it is desirable that analytes experience physiological conditions not only in bulk solution but also while they reside in ESI droplets. Little is known about the internal milieu of NH4Ac-containing ESI droplets. The current work explored the acid/base chemistry of such droplets, starting from a pH 7 analyte solution. We used a two-pronged approach involving evaporation experiments on bulk solutions under ESI-mimicking conditions, as well as molecular dynamics simulations using a newly developed algorithm that allows for proton transfer. Our results reveal that during droplet formation at the tip of the Taylor cone, electrolytically generated protons get neutralized by Ac-, making NH4+ the net charge carriers in the weakly acidic nascent droplets. During the subsequent evaporation, the droplets lose water as well as NH3 and HAc that were generated by proton transfer. NH3 departs more quickly because of its greater volatility, causing the accumulation of HAc. Together with residual Ac-, these HAc molecules form an acetate buffer that stabilizes the average droplet pH at 5.4 ± 0.1, as governed by the Henderson-Hasselbalch equation. The remarkable success of native ESI investigations in the literature implies that this pH drop by ∼1.6 units relative to the initially neutral analyte solution can be tolerated by most biomolecular analytes on the short time scale of the ESI process.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zeyuan Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicholas A Bainbridge
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
18
|
Gadzuk-Shea MM, Hubbard EE, Gozzo TA, Bush MF. Sample pH Can Drift during Native Mass Spectrometry Experiments: Results from Ratiometric Fluorescence Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1675-1684. [PMID: 37405934 PMCID: PMC10563179 DOI: 10.1021/jasms.3c00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The ability of nanoelectrospray ionization (nanoESI) to generate a continuous flow of charged droplets relies on the electrolytic nature of the process. This electrochemistry can lead to the accumulation of redox products in the sample solution. This consequence can have significant implications for native mass spectrometry (MS), which aims to probe the structures and interactions of biomolecules in solution. Here, ratiometric fluorescence imaging and a pH-sensitive, fluorescent probe are used to quantify changes in solution pH during nanoESI under conditions relevant to native MS. Results show that the extent and rate of change in sample pH depends on several experimental parameters. There is a strong correlation between the extent and rate of change in solution pH and the magnitude of both the nanoESI current and electrolyte concentration. Smaller changes in solution pH are observed during experiments when a negative potential is applied than for those when a positive potential is applied. Finally, we make specific recommendations for designing native MS experiments that control for these effects.
Collapse
Affiliation(s)
- Meagan M. Gadzuk-Shea
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
- Current Affiliation: Discovery Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA 02451
| | - Evan E. Hubbard
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
- Current Affiliation: Current Affiliation: Department of Chemistry, University of California, Riverside, California 92521
| | - Theresa A. Gozzo
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
19
|
Huang X, Kamadurai H, Siuti P, Ahmed E, Bennett JL, Donald WA. Oligomeric Remodeling by Molecular Glues Revealed Using Native Mass Spectrometry and Mass Photometry. J Am Chem Soc 2023. [PMID: 37379266 DOI: 10.1021/jacs.3c02655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Molecular glues stabilize interactions between E3 ligases and novel substrates to promote substrate degradation, thereby facilitating the inhibition of traditionally "undruggable" protein targets. However, most known molecular glues have been discovered fortuitously or are based on well-established chemical scaffolds. Efficient approaches for discovering and characterizing the effects of molecular glues on protein interactions are required to accelerate the discovery of novel agents. Here, we demonstrate that native mass spectrometry and mass photometry can provide unique insights into the physical mechanism of molecular glues, revealing previously unknown effects of such small molecules on the oligomeric organization of E3 ligases. When compared to well-established solution phase assays, native mass spectrometry provides accurate quantitative descriptions of molecular glue potency and efficacy while also enabling the binding specificity of E3 ligases to be determined in a single, rapid measurement. Such mechanistic insights should accelerate the rational development of molecular glues to afford powerful therapeutic agents.
