1
|
Wang X, Jian Q, Zhang Z, Gu J, Wang X, Wang Y. Effect of tumor-derived extracellular vesicle-shuttled lncRNA MALAT1 on proliferation, invasion and metastasis of triple-negative breast cancer by regulating macrophage M2 polarization via the POSTN/Hippo/YAP axis. Transl Oncol 2024; 49:102076. [PMID: 39222611 PMCID: PMC11402314 DOI: 10.1016/j.tranon.2024.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer (BC). Tumor-derived extracellular vesicles (EVs) trigger tumor progression by promoting M2 polarization. Some lncRNAs can be encapsulated into EVs for intercellular communication. Herein, we investigated the mechanism of TNBC-derived EV-shuttled lncRNA MALAT1 on macrophage polarization/tumorigenesis. METHODS BC-associated targeted EV-derived lncRNAs were screened. Tumor tissues/tissues adjacent to cancer of TNBC patients, and blood samples of all subjects were collected. MALAT1/POSTN mRNA levels in tumor tissues/tissues adjacent to cancer, and MALAT1 expression in EVs and its correlation with TNBC patient overall survival were assessed by RT-qPCR/Kaplan-Meier survival analysis/log-rank test. TNBC patient M2 infiltration was detected by flow cytometry. MALAT1/POSTN levels in EVs/macrophages were regulated by transfection. Hippo/YAP activation was determined by Western blot. Nude mouse xenograft model was established and metastasis was detected by H&E staining. RESULTS MALAT1/POSTN were up-regulated and correlated with M2 infiltration/poor prognosis in TNBC patients. TNBC-derived EVs induced M2 polarization. MALAT1 was highly expressed in TNBC-derived EVs and could be transferred to macrophages via EVs to induce M2 polarization. POSTN overexpression diminished the inhibitory effect of MALAT1 knockdown on M2 markers. EVs activated the Hippo/YAP pathway in macrophages. The Hippo/YAP pathway inhibition abrogated the effect of POSTN overexpression on M2 marker expression. TNBC-EV-derived MALAT1 facilitated M2 polarization, and thus promoting occurrence and metastasis of TNBC in vitro and in vivo. CONCLUSIONS TNBC-EV-derived MALAT1 activated the Hippo/YAP axis by up-regulating POSTN, thereby inducing M2 polarization to promote TNBC occurrence and metastasis in vivo.
Collapse
Affiliation(s)
- Xuedong Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China; Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Qiwei Jian
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Ziyun Zhang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Juan Gu
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China
| | - Xinping Wang
- School of Medicine, Anhui University of Science & Technology, Huainan, Anhui, 232001, China
| | - Yueping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, 230041, China; Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Wang C, Zhao J, Duan Y, Lin L, Zhang Q, Zheng H, Shan W, Wang X, Ren L. Tumor-Associated Myeloid Cells Selective Delivery of a Therapeutic Tumor Nano-Vaccine for Overcoming Immune Barriers for Effective and Long-Term Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2401416. [PMID: 38848734 DOI: 10.1002/adhm.202401416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Therapeutic cancer vaccines have the potential to induce regression of established tumors, eradicate microscopic residual lesions, and prevent metastasis and recurrence, but their efficacy is limited by the low antigenicity of soluble antigens and the immunosuppressive tumor-associated macrophages (TAMs) that promote tumor growth. In this study, a novel strategy is reported for overcoming these defenses: a dual-targeting nano-vaccine (NV) based on hepatitis B core antigen (HBcAg) derived virus-like particles (VLPs), N-M2T-gp100 HBc NV, equipped with both SIGNR+ dendritic cells (DCs)/TAMs-targeting ability and high-density display of tumor-associated antigen (TAA). N-M2T-gp100 HBc NVs-based immunotherapy has demonstrated an optimal interaction between tumor-associated antigens (TAAs) and the immune composition of the tumor microenvironment. In a melanoma model, N-M2T-gp100 HBc VLPs significantly reducing in situ and abscopal tumor growth, and provide long-term immune protection. This remarkable anti-tumor effect is achieved by efficiently boosting of T cells and repolarizing of M2-like TAMs. This work opens exciting avenues for the development of personalized tumor vaccines targeting not just melanoma but potentially a broad range of cancer types based on functionalized VLPs.
Collapse
Affiliation(s)
- Chufan Wang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinglian Zhao
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yufei Duan
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Liping Lin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Qiang Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, P.R. China
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
3
|
Guo H, Zhang L, Su H, Yang J, Lei J, Li X, Zhang S, Zhang X. Exploring tumor microenvironment in molecular subtyping and prognostic signatures in ovarian cancer and identification of SH2D1A as a key regulator of ovarian cancer carcinogenesis. Heliyon 2024; 10:e38014. [PMID: 39347397 PMCID: PMC11437944 DOI: 10.1016/j.heliyon.2024.e38014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction A deadly gynecological cancer, ovarian cancer (OV), has a poor prognosis because of late-stage diagnosis and few targeted therapies. Addressing the tumor microenvironment (TME) in solid tumors has shown promise since it is crucial in promoting cancer progression. Methods We obtained bulk RNA-seq data from TCGA-OV, GSE26712, GSE102073, and ICGC cohorts, as well as scRNA-seq data from EMTAB8107, GSE118828, GSE130000, and GSE154600 cohorts using the TISCH2 database. The ConsensusClusterPlus package was used to cluster the OV tumor tissues hierarchically to determine two molecularly different groups (C1 and C2). A total of ten different types of machine learning techniques with 101 combinations were used for prognostic model construction. Using eight TME algorithms integrated into the IOBR R package, the bulk RNA-seq dataset was analyzed. For in vitro experiments, OVCAR3 and SKOV3, two OV cell lines, were used. The migratory potential of the ovarian cancer cells was assessed using Transwell assay, while proliferation was assessed using CCK8 assay. Results Based on TME-related gene set expression, two distinct molecular subgroups (C1 and C2) were identified through consensus clustering, with C1 showing higher TME activity. Further analysis indicated that C1 had increased cancer-associated fibroblasts (CAFs), M1 macrophages, and CD8+ T cells, suggesting a more activated and pro-inflammatory TME. Drug sensitivity analysis revealed that 5-Fluorouracil might be beneficial to C1 patients. Functional differences between C1 and C2 were identified, including cell adhesion, mononuclear cell differentiation, and leukocyte migration. A machine learning model was developed to create a TME-related prognostic signature, demonstrating strong prognostic capabilities across multiple datasets. High-risk patients showed a more immune-suppressive TME and higher tumor stemness. ScRNA-seq disclosed a highly activated TME-related signature in OV. Cancer cell lines had significantly higher SH2D1A mRNA expression than normal ovarian epithelial cells. We observed that SH2D1A knockdown in 2 ovarian cancer cell lines (OVCAR3 and SKOV3) reduced migration and proliferation through a series of in-vitro experiments. Conclusion TME-associated genes were efficient in ovarian cancer molecular subtyping. A TME-based prognosis model was constructed for vigorous prognostic stratification efficacy across multiple datasets. Moreover, we identified a pivotal role of SH2D1A in promoting proliferation and migration in ovarian cancer.
Collapse
Affiliation(s)
- Hongrui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - liwen Zhang
- Department of Gynecology, The Children's Hospital of Shanxi, Taiyuan, 030001, China
| | - Huancheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jiaolin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoli Li
- Department of Gynecology, The Children's Hospital of Shanxi, Taiyuan, 030001, China
| | - Sanyuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xinglin Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
4
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Ou Y, Jiang HM, Wang YJ, Shuai QY, Cao LX, Guo M, Qi CC, Li ZX, Shi J, Hu HY, Liu YX, Zuo SY, Chen X, Feng MD, Shi Y, Sun PQ, Wang H, Yang S. The Zeb1-Cxcl1 axis impairs the antitumor immune response by inducing M2 macrophage polarization in breast cancer. Am J Cancer Res 2024; 14:4378-4397. [PMID: 39417185 PMCID: PMC11477816 DOI: 10.62347/uais7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zeb1, a key epithelial-mesenchymal transition (EMT) regulator, has recently been found to be involved in M2 macrophage polarization in the tumor immune microenvironment, thereby promoting tumor development. However, the underlying mechanism of Zeb1-induced M2 macrophage polarization remains largely unexplored. To identify the potential role of Zeb1 in remodeling the tumor immune microenvironment in breast cancer, we crossed the floxed Zeb1 allele homozygously into PyMT mice to generate PyMT;Zeb1cKO (MMTV-Cre;PyMT;Zeb1fl/fl ) mice. We found that the recruitment of M2-type tumor-associated macrophages (TAMs) was significantly reduced in tumors from PyMT;Zeb1cKO mice, and their tumor suppressive effects were weakened. Mechanistically, Zeb1 played a crucial role in transcriptionally promoting the production of Cxcl1 in tumor cells. In turn, Cxcl1 activated the Cxcr2-Jak-Stat3 pathway to induce M2 polarization of TAMs in a paracrine manner, which eventually led to T-cell inactivation and impaired the antitumor immune response in breast cancer. Our results collectively revealed an important role of Zeb1 in remodeling the tumor microenvironment, suggesting a novel therapeutic intervention for the treatment of advanced breast cancer.
