1
|
Duda AM, Ma HR, Villalobos CA, Kuhn SA, He K, Seay SR, Jackson AC, Suh CM, Puccio EA, Anderson DJ, Fowler VG, You L, Franz KJ. An engineered prodrug selectively suppresses β-lactam resistant bacteria in a mixed microbial setting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606422. [PMID: 39131315 PMCID: PMC11312599 DOI: 10.1101/2024.08.02.606422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The rise of β-lactam resistance necessitates new strategies to combat bacterial infections. We purposefully engineered the β-lactam prodrug AcephPT to exploit β-lactamase activity to selectively suppress resistant bacteria producing extended-spectrum-β-lactamases (ESBLs). Selective targeting of resistant bacteria requires avoiding interaction with penicillin-binding proteins, the conventional targets of β-lactam antibiotics, while maintaining recognition by ESBLs to activate AcephPT only in resistant cells. Computational approaches provide a rationale for structural modifications to the prodrug to achieve this biased activity. We show AcephPT selectively suppresses gram-negative ESBL-producing bacteria in clonal populations and in mixed microbial cultures, with effective selectivity for both lab strains and clinical isolates expressing ESBLs. Time-course NMR experiments confirm hydrolytic activation of AcephPT exclusively by ESBL-producing bacteria. In mixed microbial cultures, AcephPT suppresses proliferation of ESBL-producing strains while sustaining growth of β-lactamase-non-producing bacteria, highlighting its potential to combat β-lactam resistance while promoting antimicrobial stewardship.
Collapse
Affiliation(s)
- Addison M. Duda
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Helena R. Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - César A. Villalobos
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Sophia A. Kuhn
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Katherine He
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Sarah R. Seay
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | | | | | - Elena A. Puccio
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Deverick J. Anderson
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
2
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Li Y, Lyu J, Wang Y, Ye M, Wang H. Ligand Modification-Free Methods for the Profiling of Protein-Environmental Chemical Interactions. Chem Res Toxicol 2024; 37:1-15. [PMID: 38146056 DOI: 10.1021/acs.chemrestox.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, Beijing, 102206, China
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
O'Brien H, Davoodian T, Johnson MDL. The promise of copper ionophores as antimicrobials. Curr Opin Microbiol 2023; 75:102355. [PMID: 37406562 PMCID: PMC10529258 DOI: 10.1016/j.mib.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Antibiotic-resistant microbe-mediated deaths are a major worldwide health issue. Unfortunately, due to microbial adaptation to develop resistance, some antibiotics are nullified early in their usage, and worse, resistance is detected before they can even be prescribed. Copper's toxicity since antiquity against microbes at the host-pathogen interface offers a fascinating weapon to fight antimicrobial resistance. Here, we briefly review why copper is so effective, how drugs that work with copper are effective antimicrobials, and how compounds such as these could reinvigorate investment in antimicrobial development.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Talish Davoodian
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Valley Fever Center for Excellence, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; BIO5 Institute, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA; Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| |
Collapse
|
5
|
Quanrud GM, Lyu Z, Balamurugan SV, Canizal C, Wu HT, Genereux JC. Cellular Exposure to Chloroacetanilide Herbicides Induces Distinct Protein Destabilization Profiles. ACS Chem Biol 2023; 18:1661-1676. [PMID: 37427419 PMCID: PMC10367052 DOI: 10.1021/acschembio.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Herbicides in the widely used chloroacetanilide class harbor a potent electrophilic moiety, which can damage proteins through nucleophilic substitution. In general, damaged proteins are subject to misfolding. Accumulation of misfolded proteins compromises cellular integrity by disrupting cellular proteostasis networks, which can further destabilize the cellular proteome. While direct conjugation targets can be discovered through affinity-based protein profiling, there are few approaches to probe how cellular exposure to toxicants impacts the stability of the proteome. We apply a quantitative proteomics methodology to identify chloroacetanilide-destabilized proteins in HEK293T cells based on their binding to the H31Q mutant of the human Hsp40 chaperone DNAJB8. We find that a brief cellular exposure to the chloroacetanilides acetochlor, alachlor, and propachlor induces misfolding of dozens of cellular proteins. These herbicides feature distinct but overlapping profiles of protein destabilization, highly concentrated in proteins with reactive cysteine residues. Consistent with the recent literature from the pharmacology field, reactivity is driven by neither inherent nucleophilic nor electrophilic reactivity but is idiosyncratic. We discover that propachlor induces a general increase in protein aggregation and selectively targets GAPDH and PARK7, leading to a decrease in their cellular activities. Hsp40 affinity profiling identifies a majority of propachlor targets identified by competitive activity-based protein profiling (ABPP), but ABPP can only identify about 10% of protein targets identified by Hsp40 affinity profiling. GAPDH is primarily modified by the direct conjugation of propachlor at a catalytic cysteine residue, leading to global destabilization of the protein. The Hsp40 affinity strategy is an effective technique to profile cellular proteins that are destabilized by cellular toxin exposure. Raw proteomics data is available through the PRIDE Archive at PXD030635.