Collapse
Affiliation(s)
- Xiaojing Huang
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hari Kamadurai
- Triana Biomedicines Inc., Lexington, Massachusetts 02421, United States
| | - Piro Siuti
- Triana Biomedicines Inc., Lexington, Massachusetts 02421, United States
| | - Ezaz Ahmed
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
20
|
Huang X, Winter D, Glover DJ, Supuran CT, Donald WA. Effects of Phosphorylation on the Activity, Inhibition and Stability of Carbonic Anhydrases. Int J Mol Sci 2023; 24:ijms24119275. [PMID: 37298228 DOI: 10.3390/ijms24119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Carbonic anhydrases (CAs) are a metalloenzyme family that have important roles in cellular processes including pH homeostasis and have been implicated in multiple pathological conditions. Small molecule inhibitors have been developed to target carbonic anhydrases, but the effects of post-translational modifications (PTMs) on the activity and inhibition profiles of these enzymes remain unclear. Here, we investigate the effects of phosphorylation, the most prevalent carbonic anhydrase PTM, on the activities and drug-binding affinities of human CAI and CAII, two heavily modified active isozymes. Using serine to glutamic acid (S > E) mutations to mimic the effect of phosphorylation, we demonstrate that phosphomimics at a single site can significantly increase or decrease the catalytic efficiencies of CAs, depending on both the position of the modification and the CA isoform. We also show that the S > E mutation at Ser50 of hCAII decreases the binding affinities of hCAII with well-characterized sulphonamide inhibitors including by over 800-fold for acetazolamide. Our findings suggest that CA phosphorylation may serve as a regulatory mechanism for enzymatic activity, and affect the binding affinity and specificity of small, drug and drug-like molecules. This work should motivate future studies examining the PTM-modification forms of CAs and their distributions, which should provide insights into CA physiopathological functions and facilitate the development of 'modform-specific' carbonic anhydrase inhibitors.
Collapse
Affiliation(s)
- Xiaojing Huang
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel Winter
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Allen N, Li H, Wang T, Li A. Gigaohm and Teraohm Resistors in Femtoamp and Picoamp Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:913-921. [PMID: 37052599 DOI: 10.1021/jasms.2c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The femtoamp electrospray ionization (femtoESI) mode has been shown to exhibit unique characteristics that may facilitate ionization efficiency studies and experiments requiring low ion beam flux. Investigation of femtoESI was hindered by a tiny, applied voltage window of 10-100 V, beyond which ionization currents quickly jumped to nanoamps. This window was difficult to locate because the exact onset voltage fluctuates due to variations in ion source alignments. Large resistors (0.1-100 TΩ) in series effectively expanded the femtoESI applied voltage range, up to 1400 V. By swapping resistors, rapid alternation allows for the comparison of both ESI modes under the same alignment. In peptide mixtures, analytes with lower surface activity are suppressed in the nanoESI mode whereas the femtoESI mode shows signal enhancement of less surface-active species. For protein solutions, there is little change in the charge states generated but the femtoESI mode does show a decrease in the average charge state of protein peaks. Peptides and proteins analyzed in the femtoESI mode also tend to generate higher intensity sodiated peaks over protonated peaks at specific charge states compared with nanoESI mode operation.
Collapse
Affiliation(s)
- Nicholas Allen
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Huishan Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Taoqing Wang
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Anyin Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| |
Collapse
|
22
|
Fiorentino F, Rotili D, Mai A. Native mass spectrometry-directed drug discovery: Recent advances in investigating protein function and modulation. Drug Discov Today 2023; 28:103548. [PMID: 36871843 DOI: 10.1016/j.drudis.2023.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Native mass spectrometry (nMS) is a biophysical method for studying protein complexes and can provide insights into subunit stoichiometry and composition, protein-ligand, and protein-protein interactions (PPIs). These analyses are made possible by preserving non-covalent interactions in the gas phase, thereby allowing the analysis of proteins in their native state. Consequently, nMS has been increasingly applied in early drug discovery campaigns for the characterization of protein-drug interactions and the evaluation of PPI modulators. Here, we discuss recent developments in nMS-directed drug discovery and provide a timely perspective on the possible applications of this technology in drug discovery.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
23
|
Lei W, Hu J, Chen HY, Xu JJ. Nanopore Liberates G-Quadruplexes from Biochemical Buffers for Accurate Mass Spectrometric Examination. Anal Chem 2022; 94:17972-17979. [PMID: 36515943 DOI: 10.1021/acs.analchem.2c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving accurate measurements of G-quadruplexes (G4s), especially the characterization of their complicated non-covalent interactions with various components (such as metal ions and ligands) under physiological conditions, is of fundamental significance in unveiling their biological roles and developing antitumor drugs. By employing a nanopore ion emitter (∼30 nm), we demonstrated for the first time that G4 ions, which are free of non-specific adduction and meanwhile maintaining their pre-existing specific bindings with metal ions or ligands, can be directly liberated from common biochemical buffers (consisting of concentrated non-volatile salts of >150 mM) for mass spectrometric examination. Notably, the intermediate complexes of G4s with mixed di-cation coordination formed during the Na+/K+ exchange were successfully observed by mass spectrometry, whose structures were also revealed by the reconstructed circular dichroism spectra. We believe the nanopore-based ion emitters have built a solid bridge between native G4s in aqueous buffers and their accurate stoichiometries obtained by mass spectrometric examination.