Collapse
Affiliation(s)
- Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hui-Min Jiang
- Beijing Institute of Brain Disorders, Capital Medical UniversityBeijing, P. R. China
| | - Yan-Jing Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Qiu-Ying Shuai
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Li-Xia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Min Guo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Chun-Chun Qi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Zhao-Xian Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Jie Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hua-Yu Hu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yu-Xin Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Si-Yu Zuo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Xiao Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Meng-Dan Feng
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yi Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Pei-Qing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston-Salem, NC, USA
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| |
Collapse
|
6
|
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, Yang Y, Wan J, Zhou J, Fan J, Dai Z. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond) 2024. [PMID: 39223929 DOI: 10.1002/cac2.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The efficacy of immune checkpoint blockade therapy in patients with hepatocellular carcinoma (HCC) remains poor. Although serine- and arginine-rich splicing factor (SRSF) family members play crucial roles in tumors, their impact on tumor immunology remains unclear. This study aimed to elucidate the role of SRSF10 in HCC immunotherapy. METHODS To identify the key genes associated with immunotherapy resistance, we conducted single-nuclear RNA sequencing, multiplex immunofluorescence, and The Cancer Genome Atlas and Gene Expression Omnibus database analyses. We investigated the biological functions of SRSF10 in immune evasion using in vitro co-culture systems, flow cytometry, various tumor-bearing mouse models, and patient-derived organotypic tumor spheroids. RESULTS SRSF10 was upregulated in various tumors and associated with poor prognosis. Moreover, SRSF10 positively regulated lactate production, and SRSF10/glycolysis/ histone H3 lysine 18 lactylation (H3K18la) formed a positive feedback loop in tumor cells. Increased lactate levels promoted M2 macrophage polarization, thereby inhibiting CD8+ T cell activity. Mechanistically, SRSF10 interacted with the 3'-untranslated region of MYB, enhancing MYB RNA stability, and subsequently upregulating key glycolysis-related enzymes including glucose transporter 1 (GLUT1), hexokinase 1 (HK1), lactate dehydrogenase A (LDHA), resulting in elevated intracellular and extracellular lactate levels. Lactate accumulation induced histone lactylation, which further upregulated SRSF10 expression. Additionally, lactate produced by tumors induced lactylation of the histone H3K18la site upon transport into macrophages, thereby activating transcription and enhancing pro-tumor macrophage activity. M2 macrophages, in turn, inhibited the enrichment of CD8+ T cells and the proportion of interferon-γ+CD8+ T cells in the tumor microenvironment (TME), thus creating an immunosuppressive TME. Clinically, SRSF10 could serve as a biomarker for assessing immunotherapy resistance in various solid tumors. Pharmacological targeting of SRSF10 with a selective inhibitor 1C8 enhanced the efficacy of programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) in both murine and human preclinical models. CONCLUSIONS The SRSF10/MYB/glycolysis/lactate axis is critical for triggering immune evasion and anti-PD-1 resistance. Inhibiting SRSF10 by 1C8 may overcome anti-PD-1 tolerance in HCC.
Collapse
Affiliation(s)
- Jialiang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, P. R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, P. R. China
| | - Lina Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, P. R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, P. R. China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, P. R. China
- Shanghai Institute of Liver Disease, Shanghai, P. R. China
| | - Suiyi Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Guiqi Zhu
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, P. R. China
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Peiling Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, P. R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, P. R. China
| | - Shiping Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, P. R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, P. R. China
| | - Junxian Du
- Department of general surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yufan Cai
- Department of general surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yi Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jinglei Wan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, P. R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, P. R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, P. R. China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, P. R. China
| |
Collapse
|
7
|
Zhang JY, Su YH, Wang X, Yao X, Du JZ. Recent Progress on Nanomedicine-Mediated Repolarization of Tumor-Associated Macrophages for Cancer Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2001. [PMID: 39425549 DOI: 10.1002/wnan.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme. The reprogramming of M2-like TAMs toward a tumoricidal M1 phenotype is of particular interest for the restoration of antitumor immunity in cancer immunotherapy. Notably, nanomedicines have shown great potential for cancer therapy due to their unique structures and properties. This review will briefly describe the biological features and roles of TAMs in tumor, and then discuss recent advances in nanomedicine-mediated repolarization of TAMs for cancer immunotherapy. Finally, perspectives on nanomedicine-mediated repolarization of TAMs for effective cancer immunotherapy are also presented.
Collapse
Affiliation(s)
- Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Yun-He Su
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xu Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Xueqing Yao
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Gu B, Zhao Q, Ao Y. Advances in Immunomodulatory Mesoporous Silica Nanoparticles for Inflammatory and Cancer Therapies. Biomolecules 2024; 14:1057. [PMID: 39334825 PMCID: PMC11430029 DOI: 10.3390/biom14091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, immunotherapy has been considered a promising treatment approach. The modulatable enhancement or attenuation of the body's immune response can effectively suppress tumors. However, challenges persist in clinical applications due to the lack of precision in antigen presentation to immune cells, immune escape mechanisms, and immunotherapy-mediated side effects. As a potential delivery system for drugs and immunomodulators, mesoporous silica has attracted extensive attention recently. Mesoporous silica nanoparticles (MSNs) possess high porosity, a large specific surface area, excellent biocompatibility, and facile surface modifiability, making them suitable as multifunctional carriers in immunotherapy. This article summarizes the latest advancements in the application of MSNs as carriers in cancer immunotherapy, aiming to stimulate further exploration of the immunomodulatory mechanisms and the development of immunotherapeutics based on MSNs.
Collapse
Affiliation(s)
| | | | - Yiran Ao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Bio-Medicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (B.G.); (Q.Z.)
| |
Collapse
|
9
|
Gu W, Guo W, Ren Z, Zhang Y, Han M, Zhao Q, Gao Y, Mao Y, Wang S. A bioactive nanocomposite integrated specific TAMs target and synergistic TAMs repolarization for effective cancer immunotherapy. Bioact Mater 2024; 38:472-485. [PMID: 38779591 PMCID: PMC11109736 DOI: 10.1016/j.bioactmat.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Reactive oxygen species (ROS) generated from photosensitizers exhibit great potential for repolarizing immunosuppressive tumor-associated macrophages (TAMs) toward the anti-tumor M1 phenotype, representing a promising cancer immunotherapy strategy. Nevertheless, their effectiveness in eliminating solid tumors is generally limited by the instability and inadequate TAMs-specific targeting of photosensitizers. Here, a novel core-shell integrated nano platform is proposed to achieve a coordinated strategy of repolarizing TAMs for potentiating cancer immunotherapy. Colloidal mesoporous silica nanoparticles (CMSN) are fabricated to encapsulate photosensitizer-Indocyanine Green (ICG) to improve their stability. Then ginseng-derived exosome (GsE) was coated on the surface of ICG/CMSN for targeting TAMs, as well as repolarizing TAMs concurrently, named ICG/CMSN@GsE. As expected, with the synergism of ICG and GsE, ICG/CMSN@GsE exhibited better stability, mild generation of ROS, favorable specificity toward M2-like macrophages, enhancing drug retention in tumors and superior TAMs repolarization potency, then exerted a potent antitumor effect. In vivo, experiment results also confirm the synergistic suppression of tumor growth accompanied by the increased presence of anti-tumor M1-like macrophages and maximal tumor damage. Taken together, by integrating the superiorities of TAMs targeting specificity and synergistic TAMs repolarization effect into a single nanoplatform, ICG/CMSN@GsE can readily serve as a safe and high-performance nanoplatform for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Wen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Zhishuang Ren
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yimeng Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Meiqi Han
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yikun Gao
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
10
|
Gao L, Bai Y, Zhou J, Liang C, Dong Y, Han T, Liu Y, Guo J, Wu J, Hu D. S100P facilitates LUAD progression via PKA/c-Jun-mediated tumor-associated macrophage recruitment and polarization. Cell Signal 2024; 120:111179. [PMID: 38640980 DOI: 10.1016/j.cellsig.2024.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
S100P, a member of the S100 calcium-binding protein family, is closely associated with abnormal proliferation, invasion, and metastasis of various cancers. However, its role in the lung adenocarcinoma (LUAD) tumor microenvironment (TME) remains unclear. In this study, we observed specific expression of S100P on tumor cells in LUAD patients through tissue immunofluorescence analysis. Furthermore, this expression was strongly correlated with the recruitment and polarization of tumor-associated macrophages (TAMs). Bioinformatics analysis revealed that high S100P expression is associated with poorer overall survival in LUAD patients. Subsequently, a subcutaneous mouse model demonstrated that S100P promotes recruitment and polarization of TAMs towards the M2 type. Finally, in vitro studies on LUAD cells revealed that S100P enhances the secretion of chemokines and polarizing factors by activating the PKA/c-Jun pathway, which is implicated in TAM recruitment and polarization towards the M2 phenotype. Moreover, inhibition of c-Jun expression impedes the ability of TAMs to infiltrate and polarize towards the M2 phenotype. In conclusion, our study demonstrates that S100P facilitates LUAD cells growth by recruiting M2 TAMs through PKA/c-Jun signaling, resulting in the production of various cytokines. Considering these findings, S100P holds promise as an important diagnostic marker and potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yunjia Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
11
|
Fu J, Xi H, Cai S, Peng Y, Liu Q, Qiu L, Lin J. Development of Granzyme B-targeted Smart Positron Emission Tomography Probes for Monitoring Tumor Early Response to Immunotherapy. ACS NANO 2024; 18:18910-18921. [PMID: 39001856 DOI: 10.1021/acsnano.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Granzyme B is an immune-related biomarker that closely correlates with cytotoxic T lymphocytes (CTLs), and hence detecting the expression level of granzyme B can provide a dependable scheme for clinical immune response assessment. In this study, two positron emission tomography (PET) probes [18F]SF-M-14 and [18F]SF-H-14 targeting granzyme B are designed based on the intramolecular cyclization scaffold SF. [18F]SF-M-14 and [18F]SF-H-14 can respond to granzyme B and glutathione (GSH) to conduct intramolecular cyclization and self-assemble into nanoaggregates to enhance the retention of probe at the target site. Both probes are prepared with high radiochemical purity (>98%) and high stability in PBS and mouse serum. In 4T1 cells cocultured with T lymphocytes, [18F]SF-M-14 and [18F]SF-H-14 reach the maximum uptake of 6.71 ± 0.29 and 3.47 ± 0.09% ID/mg at 0.5 h, respectively, but they remain below 1.95 ± 0.22 and 1.47 ± 0.21% ID/mg in 4T1 cells without coculture of T lymphocytes. In vivo PET imaging shows that the tumor uptake in 4T1-tumor-bearing mice after immunotherapy is significantly higher (3.5 times) than that in the untreated group. The maximum tumor uptake of [18F]SF-M-14 and [18F]SF-H-14 in the mice treated with BEC was 4.08 ± 0.16 and 3.43 ± 0.12% ID/g, respectively, while that in the untreated mice was 1.04 ± 0.79 and 1.41 ± 0.11% ID/g, respectively. These results indicate that both probes have great potential in the early evaluation of clinical immunotherapy efficacy.