Collapse
Affiliation(s)
- Guy M. Quanrud
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sunil V. Balamurugan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Carolina Canizal
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Zimmeter K, Vileno B, Platas-Iglesias C, Vinjamuri B, Sour A, Faller P. Derivatization of the Peptidic Xxx-Zzz-His Motif toward a Ligand with Attomolar Cu II Affinity under Maintaining High Selectivity and Fast Redox Silencing. Inorg Chem 2023. [PMID: 37269299 DOI: 10.1021/acs.inorgchem.3c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cu chelation in biological systems is of interest as a tool to study the metabolism of this essential metal or for applications in the case of diseases with a systemic or local Cu overload, such as Wilson's or Alzheimer's disease. The choice of the chelating agent must meet several criteria. Among others, affinities and kinetics of metal binding and related metal selectivity are important parameters of the chelators to consider. Here, we report on the synthesis and characterization of Cu-binding properties of two ligands, L1 and L2, derivatives of the well-known peptidic CuII-binding motif Xxx-Zzz-His (also called ATCUN), where CuII is bound to the N-terminal amine, two amidates, and the imidazole. In either L, the N-terminal amine was replaced with a pyridine, and for L2, one amide was replaced with an amine compared to Xxx-Zzz-His. In particular, L2 showed several interesting features, including a CuII-binding affinity with a log KDapp = -16.0 similar to that of EDTA and stronger than all reported ATCUN peptides. L2 showed high selectivity for CuII over ZnII and other essential metal ions, even under the challenging conditions of the presence of human serum albumin. Further, L2 showed fast and efficient CuII redox silencing qualities and CuII-L2 was stable in the presence of mM GSH concentrations. Benefitting the fact that L2 can be easily elongated on its peptide part by standard SPPS to add other functions, L2 has attractive properties as a CuII chelator for application in biological systems.
Collapse
Affiliation(s)
- Katharina Zimmeter
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Carlos Platas-Iglesias
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Bharath Vinjamuri
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Angélique Sour
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut de Chimie (UMR 7177), Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
7
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
8
|
Cao S, Wang Q, Sun Z, Zhang Y, Liu Q, Huang Q, Ding G, Jia Z. Role of cuproptosis in understanding diseases. Hum Cell 2023:10.1007/s13577-023-00914-6. [PMID: 37154876 PMCID: PMC10165592 DOI: 10.1007/s13577-023-00914-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Cell death is involved in a wide range of physiological and pathological processes. Recently, the term "cuproptosis" was coined to describe a novel type of cell death. This type of cell death, characterized by copper accumulation and proteotoxic stress, is a copper-dependent manner of death. Despite the progress achieved toward a better understanding of cuproptosis, mechanisms and related signaling pathways in physiology and pathology across various diseases remain to be proved. This mini review summarizes current research on cuproptosis and diseases, providing insights into prospective clinical therapies via targeting cuproptosis.