Collapse
Affiliation(s)
- Wen Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
24
|
Saikusa K, Kinumi T, Kato M. Development of native mass spectrometry with nanoelectrospray ionization coupled to size exclusion chromatography for proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9395. [PMID: 36068720 DOI: 10.1002/rcm.9395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/07/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Native mass spectrometry (MS) is an analytical technique used to determine the molecular mass of protein complexes without cross-linking. Size exclusion chromatography (SEC) coupled with native MS using conventional electrospray ionization (ESI) has been reported to allow online buffer exchange. To detect a wide variety of protein complexes without a collapse in the ionization process, it is important to build an online system that enables robust analysis with a low flow rate. METHODS We created an online native MS system equipped with nanoESI connected to the SEC component (online SEC/nanoESI system) and optimized several parameters for SEC separation and ionization. The constructed system was used to measure a solution consisting of a protein mixture of various molecular masses (10-300 kDa) to verify characteristics such as the measurable molecular mass range, reproducibility, and online buffer exchange. RESULTS The optimal flow rates for SEC separation and nanoESI analysis using this system were 200 and 1 μL/min, respectively. This system was able to analyze proteins in the ranges of 10-300 and 20-300 kDa for protein samples in ammonium acetate and nonvolatile buffer, respectively. Furthermore, the results of consecutive measurements showed that the relative standard deviations of the retention times and observed masses for each protein were sufficiently small. CONCLUSIONS We created an online SEC/nanoESI system and evaluated its utility for the analysis of various proteins in conventional measurement solvent and nonvolatile buffer. As a result, the structural stability and resolution of the proteins were found to be sufficient when using online buffer exchange. Therefore, this online SEC/nanoESI system would be a useful technique for obtaining mass spectra of various proteins automatically with good resolution, simply by loading samples into an autosampler.
Collapse
Affiliation(s)
- Kazumi Saikusa
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tomoya Kinumi
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Megumi Kato
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Hou Z, Luan M, Zhan L, Wang X, Yuan S, Cao K, Sheng Y, Yin H, Liu Y, Huang G. Native Mass Spectrometry for Peptide–Metal Interaction in Picoliter Cell Lysate. Anal Chem 2022; 94:13829-13833. [DOI: 10.1021/acs.analchem.2c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Moujun Luan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinchen Wang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Siming Yuan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaiming Cao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yaping Sheng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Yin
- Mass Spectrometry Lab, Instruments Center for Physical Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yangzhong Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
26
|
Advances in membrane mimetics and mass spectrometry for understanding membrane structure and function. Curr Opin Chem Biol 2022; 69:102157. [DOI: 10.1016/j.cbpa.2022.102157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|
27
|
Lei W, Hu J, Chen HY, Xu JJ. Combined strategies for suppressing nonspecific cationic adduction to G-quadruplexes in electrospray ionization mass spectrometry. Anal Chim Acta 2022; 1220:340146. [DOI: 10.1016/j.aca.2022.340146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/01/2022]
|
28
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Song Y, Zhang H, Zhu Y, Zhao X, Lei Y, Zhou W, Yu J, Dong X, Wang X, Du M, Yan H. Lysozyme Protects Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Inflammation in Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35713893 PMCID: PMC9206495 DOI: 10.1167/iovs.63.6.