Collapse
Affiliation(s)
- Jiayu Fu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shuyue Cai
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
12
|
Li H, Fei M, Zhang Y, Xu Q, Feng R, Cao J, Qu Y, Xiao H. Identify CTBP1-DT as an immunological biomarker that promotes lipid synthesis and apoptosis resistance in KIRC. Gene 2024; 914:148403. [PMID: 38521112 DOI: 10.1016/j.gene.2024.148403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Recently, mounting evidence has highlighted the essential function of the C-terminal binding protein-1 divergent transcript (CTBP1-DT) in malignancies. However, its role in kidney renal clear cell carcinoma (KIRC) remains largely unknown. Our study aimed to identify the potential function of CTBP1-DT in KIRC. RT-qPCR, Kaplan-Meier survival analysis, Cox regression analysis, and nomogram analysis were utilized to determine the expression and effects of CTBP1-DT on survival. The subcellular localization of CTBP1-DT was determined using RNA fluorescence in situ hybridization (FISH). To investigate the functions of CTBP1-DT in regulating KIRC cell proliferation, migration, invasion, lipid synthesis, and apoptosis, we conducted CCK8, EdU, Transwell, and Oil Red O staining and cell apoptosis staining assays. The relationships between CTBP1-DT and the tumor microenvironment were investigated with multiple bioinformatics analysis algorithms and databases, including CYBERSORT, TIMER2, Spearman correlation test, tumor mutation burden (TMB), microsatellite instability (MSI), and immunophenoscore (IPS). According to our results, CTBP1-DT is a lncRNA located in the nucleus that is significantly upregulated in KIRC and is correlated with better clinical outcomes. Downregulating CTBP1-DT inhibited cell viability, migration, invasion, and lipid synthesis but triggered cell apoptosis. Additionally, we explored the potential effect of CTBP1-DT in regulating immune cell infiltration in KIRC and other malignancies. Furthermore, CTBP1-DT could be used to predict the effectiveness of targeted drugs and immune checkpoint inhibitors. In conclusion, we identified CTBP1-DT as a potential immunological biomarker and discovered the potential role of CTBP1-DT in regulating lipid synthesis and apoptosis resistance.
Collapse
Affiliation(s)
- Haolin Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mintian Fei
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qili Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Cao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yan Qu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Haibing Xiao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Vizcaino Castro A, Daemen T, Oyarce C. Strategies to reprogram anti-inflammatory macrophages towards pro-inflammatory macrophages to support cancer immunotherapies. Immunol Lett 2024; 267:106864. [PMID: 38705481 DOI: 10.1016/j.imlet.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Tumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs). Most strategies were studied preclinically but we also included a limited number of clinical studies based on these strategies. We describe possible underlying mechanisms and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Ana Vizcaino Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Liang C, Zhang Y, Wang S, Jiao W, Guo J, Zhang N, Liu X. Nanomaterials in modulating tumor-associated macrophages and enhancing immunotherapy. J Mater Chem B 2024; 12:4809-4823. [PMID: 38695349 DOI: 10.1039/d4tb00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Tumor-associated macrophages (TAMs) are predominantly present in the tumor microenvironment (TME) and play a crucial role in shaping the efficacy of tumor immunotherapy. These TAMs primarily exhibit a tumor-promoting M2-like phenotype, which is associated with the suppression of immune responses and facilitation of tumor progression. Interestingly, recent research has highlighted the potential of repolarizing TAMs from an M2 to a pro-inflammatory M1 status-a shift that has shown promise in impeding tumor growth and enhancing immune responsiveness. This concept is particularly intriguing as it offers a new dimension to cancer therapy by targeting the tumor microenvironment, which is a significant departure from traditional approaches that focus solely on tumor cells. However, the clinical application of TAM-modulating agents is often challenged by issues such as insufficient tumor accumulation and off-target effects, limiting their effectiveness and safety. In this regard, nanomaterials have emerged as a novel solution. They serve a dual role: as delivery vehicles that can enhance the accumulation of therapeutic agents in the tumor site and as TAM-modulators. This dual functionality of nanomaterials is a significant advancement as it addresses the key limitations of current TAM-modulating strategies and opens up new avenues for more efficient and targeted therapies. This review provides a comprehensive overview of the latest mechanisms and strategies involving nanomaterials in modulating macrophage polarization within the TME. It delves into the intricate interactions between nanomaterials and macrophages, elucidating how these interactions can be exploited to drive macrophage polarization towards a phenotype that is more conducive to anti-tumor immunity. Additionally, the review explores the burgeoning field of TAM-associated nanomedicines in combination with tumor immunotherapy. This combination approach is particularly promising as it leverages the strengths of both nanomedicine and immunotherapy, potentially leading to synergistic effects in combating cancer.
Collapse
Affiliation(s)
- Chen Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Siyao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jingyi Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Nan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences & School of Medicine, Northwest University, Xi'an, Shaanxi 710069, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
15
|
Xu B, Liu Y, Li N, Geng Q. Lactate and lactylation in macrophage metabolic reprogramming: current progress and outstanding issues. Front Immunol 2024; 15:1395786. [PMID: 38835758 PMCID: PMC11148263 DOI: 10.3389/fimmu.2024.1395786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
It is commonly known that different macrophage phenotypes play specific roles in different pathophysiological processes. In recent years, many studies have linked the phenotypes of macrophages to their characteristics in different metabolic pathways, suggesting that macrophages can perform different functions through metabolic reprogramming. It is now gradually recognized that lactate, previously overlooked as a byproduct of glycolytic metabolism, acts as a signaling molecule in regulating multiple biological processes, including immunological responses and metabolism. Recently, lactate has been found to mediate epigenetic changes in macrophages through a newfound lactylation modification, thereby regulating their phenotypic transformation. This novel finding highlights the significant role of lactate metabolism in macrophage function. In this review, we summarize the features of relevant metabolic reprogramming in macrophages and the role of lactate metabolism therein. We also review the progress of research on the regulation of macrophage metabolic reprogramming by lactylation through epigenetic mechanisms.
Collapse
Affiliation(s)
- Bangjun Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
17
|
Lin C, Chu Y, Zheng Y, Gu S, Hu Y, He J, Shen Z. Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1337129. [PMID: 38650924 PMCID: PMC11033442 DOI: 10.3389/fimmu.2024.1337129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.
Collapse
Affiliation(s)
- Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanghao Hu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiali He
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Zhang Y, Chu B, Fan Q, Song X, Xu Q, Qu Y. M2-type macrophage-targeted delivery of IKKβ siRNA induces M2-to-M1 repolarization for CNV gene therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102740. [PMID: 38458368 DOI: 10.1016/j.nano.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Choroidal Neovascularization (CNV) is capable of inciting recurrent hemorrhage in the macular region, severely impairing patients' visual acuity. During the onset of CNV, infiltrating M2 macrophages play a crucial role in promoting angiogenesis. To control this disease, our study utilizes the RNA interference (RNAi)-based gene therapy to reprogram M2 macrophages to the M1 phenotype in CNV lesions. We synthesize the mannose-modified siRNA-loaded liposome specifically targeting M2 macrophages to inhibit the inhibitory kappa B kinase β (IKKβ) gene involved in the polarization of macrophages, consequently modulating macrophage polarization state. In vitro and in vivo, the mannose-modified IKKβ siRNA-loaded liposome (siIKKβ-ML) has been proven to effectively target M2 macrophages to repolarize them to M1 phenotype, and inhibit the progression of CNV. Collectively, our findings elucidate that siIKKβ-ML holds the potential to control CNV by reprogramming the macrophage phenotype, indicating a promising therapeutic avenue for CNV management.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Baorui Chu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Fan
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xian Song
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qian Xu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi Qu
- Department of Geriatrics, Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Jinan 250012, China; Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan 250012, China.