Collapse
Affiliation(s)
- Shihan Cao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Qian Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Huang
- Department of Otorhinolaryngology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
10
|
Abstract
Environmental agents of exposure can damage proteins, affecting protein function and cellular protein homeostasis. Specific residues are inherently chemically susceptible to damage from individual types of exposure. Amino acid content is not completely predictive of protein susceptibility, as secondary, tertiary, and quaternary structures of proteins strongly influence the reactivity of the proteome to individual exposures. Because we cannot readily predict which proteins will be affected by which chemical exposures, mass spectrometry-based proteomic strategies are necessary to determine the protein targets of environmental toxins and toxicants. This review describes the mechanisms by which environmental exposure to toxins and toxicants can damage proteins and affect their function, and emerging omic methodologies that can be used to identify the protein targets of a given agent. These methods include target identification strategies that have recently revolutionized the drug discovery field, such as activity-based protein profiling, protein footprinting, and protein stability profiling technologies. In particular, we highlight the necessity of multiple, complementary approaches to fully interrogate how protein integrity is challenged by individual exposures.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
11
|
Robison ATR, Sturrock GR, Zaengle-Barone JM, Wiebelhaus N, Dharani A, Williams IG, Fitzgerald MC, Franz KJ. Analysis of copper-induced protein precipitation across the E. coli proteome. Metallomics 2023; 15:mfac098. [PMID: 36549662 PMCID: PMC9830969 DOI: 10.1093/mtomcs/mfac098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Metal cations have been exploited for their precipitation properties in a wide variety of studies, ranging from differentiating proteins from serum and blood to identifying the protein targets of drugs. Despite widespread recognition of this phenomenon, the mechanisms of metal-induced protein aggregation have not been fully elucidated. Recent studies have suggested that copper's (Cu) ability to induce protein aggregation may be a main contributor to Cu-induced cell death. Here, we provide the first proteome-wide analysis of the relative sensitivities of proteins across the Escherichia coli proteome to Cu-induced aggregation. We utilize a metal-induced protein precipitation (MiPP) methodology that relies on quantitative bottom-up proteomics to define the metal concentration-dependent precipitation properties of proteins on a proteomic scale. Our results establish that Cu far surpasses other metals in promoting protein aggregation and that the protein aggregation is reversible upon metal chelation. The bulk of the Cu bound in the protein aggregates is Cu1+, regardless of the Cu2+ source. Analysis of our MiPP data allows us to investigate underlying biophysical characteristics that determine a protein's sensitivity to Cu-induced aggregation, which is independent of the relative concentration of protein in the lysate. Overall, this analysis provides new insights into the mechanism behind Cu cytotoxicity, as well as metal cation-induced protein aggregation.
Collapse
Affiliation(s)
- Amy T R Robison
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | | - Azim Dharani
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
12
|
Feng F, Zhang W, Chai Y, Guo D, Chen X. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal 2023; 223:115107. [DOI: 10.1016/j.jpba.2022.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
13
|
Senges CHR, Bandow JE. Elemental Analysis for the Characterization of Antimicrobial Effects. Methods Mol Biol 2023; 2601:349-361. [PMID: 36445594 DOI: 10.1007/978-1-0716-2855-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To address the mounting resistance challenge, novel antibiotics and unprecedented mechanisms of action are urgently needed. In this context, metals have attracted attention in two distinct ways: First, the bacterial metal ion homeostasis is essential for many cellular processes, making it a putatively lucrative antibiotic target. Metal ions are, for example, cofactors for enzymes, and they contribute to signaling and transport processes or to energy metabolism. Possible antibacterial strategies include, for example, depletion of accessible essential metals by sequestration or disruption of metal ion homeostasis by ionophores that transport ions across membranes. Second, organometallic antibiotics that contain metals as integral structural elements can provide unique chemistry with unique modes of action. Since many metal-containing structures used in synthetic chemistry are unprecedented in nature, such antibiotics could circumvent existing mechanisms of resistance. Here, we present a method for quantification of cellular metal/metalloid levels and outline the procedures necessary for antibiotic treatment of Bacillus subtilis, subsequent sample preparation, elemental analysis, and data evaluation. This approach allows to investigate disturbances of the cellular metal ion homeostasis, as well as the localization and quantitation of antibiotics that contain metals rarely found in biological systems, overall aiding in the elucidation of antibiotic mechanisms of action.