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effects of lysozyme, an antimicrobial enzyme found in tears that protects the eye against pathogens, on pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through corneal epithelial cells. Methods The expression of the angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease (TMPRSS2) in human corneal epithelial cells (HCECs) was measured by RT-PCR and Western blotting. The altered expression of the pro-inflammatory molecules induced by spike protein and lysozyme was analyzed by RT-PCR. Cell toxicity was tested by CCK8 assay. The cell entry of SAR-CoV-2 in HCECs and primary rabbit corneal epithelial cells (RbCECs) was detected by luciferase assay. Results ACE2 and TMPRSS2 were highly expressed in HCECs. The spike proteins of SARS-CoV-2 stimulated a robust inflammatory response in HCECs, characterized by increased secretion of pro-inflammatory molecules, including IL-6, TNF-α, iNOS, and MCP-1, and pretreatment with lysozyme in HCECs markedly decreased the production of proinflammatory molecules induced by spike proteins. In addition, the inflammatory cytokine TNF-α enhanced the entry of SARS-CoV-2 into HCECs, which can be mitigated by pretreatment with lysozyme. Conclusions In this study, we analyzed the susceptibility of human corneal epithelial cells to SARS-CoV-2 infection and suggested the protective effects of lysozyme on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haokun Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhou
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
30
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
31
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
32
|
Li H, Allen N, Li M, Li A. Conducting and characterizing femto flow electrospray ionization. Analyst 2022; 147:1071-1075. [PMID: 35195636 DOI: 10.1039/d1an02190g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Femto flow electrospray ionization (ESI) with flow rates ranging from 240 fL min-1 to the low pico level (<10 pL min-1) was conducted and measured using a submicron emitter tip and relay ESI configuration. Signature analyte ion current intensities and profiles were observed. The obtained flow rate and ionization current enabled size calculation for initial charged nanodroplets.
Collapse
Affiliation(s)
- Huishan Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| | - Nicholas Allen
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| | - Mengtian Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| | - Anyin Li
- Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, NH 03824, USA.
| |
Collapse
|
33
|
Jordan JS, Xia Z, Williams ER. Tips on Making Tiny Tips: Secrets to Submicron Nanoelectrospray Emitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:607-611. [PMID: 35157433 DOI: 10.1021/jasms.1c00372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoelectrospray ionization emitters with submicron tip diameters have significant advantages for use in native mass spectrometry, including the ability to produce resolved charge-state distributions for proteins and macromolecular complexes from standard biochemical buffers that contain high concentrations of nonvolatile salts and to prevent nonspecific aggregation that can occur during droplet evaporation. We report on various factors affecting the tip morphology and provide suggestions for producing and using emitters with submicron tips. Effects of pulling parameters for a Sutter Instrument P-87 tip puller on the resulting tip diameter and morphology are shown. The "Pull" parameter has the largest effect on tip diameter, followed by "Velocity", "Pressure", and "Heat", whereas the "Time" parameter has minimal effect beyond a lower threshold. High "Pull" values generate emitters with multiple tapers, whereas high "Velocity" values generate a tip with only a single tapered region. A protocol for producing reproducible emitters in the submicron size range, as well as guidelines and tips for using these emitters with standard biochemical buffers that contain high concentrations of nonvolatile salts, is presented with the aim of expanding their use within the native mass spectrometry community.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Characterization of a Salmonella transcription factor-DNA complex and identification of the inducer by native mass spectrometry. J Mol Biol 2022; 434:167480. [PMID: 35176290 PMCID: PMC8977229 DOI: 10.1016/j.jmb.2022.167480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022]
Abstract
FraR, a transcriptional repressor, was postulated to regulate the metabolism of the Amadori compound fructose-asparagine (F-Asn) in the foodborne pathogen Salmonella enterica. Here, the DNA- and inducer-binding affinities and stoichiometries of FraR were determined and cross-validated by electrophoretic mobility-shift assays (EMSAs) and online buffer exchange coupled to native mass spectrometry (OBE-nMS). We demonstrate the utility of OBE-nMS to characterize protein and protein-DNA complexes that are not amenable to offline exchange into volatile buffers. OBE-nMS complemented EMSAs by revealing that FraR binds to the operator DNA as a dimer and by establishing 6-phosphofructose-aspartate as the inducer that weakens DNA binding by FraR. These results provide insights into how FraR regulates the expression of F-Asn-catabolizing enzymes and add to our understanding of the intricate bacterial circuitry that dictates utilization of diverse nutrients.