| |
Collapse
|
19
|
Huang Y, Fan H, Ti H. Tumor microenvironment reprogramming by nanomedicine to enhance the effect of tumor immunotherapy. Asian J Pharm Sci 2024; 19:100902. [PMID: 38595331 PMCID: PMC11002556 DOI: 10.1016/j.ajps.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 04/11/2024] Open
Abstract
With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Precise Medicine Big Date of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
20
|
Li B, Liu Y, Chen D, Sun S. Comprehensive Analysis of Predictive Value and the potential therapeutic target of NLRP3 inflammasome in glioma based on tumor microenvironment. Clin Immunol 2024; 261:109918. [PMID: 38307475 DOI: 10.1016/j.clim.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Glioma exhibits high recurrence rates and poor prognosis. The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in inflammation. There is a lack of research exploring the NLRP3 in glioma. METHODS We used several databases, networks, Western blotting, multiple immunofluorescence staining to analyze the role of NLRP3 in inflammatory tumor microenvironment (TME). RESULTS NLRP3 is higher-expression in glioma with a low mutation load. NLRP3 expression is linked to the infiltration of immune cells, chemokines, immunomodulators, and the TME. Signaling pathways, co-expression genes and interacting proteins contribute to the up-regulation of NLRP3. Patients responding to immunotherapy positively tend to have lower NLRP3 expression relating to the overall survival based on nomogram. Sensitivity to molecular medicines is observed in relation to NLRP3. CONCLUSION The NLRP3 inflammasome plays a pivotal role in TME which could serve as a higher predictive value biomarker and therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Bihan Li
- Nanjing municipal center for disease control and prevention, Nanjing, Jiangsu, China; Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Dawei Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
21
|
Walther M, Jenke R, Aigner A, Ewe A. Efficient polymeric nanoparticles for RNAi in macrophage reveal complex effects on polarization markers upon knockdown of STAT3/STAT6. Eur J Pharm Biopharm 2024; 197:114232. [PMID: 38395176 DOI: 10.1016/j.ejpb.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Tumor associated macrophages (TAMs) are the most abundant immune cell type in the tissue microenvironment, affecting tumor progression, metastasis and therapeutic response. Different macrophage activation ("polarization") states can be distinguished: resting (M0; non-activated), pro-inflammatory/anti-tumorigenic (M1) and anti-inflammatory/pro-tumorigenic (M2). When exploring macrophages as targets in novel cancer immunotherapy approaches, TAM repolarization from the M2 into the M1 phenotype is an intriguing strategy to block their pro-tumoral and enhance their anti-tumoral properties. In the context of RNAi-based gene knockdown of M2 promoting genes, major bottlenecks include cellular siRNA delivery and correct intracellular processing. This is particularly true in case of macrophages as a cell type well-known to be notoriously hard-to-transfect. Among polymeric nanocarriers, the cationic polymer polyethylenimine (PEI) is widely explored for delivering nucleic acids. Further advanced nanocarriers are tyrosine-modified polymers based on PEI or polypropylenimine dendrimers (PPI) for highly efficient siRNA delivery in vitro and in vivo. In this paper, we explored a panel of PEI- or PPI-based nanoparticle systems for siRNA-mediated gene knockdown efficacy in macrophages and subsequent TAM repolarization. The tyrosine-modified linear 10 kDa PEI (LP10Y) or branched 5 kDa PEI (P5Y) as well as a tyrosine-modified PPI (PPI-Y) were found most efficient for gene knockdown in macrophage cell lines or primary macrophages, independent of their polarization. Knockdown of STAT6 or STAT3 led to repolarization of M2 macrophages, as indicated by alterations in various M2 and M1 marker levels. This highly specific approach also demonstrated non-redundant functions of STAT3 and STAT6. Importantly, macrophage re-polarization from M2 to M1 upon PPI-Y/siRNA-mediated STAT6 knockdown increased tumor cell phagocytosis in a co-culture model. In conclusion, we identify certain tyrosine-modified PEI- or PPI-based nanoparticles as particularly efficient for macrophage transfection, and the specific, siRNA-mediated STAT6 knockdown as a promising approach for macrophage repolarization and enhancement of their tumor cell suppressive role.
Collapse
Affiliation(s)
- Maximilian Walther
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Robert Jenke
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, Germany.
| |
Collapse
|
22
|
Chen Y, Shu X, Guo JY, Xiang Y, Liang SY, Lai JM, Zhou JY, Liu LH, Wang P. Nanodrugs mediate TAMs-related arginine metabolism interference to boost photodynamic immunotherapy. J Control Release 2024; 367:248-264. [PMID: 38272398 DOI: 10.1016/j.jconrel.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
As a potential treatment strategy for low immunogenic triple negative breast cancer (TNBC), photodynamic therapy (PDT) induced antitumor immunotherapy is greatly limited by the immunosuppressive tumor microenvironment (ITM), especially the M2 phenotype tumor-associated macrophages (TAMs). The balance of arginine metabolism plays an important role in TAMs polarization. Herein, a multifunctional nanoplatform (defined as HN-HFPA) was employed to burst the anti-tumor immunity of TNBC post PDT by reeducating TAMs through interfering the TAMs-associated arginine metabolism. The L-arginine (L-Arg) was loaded in the hollow cavity of HN-HFPA, which could not only generate nitric oxide (NO) for tumor therapy, but also serve as a substrate of arginine metabolism pathway. As an inhibitor of arginases-1 (Arg-1) of M2 TAMs, L-norvaline (L-Nor) was modified to the hyaluronic acid (HA), and coated in the surface of HFPA. After degradation of HA by hyaluronidase in tumor tissue and GSH-mediated disintegration, HN-HFPA depleted intracellular GSH, produced remarkable reactive oxygen species (ROS) under light irradiation and released L-Arg to generate NO, which induced tumor immunogenic cell death (ICD). Real-time ultrasound imaging of tumor was realized taking advantage of the gas feature of NO. The L-Nor suppressed the Arg-1 overexpressed in M2, which skewed the balance of arginine metabolism and reversed the ITM with increased ratios of M1 and CD8+ T cells, finally resulted in amplified antitumor immune response and apparent tumor metastasis inhibition. This study remodeled ITM to strengthen immune response post PDT, which provided a promising treatment strategy for TNBC.
Collapse
Affiliation(s)
- Yi Chen
- Department of Ultrasonography, The Third Affiliated Hospital, The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong Province, PR China
| | - Xian Shu
- Department of Ultrasonography, The Third Affiliated Hospital, The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong Province, PR China
| | - Jia-Yi Guo
- Department of Ultrasonography, The Third Affiliated Hospital, The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong Province, PR China
| | - Yun Xiang
- Department of Ultrasonography, The Third Affiliated Hospital, The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong Province, PR China
| | - Shi-Yu Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jin-Mei Lai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jia-Yi Zhou
- Department of Ultrasonography, The Third Affiliated Hospital, The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong Province, PR China
| | - Li-Han Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Ping Wang
- Department of Ultrasonography, The Third Affiliated Hospital, The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong Province, PR China.
| |
Collapse
|
23
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024; 305:122463. [PMID: 38232643 DOI: 10.1016/j.biomaterials.2023.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.
Collapse
Affiliation(s)
- Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yangyue Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Hui Ren
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, 310022, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Kim Y, Lee S, Jon S. Liposomal Delivery of an Immunostimulatory CpG Induces Robust Antitumor Immunity and Long-Term Immune Memory by Reprogramming Tumor-Associated Macrophages. Adv Healthc Mater 2024; 13:e2300549. [PMID: 37931205 DOI: 10.1002/adhm.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Tumor-associated macrophages (TAMs)-representative immune-suppressive cells in the tumor microenvironment (TME)-are known to promote tumor progression and metastasis, and thus are considered an attractive target for cancer therapy. However, current TAM-targeting strategies are insufficient to result in robust antitumor efficacy. Here, a small lipid nanoparticle encapsulating immunostimulatory CpG oligodeoxynucleotides (SLNP@CpG) is reported as a new immunotherapeutic modality that can reprogram TAMs and further bridge innate-to-adaptive immunity. It is found that SLNP@CpG treatment enhances macrophage-mediated phagocytosis of cancer cells and tumor antigen cross-presentation, and skews the polarization state of macrophages in vitro. Intratumoral injection of SLNP@CpG into an established murine E.G7-OVA tumor model significantly suppresses tumor growth and considerably prolongs survival, completely eradicating tumors in 83.3% of mice. Furthermore, tumor-free mice resist rechallenge with E.G7-OVA cancer cells through induction of immunological memory and long-term antitumor immunity. SLNP@CpG even exerts antitumor efficacy in an aggressive B16-F10 melanoma model by remodeling TME toward immune stimulation and tumor elimination. These findings suggest that, by modulating the function of TAMs and reshaping an immunosuppressive TME, the SLNP@CpG nanomedicine developed here may become a promising immunotherapeutic option applicable to a variety of tumors.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Seojung Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| |
Collapse
|
25
|
Meng S, Du H, Li X, Zheng X, Zhao P, Yuan Z, Huang S, Zhao Y, Dai L. An Adjuvant Micelle-Based Multifunctional Nanosystem for Tumor Immunotherapy by Remodeling Three Types of Immunosuppressive Cells. ACS NANO 2024; 18:3134-3150. [PMID: 38236616 DOI: 10.1021/acsnano.3c08792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Immunotherapy is restricted by a complex tumor immunosuppressive microenvironment (TIM) and low drug delivery efficiency. Herein, a multifunctional adjuvant micelle nanosystem (PPD/MPC) integrated with broken barriers and re-education of three classes of immune-tolerant cells is constructed for cancer immunotherapy. The nanosystem significantly conquers the penetration barrier via the weakly acidic tumor microenvironment-responsive size reduction and charge reversal strategy. The detached core micelle MPC could effectively be internalized by tumor-associated macrophages (TAMs), tumor-infiltrating dendritic cells (TIDCs), and myeloid-derived suppressor cells (MDSCs) via mannose-mediated targeting endocytosis and electrostatic adsorption pathways, promoting the re-education of immunosuppressive cells for allowing them to reverse from pro-tumor to antitumor phenotypes by activating TLR4/9 pathways. This process in turn leads to the remodeling of TIM. In vitro and in vivo studies collectively indicate that the adjuvant micelle-based nanosystem not only relieves the intricate immune tolerance and remodels TIM via reprogramming the three types of immunosuppressive cells and regulating the secretion of relevant cytokines/immunity factors but also strengthens immune response and evokes immune memory, consequently suppressing the tumor growth and metastasis.