Collapse
Affiliation(s)
| | - Julia E Bandow
- Applied Microbiology, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
14
|
A YSK-Type Dehydrin from Nicotiana tabacum Enhanced Copper Tolerance in Escherichia coli. Int J Mol Sci 2022; 23:ijms232315162. [PMID: 36499485 PMCID: PMC9737620 DOI: 10.3390/ijms232315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Copper is an essential micronutrient for the maintenance of normal cell function but is toxic in excess. Dehydrins are group two late embryogenesis abundant proteins, which facilitate plant survival in harsh environmental conditions. Here, a YSK-type dehydrin, NtDhn17, was cloned from Nicotiana tabacum under copper toxicity and characterized using a heterologous expression system and in vitro or in vivo experiments and exhibited characteristics of intrinsic disorder during in vitro analyses. Heterologous expression of NtDHN17 enhanced the tolerance of E. coli to various metals, osmotic, and oxidative stress. NtDHN17 showed no Cu2+-binding properties in vivo or in vitro, indicating that metal ion binding is not universal among dehydrins. In vitro and in vivo experiments suggested that NtDHN17 behaved as a potent anti-aggregation agent providing strong protection to aggregated proteins induced by excess copper ions, an effect dependent on the K-segment but not on the Y- or S-segments. In summary, the protective role of NtDHN17 towards E. coli under conditions of copper toxicity may be related to anti-aggregation ability rather than its acting as an ion scavenger, which might be a valuable target for the genetic improvement of resistance to heavy metal stresses in plants.
Collapse
|
15
|
Zhang Y, Wen MH, Qin G, Cai C, Chen TY. Subcellular redox responses reveal different Cu-dependent antioxidant defenses between mitochondria and cytosol. Metallomics 2022; 14:mfac087. [PMID: 36367501 PMCID: PMC9686363 DOI: 10.1093/mtomcs/mfac087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2023]
Abstract
Excess intracellular Cu perturbs cellular redox balance and thus causes diseases. However, the relationship between cellular redox status and Cu homeostasis and how such an interplay is coordinated within cellular compartments has not yet been well established. Using combined approaches of organelle-specific redox sensor Grx1-roGFP2 and non-targeted proteomics, we investigate the real-time Cu-dependent antioxidant defenses of mitochondria and cytosol in live HEK293 cells. The Cu-dependent real-time imaging experiments show that CuCl2 treatment results in increased oxidative stress in both cytosol and mitochondria. In contrast, subsequent excess Cu removal by bathocuproine sulfonate, a Cu chelating reagent, lowers oxidative stress in mitochondria but causes even higher oxidative stress in the cytosol. The proteomic data reveal that several mitochondrial proteins, but not cytosolic ones, undergo significant abundance change under Cu treatments. The proteomic analysis also shows that proteins with significant changes are related to mitochondrial oxidative phosphorylation and glutathione synthesis. The differences in redox behaviors and protein profiles in different cellular compartments reveal distinct mitochondrial and cytosolic response mechanisms upon Cu-induced oxidative stress. These findings provide insights into how redox and Cu homeostasis interplay by modulating specific protein expressions at the subcellular levels, shedding light on understanding the effects of Cu-induced redox misregulation on the diseases.
Collapse
Affiliation(s)
- Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Guoting Qin
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
16
|
Ouyang Z, Zhang H, Lin W, Su J, Wang X. Bioinformatic profiling identifies the glutaminase to be a potential novel cuproptosis-related biomarker for glioma. Front Cell Dev Biol 2022; 10:982439. [PMID: 36158220 PMCID: PMC9500213 DOI: 10.3389/fcell.2022.982439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Glioma is the most common tumour of the central nervous system, with a poor prognosis and an increasing trend of incidence in recent years; it is also beginning to affect younger age groups more. Added to this, cuproptosis is a new form of cell death. Indeed, when a certain amount of copper accumulates in a cell, it affects specific mitochondrial metabolic enzymes in that cell and leads to cell death–a phenomenon known as cuproptosis. In this study, we applied bioinformatics analysis, and, according to the results of the study analysis and Gene Ontology (GO), as well as the Kyoto Encyclopedia of Genes and Genomes KyotoEncyclopediaofGenesandGenomes, the glutaminase (GLS) genes affect the prognosis and tumour mutation of glioma patients through cuproptosis. Interestingly, however, GLS is not involved in the immune escape of glioma. Glutaminase genes are a class of glucose metabolism-related genes that are involved in the tricarboxylic acid cycle of cells. At the same time, the expression of the glutaminase gene was positively correlated with the degree of immune cell infiltration and the expression of various immune cell markers, and thus affected the prognosis of glioma patients. Therefore, we believe that the cuproptosis-related glutaminase gene can be an important factor in determining the prognosis of glioma patients.