Collapse
|
35
|
Pagnozzi D, Pala N, Biosa G, Dallocchio R, Dessì A, Singh PK, Rogolino D, Di Fiore A, De Simone G, Supuran CT, Sechi M. Interaction Studies between Carbonic Anhydrase and a Sulfonamide Inhibitor by Experimental and Theoretical Approaches. ACS Med Chem Lett 2022. [DOI: 10.1021/acsmedchemlett.1c00644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Loc. Tramariglio n. 15, 07041 Alghero, Sassari, Italy
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Grazia Biosa
- Porto Conte Ricerche, Science and Technology Park of Sardinia, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Loc. Tramariglio n. 15, 07041 Alghero, Sassari, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare - CNR, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare - CNR, Traversa La Crucca 3, 07100 Sassari, Italy
| | - Pankaj Kumar Singh
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Claudiu T. Supuran
- Polo Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Room 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Mario Sechi
- Department of Medical Surgical and Experimental Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
36
|
Studying protein structure and function by native separation–mass spectrometry. Nat Rev Chem 2022; 6:215-231. [PMID: 37117432 DOI: 10.1038/s41570-021-00353-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Alterations in protein structure may have profound effects on biological function. Analytical techniques that permit characterization of proteins while maintaining their conformational and functional state are crucial for studying changes in the higher order structure of proteins and for establishing structure-function relationships. Coupling of native protein separations with mass spectrometry is emerging rapidly as a powerful approach to study these aspects in a reliable, fast and straightforward way. This Review presents the available native separation modes for proteins, covers practical considerations on the hyphenation of these separations with mass spectrometry and highlights the involvement of affinity-based separations to simultaneously obtain structural and functional information of proteins. The impact of these approaches is emphasized by selected applications addressing biomedical and biopharmaceutical research questions.
Collapse
|
37
|
Podgorski MN, Harbort JS, Lee JHZ, Nguyen GT, Bruning JB, Donald WA, Bernhardt PV, Harmer JR, Bell SG. An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew N. Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Joshua S. Harbort
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Giang T.H. Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
38
|
Nguyen GTH, Bennett JL, Liu S, Hancock SE, Winter DL, Glover DJ, Donald WA. Multiplexed Screening of Thousands of Natural Products for Protein-Ligand Binding in Native Mass Spectrometry. J Am Chem Soc 2021; 143:21379-21387. [PMID: 34886668 DOI: 10.1021/jacs.1c10408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structural diversity of natural products offers unique opportunities for drug discovery, but challenges associated with their isolation and screening can hinder the identification of drug-like molecules from complex natural product extracts. Here we introduce a mass spectrometry-based approach that integrates untargeted metabolomics with multistage, high-resolution native mass spectrometry to rapidly identify natural products that bind to therapeutically relevant protein targets. By directly screening crude natural product extracts containing thousands of drug-like small molecules using a single, rapid measurement, we could identify novel natural product ligands of human drug targets without fractionation. This method should significantly increase the efficiency of target-based natural product drug discovery workflows.
Collapse
Affiliation(s)
- Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sherrie Liu
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Sarah E Hancock
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Daniel L Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
39
|
De Luca V, Petreni A, Carginale V, Scaloni A, Supuran CT, Capasso C. Effect of amino acids and amines on the activity of the recombinant ι-carbonic anhydrase from the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021; 36:1000-1006. [PMID: 33980103 PMCID: PMC8128165 DOI: 10.1080/14756366.2021.1919891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s-1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9-13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
- Proteomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, Naples, Italy
| | - Andrea Petreni
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Vincenzo Carginale
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, Naples, Italy
| | - Claudiu T. Supuran
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Polo Scientifico, Florence, Italy
| |
Collapse
|
40
|
Queiroz RF, Stanley CP, Wolhuter K, Kong SMY, Rajivan R, McKinnon N, Nguyen GTH, Roveri A, Guttzeit S, Eaton P, Donald WA, Ursini F, Winterbourn CC, Ayer A, Stocker R. Hydrogen peroxide signaling via its transformation to a stereospecific alkyl hydroperoxide that escapes reductive inactivation. Nat Commun 2021; 12:6626. [PMID: 34785665 PMCID: PMC8595612 DOI: 10.1038/s41467-021-26991-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
During systemic inflammation, indoleamine 2,3-dioxygenase 1 (IDO1) becomes expressed in endothelial cells where it uses hydrogen peroxide (H2O2) to oxidize L-tryptophan to the tricyclic hydroperoxide, cis-WOOH, that then relaxes arteries via oxidation of protein kinase G 1α. Here we show that arterial glutathione peroxidases and peroxiredoxins that rapidly eliminate H2O2, have little impact on relaxation of IDO1-expressing arteries, and that purified IDO1 forms cis-WOOH in the presence of peroxiredoxin 2. cis-WOOH oxidizes protein thiols in a selective and stereospecific manner. Compared with its epimer trans-WOOH and H2O2, cis-WOOH reacts slower with the major arterial forms of glutathione peroxidases and peroxiredoxins while it reacts more readily with its target, protein kinase G 1α. Our results indicate a paradigm of redox signaling by H2O2 via its enzymatic conversion to an amino acid-derived hydroperoxide that 'escapes' effective reductive inactivation to engage in selective oxidative activation of key target proteins.