Collapse
Affiliation(s)
- Siyu Meng
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huiping Du
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Xiang Li
- School of Life Science, Northwestern Polytechnical University, Xian 710072, China
| | - Xinmin Zheng
- School of Life Science, Northwestern Polytechnical University, Xian 710072, China
| | - Pan Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Zhang Yuan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Shaohui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Liangliang Dai
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
26
|
Jürgens DC, Winkeljann B, Kolog Gulko M, Jin Y, Möller J, Winkeljann J, Sheshachala S, Anger A, Hörner A, Adams NBP, Urbanetz N, Merkel OM. Efficient and Targeted siRNA Delivery to M2 Macrophages by Smart Polymer Blends for M1 Macrophage Repolarization as a Promising Strategy for Future Cancer Treatment. ACS Biomater Sci Eng 2024; 10:166-177. [PMID: 37978912 DOI: 10.1021/acsbiomaterials.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cancer remains an issue on a global scale. It is estimated that nearly 10 million people succumbed to cancer worldwide in 2020. New treatment options are urgently needed. A promising approach is a conversion of tumor-promoting M2 tumor-associated macrophages (TAMs) as part of the tumor microenvironment to tumor-suppressive M1 TAMs by small interfering RNA (siRNA). In this work, we present a well-characterized polymeric nanocarrier system capable of targeting M2 TAMs by a ligand-receptor interaction. Therefore, we developed a blended PEI-based polymeric nanoparticle system conjugated with mannose, which is internalized after interaction with macrophage mannose receptors (MMRs), showing low cytotoxicity and negligible IL-6 activation. The PEI-PCL-PEI (5 kDa-5 kDa-5 kDa) and Man-PEG-PCL (2 kDa-2 kDa) blended siRNA delivery system was optimized for maximum targeting capability and efficient endosomal escape by evaluation of different polymer and N/P ratios. The nanoparticles were formulated by surface acoustic wave-assisted microfluidics, achieving a size of ∼80 nm and a zeta potential of approximately +10 mV. Special attention was given to the endosomal escape as the so-called bottleneck of RNA drug delivery. To estimate the endosomal escape capability of the nanocarrier system, we developed a prediction method by evaluating the particle stability via the inflection temperature. Our predictions were then verified in an in vitro setting by applying confocal microscopy. For cellular experiments, however, human THP-1 cells were polarized to M2 macrophages by cytokine treatment and validated through MMR expression. To show the efficiency of the nanoparticle system, GAPDH and IκBα knockdown was performed in the presence or absence of an MMR blocking excess of mannan. Cellular uptake, GAPDH knockdown, and NF-κB western blot confirmed efficient mannose targeting. Herein, we presented a well-characterized nanoparticle delivery system and a promising approach for targeting M2 macrophages by a mannose-MMR interaction.
Collapse
Affiliation(s)
- David C Jürgens
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich 80799, Germany
| | | | - Yao Jin
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Judith Möller
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Joshua Winkeljann
- Department of Experimental Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | | | - Alina Anger
- Nanotemper Technologies GmbH, Flößergasse 4, Munich 81369, Germany
| | - Andreas Hörner
- Department of Experimental Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | - Nathan B P Adams
- Nanotemper Technologies GmbH, Flößergasse 4, Munich 81369, Germany
| | - Nora Urbanetz
- Daiichi Sankyo Europe GmbH, Pfaffenhofen an der Ilm 85276, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich 80799, Germany
| |
Collapse
|
27
|
Bryan A, Pingali P, Faber A, Landry J, Akakpo JY, Jaeschke H, Li H, Lee WS, May L, Patel B, Neuwelt A. High-Dose Acetaminophen with Concurrent CYP2E1 Inhibition Has Profound Anticancer Activity without Liver Toxicity. J Pharmacol Exp Ther 2024; 388:209-217. [PMID: 37918853 PMCID: PMC10765416 DOI: 10.1124/jpet.123.001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Acetaminophen (AAP) is metabolized by a variety of pathways such as sulfation, glucuronidation, and fatty acid amide hydrolase-mediated conversion to the active analgesic metabolite AM404. CYP2E1-mediated metabolism to the hepatotoxic reactive metabolite NAPQI (N-acetyl-p-benzoquinone imine) is a minor metabolic pathway that has not been linked to AAP therapeutic benefits yet clearly leads to AAP liver toxicity. N-acetylcysteine (NAC) (an antioxidant) and fomepizole (a CYP2E1 inhibitor) are clinically used for the treatment of AAP toxicity. Mice treated with AAP in combination with fomepizole (plus or minus NAC) were assessed for liver toxicity by histology and serum chemistry. The anticancer activity of AAP with NAC and fomepizole rescue was assessed in vitro and in vivo. Fomepizole with or without NAC completely prevented AAP-induced liver toxicity. In vivo, high-dose AAP with NAC/fomepizole rescue had profound antitumor activity against commonly used 4T1 breast tumor and lewis lung carcinoma lung tumor models, and no liver toxicity was detected. The antitumor efficacy was reduced in immune-compromised NOD-scid IL2Rgammanull mice, suggesting an immune-mediated mechanism of action. In conclusion, using fomepizole-based rescue, we were able to treat mice with 100-fold higher than standard dosing of AAP (650 mg/kg) without any detected liver toxicity and substantial antitumor activity. SIGNIFICANCE STATEMENT: High-dose acetaminophen can be given concurrently with CYP2E1 inhibition to allow for safe dose escalation to levels needed for anticancer activity without detected evidence of toxicity.
Collapse
Affiliation(s)
- Allyn Bryan
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Pavani Pingali
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Anthony Faber
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Joseph Landry
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Jephte Y Akakpo
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Hartmut Jaeschke
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Howard Li
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Won Sok Lee
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Lauren May
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Bhaumik Patel
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| | - Alex Neuwelt
- Department of Veterans Affairs, Richmond, Virginia. (A.B., P.P., W.S.L., B.P., A.N.); Departments of Oral and Craniofacial Molecular Biology (A.F.) and Human and Molecular Genetics (J.L., L.M.), Virginia Commonwealth University, Richmond, Virginia; Department of Veterans Affairs, Charleston, South Carolina (H.L.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas, Lawrence, Kansas (J.Y.A., H.J.)
| |
Collapse
|
28
|
Shu H, Lv W, Ren ZJ, Li H, Dong T, Zhang Y, Nie F. Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment via Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes. Curr Drug Deliv 2024; 21:1114-1127. [PMID: 37491853 DOI: 10.2174/1567201820666230724151545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development. OBJECTIVE In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC in vitro. METHODS PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells. RESULTS PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells. CONCLUSION UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.
Collapse
Affiliation(s)
- Hong Shu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wenhao Lv
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhi-Jian Ren
- Digestive Surgery, Xi 'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hui Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tiantian Dong
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao Zhang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
29
|
Guo Y, Deng X, Wang S, Yuan Y, Guo Z, Hao H, Jiao Y, Li P, Han S. SILAC proteomics based on 3D cell spheroids unveils the role of RAC2 in regulating the crosstalk between triple-negative breast cancer cells and tumor-associated macrophages. Int J Biol Macromol 2024; 254:127639. [PMID: 37879580 DOI: 10.1016/j.ijbiomac.2023.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is characterized by a high infiltration of tumor-associated macrophages (TAMs). TAMs contribute significantly to tumor progression by intricately interacting with tumor cells. Deeply investigating the interaction between TNBC cells and TAMs is of great importance for finding potential biomarkers and developing novel therapeutic strategies to further improve the clinical outcomes of TNBC patients. In this study, we confirmed the interplay using both 3D and 2D co-culture models. The stable-isotype labeling by amino acids in cell culture (SILAC)-based quantitative proteomics was conducted on 3D cell spheroids containing TNBC cells and macrophages to identify the potential candidate in regulating the crosstalk between TNBC and TAMs. Ras-related C3 botulinum toxin substrate 2 (RAC2) was identified as a potential molecule for further exploration, given its high expression in TNBC and positive correlation with M2 macrophage infiltration. The suppression of RAC2 inhibited TNBC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Meanwhile, knocking down RAC2 in TNBC cells impaired macrophage recruitment and M2 polarization. Mechanistically, RAC2 exerted its roles in TNBC cells and TAMs by regulating the activation of P65 NF-κB and P38 MAPK, while TAMs further elevated RAC2 expression and P65 NF-κB activation by secreting soluble mediators including IL-10. These findings highlight the significance of RAC2 as a crucial molecule in the crosstalk between TNBC and TAMs, suggesting it could be a promising therapeutic target in TNBC.
Collapse
Affiliation(s)
- Yang Guo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Xinxin Deng
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Shan Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yuan Yuan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Zhengwang Guo
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Huifeng Hao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Yanna Jiao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China
| | - Pingping Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China; Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, PR China.
| |
Collapse
|
30
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
31
|
Sun Q, Shen M, Zhu S, Liao Y, Zhang D, Sun J, Guo Z, Wu L, Xiao L, Liu L. Targeting NAD + metabolism of hepatocellular carcinoma cells by lenvatinib promotes M2 macrophages reverse polarization, suppressing the HCC progression. Hepatol Int 2023; 17:1444-1460. [PMID: 37204655 DOI: 10.1007/s12072-023-10544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/22/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lowered nicotinamide adenine dinucleotide (NAD+) levels in tumor cells drive tumor hyperprogression during immunotherapy, and its restoration activates immune cells. However, the effect of lenvatinib, a first-line treatment for unresectable hepatocellular carcinoma (HCC), on NAD+ metabolism in HCC cells, and the metabolite crosstalk between HCC and immune cells after targeting NAD+ metabolism of HCC cells remain unelucidated. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and ultra-high-performance liquid chromatography multiple reaction monitoring-mass spectrometry (UHPLC-MRM-MS) were used to detect and validate differential metabolites. RNA sequencing was used to explore mRNA expression in macrophages and HCC cells. HCC mouse models were used to validate the effects of lenvatinib on immune cells and NAD+ metabolism. The macrophage properties were elucidated using cell proliferation, apoptosis, and co-culture assays. In silico structural analysis and interaction assays were used to determine whether lenvatinib targets tet methylcytosine dioxygenase 2 (TET2). Flow cytometry was performed to assess changes in immune cells. RESULTS Lenvatinib targeted TET2 to synthesize and increase NAD+ levels, thereby inhibiting decomposition in HCC cells. NAD+ salvage increased lenvatinib-induced apoptosis of HCC cells. Lenvatinib also induced CD8+ T cells and M1 macrophages infiltration in vivo. And lenvatinib suppressed niacinamide, 5-Hydroxy-L-tryptophan and quinoline secretion of HCC cells, and increased hypoxanthine secretion, which contributed to proliferation, migration and polarization function of macrophages. Consequently, lenvatinib targeted NAD+ metabolism and elevated HCC-derived hypoxanthine to enhance the macrophages polarization from M2 to M1. Glycosaminoglycan binding disorder and positive regulation of cytosolic calcium ion concentration were characteristic features of the reverse polarization. CONCLUSIONS Targeting HCC cells NAD+ metabolism by lenvatinib-TET2 pathway drives metabolite crosstalk, leading to M2 macrophages reverse polarization, thereby suppressing HCC progression. Collectively, these novel insights highlight the role of lenvatinib or its combination therapies as promising therapeutic alternatives for HCC patients with low NAD+ levels or high TET2 levels.