Collapse
Affiliation(s)
- Zhen Ouyang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Hanyi Zhang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Wenrui Lin
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Juan Su
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Xianggui Wang
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xianggui Wang,
| |
Collapse
|
17
|
Senges CHR, Warmuth HL, Vázquez-Hernández M, Uzun HD, Sagurna L, Dietze P, Schmidt C, Mücher B, Herlitze S, Krämer U, Ott I, Pomorski TG, Bandow JE. Effects of 4-Br-A23187 on Bacillus subtilis cells and unilamellar vesicles reveal it to be a potent copper ionophore. Proteomics 2022; 22:e2200061. [PMID: 35666003 PMCID: PMC10140759 DOI: 10.1002/pmic.202200061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/12/2022]
Abstract
Ionophores are small molecules or peptides that transport metal ions across biological membranes. Their transport capabilities are typically characterized in vitro using vesicles and single ion species. It is difficult to infer from these data which effects ionophores have on living cells in a complex environment (e.g. culture medium), since net ion movement is influenced by many factors including ion composition of the medium, concentration gradients, pH gradient, and protein-mediated transport processes across the membrane. To gain insights into the antibacterial mechanism of action of the semisynthetic polyether ionophore 4-Br-A23187, known to efficiently transport zinc and manganese in vitro, we investigated its effects on the gram-positive model organism Bacillus subtilis. In addition to monitoring cellular ion concentrations, the physiological impact of treatment was assessed on the proteome level. 4-Br-A23187 treatment resulted in an increase in intracellular copper levels, the extent of which depended on the copper concentration of the medium. Effects of copper accumulation mirrored by the proteomic response included oxidative stress, disturbance of proteostasis, metal and sulfur homeostasis. The antibiotic effect of 4-Br-A23187 is further aggravated by a decrease in intracellular manganese and magnesium. A liposome model confirmed that 4-Br-A23187 acts as copper ionophore in vitro. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christoph H R Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Helen L Warmuth
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Melissa Vázquez-Hernández
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Huriye Deniz Uzun
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Leonie Sagurna
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Claudia Schmidt
- Inorganic and Organometallic Medicinal Chemistry, Faculty of Life Sciences, Technical University Braunschweig, 38106, Braunschweig, Germany.,Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Brix Mücher
- Department of Zoology and Neurobiology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ingo Ott
- Inorganic and Organometallic Medicinal Chemistry, Faculty of Life Sciences, Technical University Braunschweig, 38106, Braunschweig, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
18
|
Cobine PA, Brady DC. Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell 2022; 82:1786-1787. [PMID: 35594843 DOI: 10.1016/j.molcel.2022.05.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tsvetkov et al. (2022) discovered a new form of cell death triggered by targeted accumulation of Cu in mitochondria that drives lipoylated TCA cycle enzyme aggregation via direct Cu binding.