Collapse
Affiliation(s)
- Raphael F Queiroz
- Department of Natural Sciences, Southwest Bahia State University, Vitoria da Conquista, Bahia, Brazil
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Christopher P Stanley
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Kathryn Wolhuter
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | - Ragul Rajivan
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Naomi McKinnon
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Philip Eaton
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- Heart Research Institute, The University of Sydney, Sydney, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
- Heart Research Institute, The University of Sydney, Sydney, Australia.
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
41
|
Edwards AN, Tran HM, Gallagher ES. Propagating Error through Traveling-Wave Ion Mobility Calibration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2621-2630. [PMID: 34662111 DOI: 10.1021/jasms.1c00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native mass spectrometry (MS) is used to elucidate the stoichiometry of protein complexes and quantify binding interactions by maintaining native-like, noncovalent interactions in the gas phase. However, ionization forces proteins into specific conformations, losing the solution-phase dynamics associated with solvated protein structures. Comparison of gas-phase structures to those in solution, or to other gas-phase ion populations, has many biological implications. For one, analyzing the variety of conformations that are maintained in the gas-phase can provide insight into a protein's solution-phase energy landscape. The gas-phase conformations of proteins and complexes can be investigated using ion mobility (IM) spectrometry. Specifically, drift tube (DT)-IM utilizes uniform electric fields to propel a population of gas-phase ions through a region containing a neutral gas. By measuring the mobility (K) of gas-phase ions, users are able to calculate an average momentum transfer cross section (DTCCS), which provides structural information on the ion. Conversely, in traveling-wave ion mobility spectrometry (TWIMS), TWCCS values cannot be derived directly from an ion's mobility but must be determined following calibration. Though the required calibration adds uncertainty, it is common to report only an average and standard deviation of the calculated TWCCS, accounting for uncertainty associated with replicate measurements, which is a fraction of the overall uncertainty. Herein, we calibrate a TWIMS instrument and derive TWCCSN2 and TWCCSN2→He values for four proteins: cytochrome c, ubiquitin, apo-myoglobin, and holo-myoglobin. We show that compared to reporting only the standard deviation of TWCCS, propagating error through the calibration results in a significant increase in the number of calculated TWCCS values that agree within experimental error with literature values (DTCCS). Incorporating this additional uncertainty provides a more thorough assessment of a protein ion's gas-phase conformations, enabling the structures sampled by native IM-MS to be compared against other reported structures, both experimental and computational.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Hien M Tran
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
42
|
Luchinat E, Barbieri L, Cremonini M, Pennestri M, Nocentini A, Supuran CT, Banci L. Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1270-1281. [PMID: 34605430 PMCID: PMC8489230 DOI: 10.1107/s2059798321009037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
Structure-based drug development suffers from high attrition rates due to the poor activity of lead compounds in cellular and animal models caused by low cell penetrance, off-target binding or changes in the conformation of the target protein in the cellular environment. The latter two effects cause a change in the apparent binding affinity of the compound, which is indirectly assessed by cellular activity assays. To date, direct measurement of the intracellular binding affinity remains a challenging task. In this work, in-cell NMR spectroscopy was applied to measure intracellular dissociation constants in the nanomolar range by means of protein-observed competition binding experiments. Competition binding curves relative to a reference compound could be retrieved either from a series of independent cell samples or from a single real-time NMR bioreactor run. The method was validated using a set of sulfonamide-based inhibitors of human carbonic anhydrase II with known activity in the subnanomolar to submicromolar range. The intracellular affinities were similar to those obtained in vitro, indicating that these compounds selectively bind to the intracellular target. In principle, the approach can be applied to any soluble intracellular target that gives rise to measurable chemical shift changes upon ligand binding.