Collapse
Affiliation(s)
- Qingcan Sun
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, 510515, China
| | - Mengying Shen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, 510515, China
| | - Subin Zhu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, 510515, China
| | - Yanxia Liao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, 510515, China
| | - Dongyan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zeqin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Leyuan Wu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, 510515, China
| | - Lushan Xiao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, 510515, China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, 510515, China.
| |
Collapse
|
32
|
Hadiloo K, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel generation of chimeric antigen-based approach against solid tumors. Biomark Res 2023; 11:103. [PMID: 38017494 PMCID: PMC10685521 DOI: 10.1186/s40364-023-00537-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Today, adoptive cell therapy has many successes in cancer therapy, and this subject is brilliant in using chimeric antigen receptor T cells. The CAR T cell therapy, with its FDA-approved drugs, could treat several types of hematological malignancies and thus be very attractive for treating solid cancer. Unfortunately, the CAR T cell cannot be very functional in solid cancers due to its unique features. This treatment method has several harmful adverse effects that limit their applications, so novel treatments must use new cells like NK cells, NKT cells, and macrophage cells. Among these cells, the CAR macrophage cells, due to their brilliant innate features, are more attractive for solid tumor therapy and seem to be a better candidate for the prior treatment methods. The CAR macrophage cells have vital roles in the tumor microenvironment and, with their direct effect, can eliminate tumor cells efficiently. In addition, the CAR macrophage cells, due to being a part of the innate immune system, attended the tumor sites. With the high infiltration, their therapy modulations are more effective. This review investigates the last achievements in CAR-macrophage cells and the future of this immunotherapy treatment method.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Department of Immunology, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Heidari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
33
|
Li B, Lin Y, Chen G, Cai M, Zhong H, Xiao Z, Lin M, Li T, Cai Y, Shuai X, Ren J. Anchoring Microbubbles on Cerebrovascular Endothelium as a New Strategy Enabling Low-Energy Ultrasound-Assisted Delivery of Varisized Agents Across Blood-Brain Barrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302134. [PMID: 37870165 PMCID: PMC10667842 DOI: 10.1002/advs.202302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The protective blood-brain barrier (BBB) prevents most therapeutic agents from entering the brain. Currently, focused ultrasound (FUS) is mostly employed to create microbubbles that induce a cavitation effect to open the BBB. However, microbubbles pass quickly through brain microvessels, substantially limiting the cavitation effect. Here, we constructed a novel perfluoropropane-loaded microbubble, termed ApoER-Pep-MB, which possessed a siloxane bonds-crosslinked surface to increase the microbubble stability against turbulence in blood circulation and was decorated with binding peptide for apolipoprotein E receptor (ApoER-Pep). The microbubble with tailor-made micron size (2 µm) and negative surface charge (-30 mV) performed ApoER-mediated binding rather than internalization into brain capillary endothelial cells. Consequently, the microbubble accumulated on the brain microvessels, based on which even a low-energy ultrasound with less safety risk than FUS, herein diagnostic ultrasound (DUS), could create a strong cavitation effect to open the BBB. Evans Blue and immunofluorescence staining studies demonstrated that the DUS-triggered cavitation effect not only temporarily opened the BBB for 2 h but also caused negligible damage to the brain tissue. Therefore, various agents, ranging from small molecules to nanoscale objects, can be efficiently delivered to target regions of the brain, offering tremendous opportunities for the treatment of brain diseases.
Collapse
Affiliation(s)
- Bo Li
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yuejun Lin
- Department of Medical UltrasonicThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Gengjia Chen
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Mingyue Cai
- Department of Minimally Invasive Interventional Radiologythe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Huihai Zhong
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Zecong Xiao
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Minzhao Lin
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Tan Li
- Department of Minimally Invasive Interventional Radiologythe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510260China
| | - Yujun Cai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Xintao Shuai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Jie Ren
- Department of Medical UltrasonicThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
34
|
Yan L, Hou C, Liu J, Wang Y, Zeng C, Yu J, Zhou T, Zhou Q, Duan S, Xiong W. Local administration of liposomal-based Plekhf1 gene therapy attenuates pulmonary fibrosis by modulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2571-2586. [PMID: 37340175 DOI: 10.1007/s11427-022-2314-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/01/2023] [Indexed: 06/22/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Macrophages, particularly alternatively activated macrophages (M2), have been recognized to contribute to the pathogenesis of pulmonary fibrosis. Therefore, targeting macrophages might be a viable therapeutic strategy for IPF. Herein, we report a potential nanomedicine-based gene therapy for IPF by modulating macrophage M2 activation. In this study, we illustrated that the levels of pleckstrin homology and FYVE domain containing 1 (Plekhf1) were increased in the lungs originating from IPF patients and PF mice. Further functionality studies identified the pivotal role of Plekhf1 in macrophage M2 activation. Mechanistically, Plekhf1 was upregulated by IL-4/IL-13 stimulation, after which Plekhf1 enhanced PI3K/Akt signaling to promote the macrophage M2 program and exacerbate pulmonary fibrosis. Therefore, intratracheal administration of Plekhf1 siRNA-loaded liposomes could effectively suppress the expression of Plekhf1 in the lungs and notably protect mice against BLM-induced lung injury and fibrosis, concomitant with a significant reduction in M2 macrophage accumulation in the lungs. In conclusion, Plekhf1 may play a crucial role in the pathogenesis of pulmonary fibrosis, and Plekhf1 siRNA-loaded liposomes might be a promising therapeutic approach against pulmonary fibrosis.
Collapse
Affiliation(s)
- Lifeng Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chenchen Hou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Juan Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Pulmonary and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing Zhou
- Department of Pulmonary and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shengzhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
35
|
Kosyreva A, Vishnyakova P, Tsvetkov I, Kiseleva V, Dzhalilova DS, Miroshnichenko E, Lokhonina A, Makarova O, Fatkhudinov T. Advantages and disadvantages of treatment of experimental ARDS by M2-polarized RAW 264.7 macrophages. Heliyon 2023; 9:e21880. [PMID: 38027880 PMCID: PMC10658332 DOI: 10.1016/j.heliyon.2023.e21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Innate immunity reactions are core to any immunological process, including systemic inflammation and such extremes as acute respiratory distress syndrome (ARDS) and cytokine storm. Macrophages, the key cells of innate immunity, show high phenotypic plasticity: depending on microenvironmental cues, they can polarize into M1 (classically activated, pro-inflammatory) or M2 (alternatively activated, anti-inflammatory). The anti-inflammatory M2 macrophage polarization-based cell therapies constitute a novel prospective modality. Systemic administration of 'educated' macrophages is intended at their homing in lungs in order to mitigate the pro-inflammatory cytokine production and reduce the risks of 'cytokine storm' and related severe complications. Acute respiratory distress syndrome (ARDS) is the main mortality factor in pneumonia including SARS-CoV-associated cases. This study aimed to evaluate the influence of infusions of RAW 264.7 murine macrophage cell line polarized towards M2 phenotype on the development of LPS-induced ARDS in mouse model. The results indicate that the M2-polarized RAW 264.7 macrophage infusions in the studied model of ARDS promote relocation of lymphocytes from their depots in immune organs to the lungs. In addition, the treatment facilitates expression of M2-polarization markers Arg1, Vegfa and Tgfb and decreases of M1-polarization marker Cd38 in lung tissues, which can indicate the anti-inflammatory response activation. However, treatment of ARDS with M2-polarized macrophages didn't change the neutrophil numbers in the lungs. Moreover, the level of the Arg1 protein in lungs decreased throughtout the treatment with M2 macrophages, which is probably because of the pro-inflammatory microenvironment influence on the polarization of macrophages towards M1. Thus, the chemical polarization of macrophages is unstable and depends on the microenvironment. This adverse effect can be reduced through the use of primary autologous macrophages or some alternative methods of M2 polarization, notably siRNA-mediated.
Collapse
Affiliation(s)
- A.M. Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - P.A. Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - I.S. Tsvetkov
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - V.V. Kiseleva
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - D. Sh. Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - E.A. Miroshnichenko
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - A.V. Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997, Moscow, Russia
| | - O.V. Makarova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| | - T.H. Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN), 6 Miklukho-Maklaya Street, 117198, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418, Moscow, Russia
| |
Collapse
|
36
|
He S, Yu J, Xu M, Zhang C, Xu C, Cheng P, Pu K. A Semiconducting Iron-Chelating Nano-immunomodulator for Specific and Sensitized Sono-metallo-immunotherapy of Cancer. Angew Chem Int Ed Engl 2023; 62:e202310178. [PMID: 37671691 DOI: 10.1002/anie.202310178] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Sono-immunotherapy holds great potential for deep tumor inhibition; however, smart sono-therapeutic agents to simultaneously eliminate 'domestic' tumor cells and regulate the 'community' tumor immune microenvironment have rarely been developed. Herein, we report a spatiotemporally controllable semiconducting iron-chelated nano-metallomodulator (SINM) for hypersensitive sono-metallo-immunotherapy of cancer. SINM consists of a semiconducting polymer (SP) backbone chelating iron ions (Fe3+ ) with thiophene-based Schiff base structure, and a hydrophilic side chain. Upon accumulation in tumors after systemic administration, SINM specifically arouses ferroptosis and M1 macrophage polarization due to its response toward the tumor redox environment; meanwhile, the chelation of Fe3+ enhances the sono-sensitizing effect of SPs, leading to enhanced generation of reactive oxygen species for immunogenic cell death. Such combined sonodynamic metallo-immunotherapy of SINM efficiently ablates deep tumor and spatiotemporally regulates immunophenotypes.