Collapse
Affiliation(s)
- Paul A Cobine
- The Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Blackburn MR, Minkoff BB, Sussman MR. Mass spectrometry-based technologies for probing the 3D world of plant proteins. PLANT PHYSIOLOGY 2022; 189:12-22. [PMID: 35139210 PMCID: PMC9070838 DOI: 10.1093/plphys/kiac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/30/2021] [Indexed: 05/03/2023]
Abstract
Over the past two decades, mass spectrometric (MS)-based proteomics technologies have facilitated the study of signaling pathways throughout biology. Nowhere is this needed more than in plants, where an evolutionary history of genome duplications has resulted in large gene families involved in posttranslational modifications and regulatory pathways. For example, at least 5% of the Arabidopsis thaliana genome (ca. 1,200 genes) encodes protein kinases and protein phosphatases that regulate nearly all aspects of plant growth and development. MS-based technologies that quantify covalent changes in the side-chain of amino acids are critically important, but they only address one piece of the puzzle. A more crucially important mechanistic question is how noncovalent interactions-which are more difficult to study-dynamically regulate the proteome's 3D structure. The advent of improvements in protein 3D technologies such as cryo-electron microscopy, nuclear magnetic resonance, and X-ray crystallography has allowed considerable progress to be made at this level, but these methods are typically limited to analyzing proteins, which can be expressed and purified in milligram quantities. Newly emerging MS-based technologies have recently been developed for studying the 3D structure of proteins. Importantly, these methods do not require protein samples to be purified and require smaller amounts of sample, opening the wider proteome for structural analysis in complex mixtures, crude lysates, and even in intact cells. These MS-based methods include covalent labeling, crosslinking, thermal proteome profiling, and limited proteolysis, all of which can be leveraged by established MS workflows, as well as newly emerging methods capable of analyzing intact macromolecules and the complexes they form. In this review, we discuss these recent innovations in MS-based "structural" proteomics to provide readers with an understanding of the opportunities they offer and the remaining challenges for understanding the molecular underpinnings of plant structure and function.
Collapse
Affiliation(s)
- Matthew R Blackburn
- Department of Biochemistry and Center for Genomic Science Innovation, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Benjamin B Minkoff
- Department of Biochemistry and Center for Genomic Science Innovation, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Michael R Sussman
- Department of Biochemistry and Center for Genomic Science Innovation, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
20
|
Zuily L, Lahrach N, Fassler R, Genest O, Faller P, Sénèque O, Denis Y, Castanié-Cornet MP, Genevaux P, Jakob U, Reichmann D, Giudici-Orticoni MT, Ilbert M. Copper Induces Protein Aggregation, a Toxic Process Compensated by Molecular Chaperones. mBio 2022; 13:e0325121. [PMID: 35289645 PMCID: PMC9040851 DOI: 10.1128/mbio.03251-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 01/16/2023] Open
Abstract
Copper is well known for its antimicrobial and antiviral properties. Under aerobic conditions, copper toxicity relies in part on the production of reactive oxygen species (ROS), especially in the periplasmic compartment. However, copper is significantly more toxic under anaerobic conditions, in which ROS cannot be produced. This toxicity has been proposed to arise from the inactivation of proteins through mismetallations. Here, using the bacterium Escherichia coli, we discovered that copper treatment under anaerobic conditions leads to a significant increase in protein aggregation. In vitro experiments using E. coli lysates and tightly controlled redox conditions confirmed that treatment with Cu+ under anaerobic conditions leads to severe ROS-independent protein aggregation. Proteomic analysis of aggregated proteins revealed an enrichment of cysteine- and histidine-containing proteins in the Cu+-treated samples, suggesting that nonspecific interactions of Cu+ with these residues are likely responsible for the observed protein aggregation. In addition, E. coli strains lacking the cytosolic chaperone DnaK or trigger factor are highly sensitive to copper stress. These results reveal that bacteria rely on these chaperone systems to protect themselves against Cu-mediated protein aggregation and further support our finding that Cu toxicity is related to Cu-induced protein aggregation. Overall, our work provides new insights into the mechanism of Cu toxicity and the defense mechanisms that bacteria employ to survive. IMPORTANCE With the increase of antibiotic drug resistance, alternative antibacterial treatment strategies are needed. Copper is a well-known antimicrobial and antiviral agent; however, the underlying molecular mechanisms by which copper causes cell death are not yet fully understood. Herein, we report the finding that Cu+, the physiologically relevant copper species in bacteria, causes widespread protein aggregation. We demonstrate that the molecular chaperones DnaK and trigger factor protect bacteria against Cu-induced cell death, highlighting, for the first time, the central role of these chaperones under Cu+ stress. Our studies reveal Cu-induced protein aggregation to be a central mechanism of Cu toxicity, a finding that will serve to guide future mechanistic studies and drug development.