Collapse
Affiliation(s)
- Enrico Luchinat
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Pennestri
- Pharmaceutical Business Unit, Bruker UK Limited, Banner Lane, Coventry CV4 9GH, United Kingdom
| | - Alessio Nocentini
- Dipartimento Neurofarba, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
43
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
44
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
45
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Angeli A, Urbański LJ, Hytönen VP, Parkkila S, Supuran CT. Activation of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with amines and amino acids. J Enzyme Inhib Med Chem 2021; 36:758-763. [PMID: 33715570 PMCID: PMC7952076 DOI: 10.1080/14756366.2021.1897802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We report the first activation study of the β-class carbonic anhydrase (CA, EC 4.2.1.1) encoded in the genome of the protozoan pathogen Trichomonas vaginalis, TvaCA1. Among 24 amino acid and amine activators investigated, derivatives incorporating a second carboxylic moiety, such as L-Asp, L- and D-Glu, were devoid of activating effects up to concentrations of 50 µM within the assay system, whereas the corresponding compounds with a CONH2 moiety, i.e. L-Gln and L-Asn showed modest activating effects, with activation constants in the range of 26.9 − 32.5 µM. Moderate activation was observed with L- and D-DOPA, histamine, dopamine, serotonin, (2-Aminoethyl)pyridine/piperazine and morpholine (KA‘s ranging between 8.3 and 14.5 µM), while the best activators were L-and D-Trp, L-and D-Tyr and 4-amino-Phe, which showed KA‘s ranging between 3.0 and 5.1 µM. Understanding in detail the activation mechanism of β-CAs may be relevant for the design of enzyme activity modulators with potential clinical significance.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
47
|
Agasid MT, Sørensen L, Urner LH, Yan J, Robinson CV. The Effects of Sodium Ions on Ligand Binding and Conformational States of G Protein-Coupled Receptors-Insights from Mass Spectrometry. J Am Chem Soc 2021; 143:4085-4089. [PMID: 33711230 PMCID: PMC7995251 DOI: 10.1021/jacs.0c11837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The use of mass spectrometry
to investigate proteins is now well
established and provides invaluable information for both soluble and
membrane protein assemblies. Maintaining transient noncovalent interactions
under physiological conditions, however, remains challenging. Here,
using nanoscale electrospray ionization emitters, we establish conditions
that enable mass spectrometry of two G protein-coupled receptors (GPCR)
from buffers containing high concentrations of sodium ions. For the
Class A GPCR, the adenosine 2A receptor, we observe ligand-induced
changes to sodium binding of the receptor at the level of individual
sodium ions. We find that antagonists promote sodium binding while
agonists attenuate sodium binding. These findings are in line with
high-resolution X-ray crystallography wherein only inactive conformations
retain sodium ions in allosteric binding pockets. For the glucagon
receptor (a Class B GPCR) we observed enhanced ligand binding in electrospray
buffers containing high concentrations of sodium, as opposed to ammonium
acetate buffers. A combination of native and -omics mass spectrometry
revealed the presence of a lipophilic negative allosteric modulator.
These experiments highlight the advantages of implementing native
mass spectrometry, from electrospray buffers containing high concentrations
of physiologically relevant salts, to inform on allosteric ions or
ligands with the potential to define their roles on GPCR function.
Collapse
Affiliation(s)
- Mark T Agasid
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Lars Sørensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Leonhard H Urner
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jun Yan
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, Måløv 2760, Denmark
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
48
|
Báez Bolivar EG, Bui DT, Kitova EN, Han L, Zheng RB, Luber EJ, Sayed SY, Mahal LK, Klassen JS. Submicron Emitters Enable Reliable Quantification of Weak Protein-Glycan Interactions by ESI-MS. Anal Chem 2021; 93:4231-4239. [PMID: 33630563 DOI: 10.1021/acs.analchem.0c05003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interactions between carbohydrates (glycans) and glycan-binding proteins (GBPs) regulate a wide variety of important biological processes. However, the affinities of most monovalent glycan-GBP complexes are typically weak (dissociation constant (Kd) > μM) and difficult to reliably measure with conventional assays; consequently, the glycan specificities of most GBPs are not well established. Here, we demonstrate how electrospray ionization mass spectrometry (ESI-MS), implemented with nanoflow ESI emitters with inner diameters of ∼50 nm, allows for the facile quantification of low-affinity glycan-GBP interactions. The small size of the droplets produced from these submicron emitters effectively eliminates the formation of nonspecific glycan-GBP binding (false positives) during the ESI process up to ∼mM glycan concentrations. Thus, interactions with affinities as low as ∼5 mM can be measured directly from the mass spectrum. The general suppression of nonspecific adducts (including nonvolatile buffers and salts) achieved with these tips enables ESI-MS glycan affinity measurements to be performed on C-type lectins, a class of GBPs that bind glycans in a calcium-dependent manner and are important regulators of immune response. At physiologically relevant calcium ion concentrations (2-3 mM), the extent of Ca2+ nonspecific adduct formation observed using the submicron emitters is dramatically suppressed, allowing glycan affinities, and the influence of Ca2+ thereon, to be measured. Finally, we show how the use of submicron emitters and suppression of nonspecific binding enable the quantification of labile (prone to in-source dissociation) glycan-GBP interactions.