Collapse
Affiliation(s)
- Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
37
|
Zuo W, Sun R, Ji Z, Ma G. Macrophage-driven cardiac inflammation and healing: insights from homeostasis and myocardial infarction. Cell Mol Biol Lett 2023; 28:81. [PMID: 37858035 PMCID: PMC10585879 DOI: 10.1186/s11658-023-00491-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Early and prompt reperfusion therapy has markedly improved the survival rates among patients enduring myocardial infarction (MI). Nonetheless, the resulting adverse remodeling and the subsequent onset of heart failure remain formidable clinical management challenges and represent a primary cause of disability in MI patients worldwide. Macrophages play a crucial role in immune system regulation and wield a profound influence over the inflammatory repair process following MI, thereby dictating the degree of myocardial injury and the subsequent pathological remodeling. Despite numerous previous biological studies that established the classical polarization model for macrophages, classifying them as either M1 pro-inflammatory or M2 pro-reparative macrophages, this simplistic categorization falls short of meeting the precision medicine standards, hindering the translational advancement of clinical research. Recently, advances in single-cell sequencing technology have facilitated a more profound exploration of macrophage heterogeneity and plasticity, opening avenues for the development of targeted interventions to address macrophage-related factors in the aftermath of MI. In this review, we provide a summary of macrophage origins, tissue distribution, classification, and surface markers. Furthermore, we delve into the multifaceted roles of macrophages in maintaining cardiac homeostasis and regulating inflammation during the post-MI period.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Renhua Sun
- Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng, 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
38
|
Chen W, Li Y, Liu C, Kang Y, Qin D, Chen S, Zhou J, Liu HJ, Ferdows BE, Patel DN, Huang X, Koo S, Kong N, Ji X, Cao Y, Tao W, Xie T. In situ Engineering of Tumor-Associated Macrophages via a Nanodrug-Delivering-Drug (β-Elemene@Stanene) Strategy for Enhanced Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202308413. [PMID: 37380606 DOI: 10.1002/anie.202308413] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and β-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuying Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiangang Huang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoyuan Ji
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
39
|
Cao C, Yin H, Yang B, Yue Q, Wu G, Gu M, Zhang Y, Fan Y, Dong X, Wang T, Wang C, Zhu X, Mao Y, Zhang X, Lei Z, Li C. Intra-Operative Definition of Glioma Infiltrative Margins by Visualizing Immunosuppressive Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304020. [PMID: 37544917 PMCID: PMC10558635 DOI: 10.1002/advs.202304020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Accurate delineation of glioma infiltrative margins remains a challenge due to the low density of cancer cells in these regions. Here, a hierarchical imaging strategy to define glioma margins by locating the immunosuppressive tumor-associated macrophages (TAMs) is proposed. A pH ratiometric fluorescent probe CP2-M that targets immunosuppressive TAMs by binding to mannose receptor (CD206) is developed, and it subsequently senses the acidic phagosomal lumen, resulting in a remarkable fluorescence enhancement. With assistance of CP2-M, glioma xenografts in mouse models with a tumor-to-background ratio exceeding 3.0 for up to 6 h are successfully visualized. Furthermore, by intra-operatively mapping the pH distribution of exposed tissue after craniotomy, the glioma allograft in rat models is precisely excised. The overall survival of rat models significantly surpasses that achieved using clinically employed fluorescent probes. This work presents a novel strategy for locating glioma margins, thereby improving surgical outcomes for tumors with infiltrative characteristics.
Collapse
Affiliation(s)
- Chong Cao
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Hang Yin
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Biao Yang
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Qi Yue
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Guoqing Wu
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Meng Gu
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceMOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceFudan University220 Handan RoadShanghai200433China
| | - Yang Fan
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Xiaoyan Dong
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Ting Wang
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Xiao Zhu
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Ying Mao
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Xiao‐Yong Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceMOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceFudan University220 Handan RoadShanghai200433China
| | - Zuhai Lei
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery Ministry of EducationInnovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of EducationSchool of PharmacyDepartment of Neurosurgery, Huashan HospitalFudan UniversityShanghai201203China
- State Key Laboratory of Medical NeurobiologyZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
40
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
41
|
Xu X, Wu Q, Tan L, Men X, Huang Y, Li H. Biomimetic Metal-Chalcogenide Agents Enable Synergistic Cancer Therapy via Microwave Thermal-Dynamic Therapy and Immune Cell Activation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42182-42195. [PMID: 37651685 DOI: 10.1021/acsami.3c05728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microwave thermal dynamic therapy (MTDT), which combines thermal effects and reactive oxygen species (ROS) by microwave activation, seems to be a promising anticancer therapeutic method. A multifunctional agent for achieving synergistic localized cancer treatment is the key to exploit the strategy to inhibit tumor cell recurrence and metastasis. In the study, a ZIF-67 based theranostic agent loaded with metal-chalcogenide open framework 3 (MCOF3) and heat shock protein 70 (HSP70) as the inner component was studied, coupled with targeting cancer cell membrane (TCM) as the biomimetic outer shell. We found that metal ions in MCOF3 enabled the composite agents to show peroxide-like activity to produce •OH and destroy cancer cells. And then, the microwave (MW) thermal sensitizer of ZIF-67 was used to specifically convert the MW energy into thermal energy and selectively heat the tumor via the cell's targeting. Additionally, the effect of continuous MW thermal therapy has been shown to promote the expression of HSP70, and further activate the effector of CD4 T cell and CD8α T cell. As such, the agents effectively inhibit the tumor cell growth under MW irradiation in vitro and in vivo due to the synergistic effects of MTDT and immune cell activation. The study provides an emerging strategy to ablation cancer effectively.
Collapse
Affiliation(s)
- Xiaomu Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianwei Men
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue Huang
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
42
|
Huang T, Zhang Q, Yi J, Wang R, Zhang Z, Luo P, Zeng R, Wang Y, Tu M. PEG-Sheddable Nanodrug Remodels Tumor Microenvironment to Promote Effector T Cell Infiltration and Revise Their Exhaustion for Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301749. [PMID: 37211704 DOI: 10.1002/smll.202301749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Low infiltration of cytotoxic T lymphocytes and their exhaustion manifest the two concurrent main hurdles for achieving effective tumor immunotherapy of triple-negative breast cancer. It is found that Galectin-9 blockage can revise the exhaustion of effector T cells, meanwhile the repolarization of protumoral M2 tumor-associated macrophages (TAMs) into tumoricidal M1-like ones can recruit effector T cells infiltrating into tumor to boost immune responses. Herein, a sheddable PEG-decorated and M2-TAMs targeted nanodrug incorporating Signal Transducer and Activator of Transcription 6 inhibitor (AS) and anti-Galectin-9 antibody (aG-9) is prepared. The nanodrug responds to acidic tumor microenvironment (TME) with the shedding of PEG corona and the release of aG-9, exerting local blockade of PD-1/Galectin-9/TIM-3 interaction to augment effector T cells via exhaustion reversing. Synchronously, targeted repolarization of M2-TAMs into M1 phenotype by AS-loaded nanodrug is achieved, which promotes tumor infiltration of effector T cells and thus synergizes with aG-9 blockade to boost the therapeutic efficacy. Besides, the PEG-sheddable approach endows nanodrug with stealth ability to reduce immune-related adverse effects caused by AS and aG-9. This PEG sheddable nanodrug holds the potential to reverse the immunosuppressive TME and increase effector T cell infiltration, which dramatically enhances immunotherapy in highly malignant breast cancer.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Jing Yi
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rongze Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zekun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Pin Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rong Zeng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
43
|
Ding Y, Yang J, Wei H, Wang J, Huang S, Yang S, Guo Y, Li B, Shuai X. Construction of pH-Sensitive Nanovaccines Encapsulating Tumor Cell Lysates and Immune Adjuvants for Breast Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301420. [PMID: 37154213 DOI: 10.1002/smll.202301420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Indexed: 05/10/2023]
Abstract
The current immunotherapy strategies for triple negative breast cancer (TNBC) are greatly limited due to the immunosuppressive tumor microenvironment (TME). Immunization with cancer vaccines composed of tumor cell lysates (TCL) can induce an effective antitumor immune response. However, this approach also has the disadvantages of inefficient antigen delivery to the tumor tissues and the limited immune response elicited by single-antigen vaccines. To overcome these limitations, a pH-sensitive nanocalcium carbonate (CaCO3 ) carrier loaded with TCL and immune adjuvant CpG (CpG oligodeoxynucleotide 1826) is herein constructed for TNBC immunotherapy. This tailor-made nanovaccine, termed CaCO3 @TCL/CpG, not only neutralizes the acidic TME through the consumption of lactate by CaCO3 , which increases the proportion of the M1/M2 macrophages and promotes infiltration of effector immune cells but also activates the dendritic cells in the tumor tissues and recruits cytotoxic T cells to further kill the tumor cells. In vivo fluorescence imaging study shows that the pegylated nanovaccine could stay longer in the blood circulation and extravasate preferentially into tumor site. Besides, the nanovaccine exhibits high cytotoxicity in 4T1 cells and significantly inhibits tumor growth of tumor-bearing mice. Overall, this pH-sensitive nanovaccine is a promising nanoplatform for enhanced immunotherapy of TNBC.