Collapse
Affiliation(s)
- Lisa Zuily
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olivier Genest
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG/DIESE, LCBM (UMR 5249), Grenoble, France
| | - Yann Denis
- Plateforme Transcriptome, Aix-Marseille Université, CNRS, IMM-FR3479, Marseille, France
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Marianne Ilbert
- Aix-Marseille Université, CNRS, BIP, UMR 7281, IMM, Marseille, France
| |
Collapse
|
21
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
22
|
Abstract
Metalloproteins play diverse and critical functions in all living systems, and their dysfunctional forms are closely related to many human diseases. The development of methods that enable comprehensive mapping of metalloproteome is of great interest to help elucidate crucial roles of metalloproteins in both physiology and pathology, as well as to discover new metalloproteins. We herein briefly review recent progress in the field of metalloproteomics and provide future outlooks.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Ma R, Johnson JHR, Tang Y, Fitzgerald MC. Analysis of Brain Protein Stability Changes in Mouse Models of Normal Aging and α-Synucleinopathy Reveals Age- and Disease-Related Differences. J Proteome Res 2021; 20:5156-5168. [PMID: 34606284 DOI: 10.1021/acs.jproteome.1c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we utilize the stability of proteins from rates of oxidation (SPROX) technique, to profile the thermodynamic stabilities of proteins in brain tissue cell lysates from Huα-Syn(A53T) transgenic mice at three time points including at 1 month (n = 9), at 6 months (n = 7), and at the time (between 9 and 16 months) a mouse became symptomatic (n = 8). The thermodynamic stability profiles generated here on 332 proteins were compared to thermodynamic stability profiles generated on the same proteins from similarly aged wild-type mice using a two-way unbalanced analysis of variance (ANOVA) analysis. This analysis identified a group of 22 proteins with age-related protein stability changes and a group of 11 proteins that were differentially stabilized in the Huα-Syn(A53T) transgenic mouse model. A total of 9 of the 11 proteins identified here with disease-related stability changes have been previously detected in human cerebral spinal fluid and thus have potential utility as biomarkers of Parkinson's disease (PD). The differential stability observed for one protein, glutamate decarboxylase 2 (Gad2), with an age-related change in stability, was consistent with the differential presence of a known, age-related truncation product of this protein, which is shown here to have a higher folding stability than full-length Gad2. Mass spectrometry data were deposited at ProteomeXchange (PXD016985).
Collapse
Affiliation(s)
- Renze Ma
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Julia H R Johnson
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Yun Tang
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
24
|
Salcedo-Sora JE, Robison ATR, Zaengle-Barone J, Franz KJ, Kell DB. Membrane Transporters Involved in the Antimicrobial Activities of Pyrithione in Escherichia coli. Molecules 2021; 26:molecules26195826. [PMID: 34641370 PMCID: PMC8510280 DOI: 10.3390/molecules26195826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pyrithione (2-mercaptopyridine-N-oxide) is a metal binding modified pyridine, the antibacterial activity of which was described over 60 years ago. The formulation of zinc-pyrithione is commonly used in the topical treatment of certain dermatological conditions. However, the characterisation of the cellular uptake of pyrithione has not been elucidated, although an unsubstantiated assumption has persisted that pyrithione and/or its metal complexes undergo a passive diffusion through cell membranes. Here, we have profiled specific membrane transporters from an unbiased interrogation of 532 E. coli strains of knockouts of genes encoding membrane proteins from the Keio collection. Two membrane transporters, FepC and MetQ, seemed involved in the uptake of pyrithione and its cognate metal complexes with copper, iron, and zinc. Additionally, the phenotypes displayed by CopA and ZntA knockouts suggested that these two metal effluxers drive the extrusion from the bacterial cell of potentially toxic levels of copper, and perhaps zinc, which hyperaccumulate as a function of pyrithione. The involvement of these distinct membrane transporters contributes to the understanding of the mechanisms of action of pyrithione specifically and highlights, more generally, the important role that membrane transporters play in facilitating the uptake of drugs, including metal-drug compounds.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| | - Amy T. R. Robison
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
| | - Jacqueline Zaengle-Barone
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
| | - Katherine J. Franz
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; (A.T.R.R.); (J.Z.-B.)
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Correspondence: (J.E.S.-S.); (K.J.F.); (D.B.K.)
| |
Collapse
|