Collapse
Affiliation(s)
- Erick G Báez Bolivar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Ruixiang B Zheng
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Erik J Luber
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Sayed Youssef Sayed
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
49
|
Jordan JS, Williams ER. Effects of Electrospray Droplet Size on Analyte Aggregation: Evidence for Serine Octamer in Solution. Anal Chem 2021; 93:1725-1731. [PMID: 33369386 DOI: 10.1021/acs.analchem.0c04343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spraying solutions of serine under a wide variety of conditions results in unusually abundant gaseous octamer clusters that exhibit significant homochiral specificity, but the extent to which these clusters exist in solution or are formed by clustering during droplet evaporation has been debated. Electrospray ionization emitters with tip sizes between 210 nm and 9.2 μm were used to constrain the number of serine molecules that droplets initially contain. Protonated octamer was observed for all tip sizes with 10 mM serine solution, but the abundance decreases from 10% of the serine population at the largest tip size to ∼5.6% for the two smallest tip sizes. At 100 μM, the population abundance of the protonated serine octamer decreases from 1% to 0.6% from the largest to the smallest tip size, respectively. At 100 μM, fewer than 10% of the initial droplets should contain even a single analyte molecule with 210 nm emitter tips. These results indicate that the majority of protonated octamer observed in mass spectra under previous conditions is formed by clustering inside the electrospray droplet, but ≤5.6% and ∼0.6% of serine exists as an octamer complex in 10 mM and 100 μM solutions, respectively. These results show that aggregation occurs in large droplets, but this aggregation can be eliminated using emitters with sufficiently small tips. Use of these emitters with small tips is advantageous for clearly distinguishing between species that exist in solution and species formed by clustering inside droplets as solvent evaporation occurs.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Chen Y, Yuan S, Liu Y, Huang G. Rapid desalting during electrospray ionization mass spectrometry for investigating protein-ligand interactions in the presence of concentrated salts. Anal Chim Acta 2021; 1141:120-126. [PMID: 33248644 DOI: 10.1016/j.aca.2020.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022]
Abstract
Investigation of protein-ligand interactions in physiological conditions is crucial for better understanding of biochemistry because the binding stoichiometry and conformations of complexes in biological processes, such as various types of regulation and transportation, could reveal key pathways in organisms. Nanoelectrospray ionization mass spectrometry is widely used in studies of biological processes and systems biology. However, non-volatile salts in biological fluid may adversely interfere with nanoelectrospray ionization mass spectrometry. In this study, the previously developed method of induced nanoelectrospray ionization was used to facilitate in situ desalting of protein in solutions with high concentrations of non-volatile salts, and direct investigation of protein-ligand interactions for the first time. In situ desalting occurred at the tip of emitters within a short period lasting for a few to tens of milliseconds, enabling the maintenance of nativelike conditions compatible with mass spectrometry measurements. Induced nanoelectrospray ionization was driven by pulsed potential and exhibited microelectrophoresis effect in each spray cycle, which is not observed in conventional nanoelectrospray ionization because the continuous spray procedure is driven by direct current. Microelectrophoresis caused desalting through micron-sized spray emitters (1-20 μm), as confirmed experimentally with proteins in 100 mM NaCl solution. The method developed in this study has been further illustrated as a potential option for fast and direct identification of protein-ligand (small molecules or metal ions) interactions in complex samples. The results of this study demonstrate that the newly developed method may represent a reliable approach for investigations of proteins and protein complexes in biological samples.
Collapse
Affiliation(s)
- Yuting Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Siming Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Yangzhong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China
| | - Guangming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, PR China.
| |
Collapse
|