Collapse
Affiliation(s)
- Yuan Ding
- School of Material Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiali Yang
- Department of Oncology and General Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Huiye Wei
- School of Material Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jiachen Wang
- School of Material Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, China
| | - Sicong Huang
- School of Material Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, China
| | - Shuguang Yang
- School of Material Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yu Guo
- Department of Oncology and General Surgery, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Bo Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xintao Shuai
- School of Material Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, China
| |
Collapse
|
44
|
Chen XY, Yan MY, Liu Q, Yu BX, Cen Y, Li SY. Chimeric Peptide Engineered Bioregulator for Metastatic Tumor Immunotherapy through Macrophage Polarization and Phagocytosis Restoration. ACS NANO 2023; 17:16056-16068. [PMID: 37578051 DOI: 10.1021/acsnano.3c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in solid tumor tissues, which restrict antitumor immunity by releasing tumor-supporting cytokines and attenuating phagocytosis behaviors. In this work, a chimeric peptide engineered bioregulator (ChiP-RS) is constructed for tumor immunotherapy through macrophage polarization and phagocytosis restoration. ChiP-RS is fabricated by utilizing macrophage-targeting chimeric peptide (ChiP) to load Toll-like receptor agonists (R848) and Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP-2) inhibitor (SHP099). Among which, ChiP-RS prefers to be internalized by TAMs, repolarizing M2 macrophages into M1 macrophages to reverse the immunosuppressive microenvironment. In addition, SHP-2 can be downregulated to promote phagocytotic elimination behaviors of M1 macrophages, which will also activate T cell-based antitumor immunity for metastatic tumor therapy. In vitro and in vivo findings demonstrate a superior suppression effect of ChiP-RS against metastatic tumors without systemic side effects. Such a simple but effective nanoplatform provides sophisticated synergism for immunotherapy, which may facilitate the development of translational nanomedicine for metastatic tumor treatment.
Collapse
Affiliation(s)
- Xia-Yun Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Meng-Yi Yan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qianqian Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Bai-Xue Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
45
|
Ma H, Zhang Z, Hu Q, Chen H, Wu G, Zhou Y, Xue Q. Shedding light on macrophage immunotherapy in lung cancer. J Cancer Res Clin Oncol 2023; 149:8143-8152. [PMID: 37052632 DOI: 10.1007/s00432-023-04740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
The search for therapeutic options for lung cancer continues to advance, with rapid advances in the search for therapies to improve patient prognosis. At present, systemic chemotherapy, immune checkpoint inhibitor therapy, antiangiogenic therapy, and targeted therapy for driver gene positivity are available in the clinic. Common clinical treatments fail to achieve desired outcomes due to immunosuppression of the tumor microenvironment (TME). Tumor immune evasion is mediated by cytokines, chemokines, immune cells, and other cells such as vascular endothelial cells within the tumor immune microenvironment. Tumor-associated macrophages (TAMs) are important immune cells in the TME, inducing tumor angiogenesis, encouraging tumor cell proliferation and migration, and suppressing antitumor immune responses. Thus, TAM targeting becomes the key to lung cancer immunotherapy. This review focuses on macrophage phenotype, polarization mechanism, role in lung cancer, and advances in macrophage centric immunotherapies.
Collapse
Affiliation(s)
- Huiyun Ma
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Zhouwei Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Hongyu Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Gujie Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
46
|
Khalili S, Zeinali F, Moghadam Fard A, Taha SR, Fazlollahpour Naghibi A, Bagheri K, Shariat Zadeh M, Eslami Y, Fattah K, Asadimanesh N, Azarimatin A, Khalesi B, Almasi F, Payandeh Z. Macrophage-Based Therapeutic Strategies in Hematologic Malignancies. Cancers (Basel) 2023; 15:3722. [PMID: 37509382 PMCID: PMC10378576 DOI: 10.3390/cancers15143722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Macrophages are types of immune cells, with ambivalent functions in tumor growth, which depend on the specific environment in which they reside. Tumor-associated macrophages (TAMs) are a diverse population of immunosuppressive myeloid cells that play significant roles in several malignancies. TAM infiltration in malignancies has been linked to a poor prognosis and limited response to treatments, including those using checkpoint inhibitors. Understanding the precise mechanisms through which macrophages contribute to tumor growth is an active area of research as targeting these cells may offer potential therapeutic approaches for cancer treatment. Numerous investigations have focused on anti-TAM-based methods that try to eliminate, rewire, or target the functional mediators released by these cells. Considering the importance of these strategies in the reversion of tumor resistance to conventional therapies and immune modulatory vaccination could be an appealing approach for the immunosuppressive targeting of myeloid cells in the tumor microenvironment (TME). The combination of reprogramming and TAM depletion is a special feature of this approach compared to other clinical strategies. Thus, the present review aims to comprehensively overview the pleiotropic activities of TAMs and their involvement in various stages of cancer development as a potent drug target, with a focus on hematologic tumors.
Collapse
Affiliation(s)
- Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Fatemeh Zeinali
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Atousa Moghadam Fard
- Universal Scientific Education and Research Network (USERN), Tehran 4188783417, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Andarz Fazlollahpour Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717641367, Iran
| | - Kimia Bagheri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717641367, Iran
| | - Mahdieh Shariat Zadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Yeghaneh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Naghmeh Asadimanesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Armin Azarimatin
- Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1416634793, Iran
| | - Zahra Payandeh
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
47
|
Ling Q, Fang J, Zhai C, Huang W, Chen Y, Zhou T, Liu Y, Fang X. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-155-5p in colitis-associated colorectal cancer. Eur J Pharmacol 2023; 949:175724. [PMID: 37059377 DOI: 10.1016/j.ejphar.2023.175724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Berberine is approved for the treatment of intestinal infections and diarrhea and has been shown to have anti-inflammatory and anti-tumor effects in pathological intestinal tissues. However, it is unclear whether the anti-inflammatory effect of berberine contributes to its anti-tumor effect on colitis-associated colorectal cancer (CAC). In this study, we found that berberine effectively inhibited tumorigenesis and protected against colon shortening in CAC mouse model. Immunohistochemistry results showed a reduction in the number of macrophage infiltrations in the colon following berberine treatment. Further analysis revealed that most of the infiltrated macrophages were pro-inflammatory M1 type, which berberine effectively limited. However, in another CRC model without chronic colitis, berberine had no significant effect on tumor number or colon length. In vitro studies demonstrated that berberine treatment significantly reduced the percentage of M1 type and levels of Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Additionally, miR-155-5p level was down-regulated, and suppressor of cytokine signaling 1 (SOCS1) expression was up-regulated in berberine-treated cells. Notably, the miR-155-5p inhibitor attenuated the regulatory effects of berberine on SOCS1 signaling and macrophage polarization. Altogether, our findings suggest that the inhibitory effect of berberine on CAC development is dependent on its anti-inflammatory activity. Moreover, miR-155-5p may be involved in the pathogenesis of CAC by regulating M1 macrophage polarization, and berberine could be a promising protective agent against miR-155-5p-mediated CAC. This study provides new insights into pharmacologic mechanisms of berberine and supports the possibility that other anti-miR-155-5p drugs may be beneficial in the treatment of CAC.
Collapse
Affiliation(s)
- Qiaoyun Ling
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Jing Fang
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chi Zhai
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Wan Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Yu Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Ting Zhou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Yunxin Liu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Xianjun Fang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China.
| |
Collapse
|
48
|
Xie Z, Zhou Z, Yang S, Zhang S, Shao B. Epigenetic regulation and therapeutic targets in the tumor microenvironment. MOLECULAR BIOMEDICINE 2023; 4:17. [PMID: 37273004 DOI: 10.1186/s43556-023-00126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/02/2023] [Indexed: 06/06/2023] Open
Abstract
The tumor microenvironment (TME) is crucial to neoplastic processes, fostering proliferation, angiogenesis and metastasis. Epigenetic regulations, primarily including DNA and RNA methylation, histone modification and non-coding RNA, have been generally recognized as an essential feature of tumor malignancy, exceedingly contributing to the dysregulation of the core gene expression in neoplastic cells, bringing about the evasion of immunosurveillance by influencing the immune cells in TME. Recently, compelling evidence have highlighted that clinical therapeutic approaches based on epigenetic machinery modulate carcinogenesis through targeting TME components, including normalizing cells' phenotype, suppressing cells' neovascularization and repressing the immunosuppressive components in TME. Therefore, TME components have been nominated as a promising target for epigenetic drugs in clinical cancer management. This review focuses on the mechanisms of epigenetic modifications occurring to the pivotal TME components including the stroma, immune and myeloid cells in various tumors reported in the last five years, concludes the tight correlation between TME reprogramming and tumor progression and immunosuppression, summarizes the current advances in cancer clinical treatments and potential therapeutic targets with reference to epigenetic drugs. Finally, we summarize some of the restrictions in the field of cancer research at the moment, further discuss several interesting epigenetic gene targets with potential strategies to boost antitumor immunity.
Collapse
Affiliation(s)
- Zhuojun Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Zirui Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Shuxian Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Shiwen Zhang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China.
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China.
| |
Collapse
|
49
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
50
|
Babar Q, Saeed A, Tabish TA, Sarwar M, Thorat ND. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166746. [PMID: 37160171 DOI: 10.1016/j.bbadis.2023.166746] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Cellular and stromal components including tumor cells, immune cells, mesenchymal cells, cancer-linked fibroblasts, and extracellular matrix, constituent tumor microenvironment (TME). TME plays a crucial role in reprogramming tumor initiation, uncontrolled proliferation, invasion and metastasis as well as response to therapeutic modalities. In recent years targeting the TME has developed as a potential strategy for treatment of cancer because of its life-threatening functions in restricting tumor development and modulating responses to standard-of-care medicines. Cold atmospheric plasma, oncolytic viral therapy, bacterial therapy, nano-vaccine, and repurposed pharmaceuticals with combination therapy, antiangiogenic drugs, and immunotherapies are among the most effective therapies directed by TME that have either been clinically authorized or are currently being studied. This article discusses above-mentioned therapies in light of targeting TME. We also cover problems related to the TME-targeted therapies, as well as future insights and practical uses in this rapidly growing field.
Collapse
Affiliation(s)
- Quratulain Babar
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Mohsin Sarwar
- Department of Biochemistry University of Management and Technology, Lahore, Pakistan
| | - Nanasaheb D Thorat
- Department of Physics, Bernal Institute, Castletroy, Limerick V94T9PX, Ireland; Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick V94T9PX, Ireland.
| |
Collapse
|