1
|
Chen XY, Wang L, Ma X, Yang F, Wang X, Xu P, Xu LL, Di B. Development of fentanyl-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentanyl. Toxicol Appl Pharmacol 2024; 486:116918. [PMID: 38570042 DOI: 10.1016/j.taap.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Fentanyl, a critical component of opioid analgesics, poses a severe threat to public health, exacerbating the drug problem due to its potential fatality. Herein, we present two novel haptens designed with different attachment sites conjugated to keyhole limpet hemocyanin (KLH), aiming to develop an efficacious vaccine against fentanyl. KLH-Fent-1 demonstrated superior performance over KLH-Fent-2 in antibody titer, blood-brain distribution, and antinociceptive tests. Consequently, we immunized mice with KLH-Fent-1 to generate fentanyl-specific monoclonal antibodies (mAbs) using the hybridoma technique to compensate for the defects of active immunization in the treatment of opioid overdose and addiction. The mAb produced by hybridoma 9D5 exhibited the ability to recognize fentanyl and its analogs with a binding affinity of 10-10 M. Subsequently, we developed a human IgG1 chimeric mAb to improve the degree of humanization. Pre-treatment with murine and chimeric mAb significantly reduced the analgesic effect of fentanyl and altered its blood-brain biodistribution in vivo. Furthermore, in a mouse model of fentanyl-induced respiratory depression, the chimeric mAb effectively reversed respiratory depression promptly and maintained a certain level during the week. The development of high-affinity chimeric mAb gives support to combat the challenges of fentanyl misuse and its detrimental consequences. In conclusion, mAb passive immunization represents a viable strategy for addressing fentanyl addiction and overdose.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Li Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Ma
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China.
| | - Li-Li Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Lu T, Li X, Zheng W, Kuang C, Wu B, Liu X, Xue Y, Shi J, Lu L, Han Y. Vaccines to Treat Substance Use Disorders: Current Status and Future Directions. Pharmaceutics 2024; 16:84. [PMID: 38258095 PMCID: PMC10820210 DOI: 10.3390/pharmaceutics16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances.
Collapse
Affiliation(s)
- Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Bingyi Wu
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China;
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| |
Collapse
|
3
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity That Reverses Carfentanil-Induced Respiratory Depression. ACS Chem Neurosci 2023; 14:2849-2856. [PMID: 37534714 PMCID: PMC10791143 DOI: 10.1021/acschemneuro.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short-acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored to synthetic opioids and help prevent post-treatment renarcotization. The ultrapotent analog carfentanil is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display, producing C10-S66K. This monoclonal antibody displays high affinity to carfentanil, fentanyl, and other analogs and reversed carfentanil-induced respiratory depression. Additionally, X-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational
Biology, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, La Jolla, CA
92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, La Jolla, CA 92037,
United States
- Worm Institute for Research and Medicine (WIRM), The
Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
4
|
Park H, Lin M, Zhou J, Eubanks LM, Zhou B, Janda KD. Development of a vaccine against the synthetic opioid U-47700. Front Pharmacol 2023; 14:1219985. [PMID: 37492086 PMCID: PMC10363602 DOI: 10.3389/fphar.2023.1219985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Opioid use disorders and overdose have become a major public health concern in recent years. U-47700, a New psychoactive substances (NPS) opioid, also known as "pinky" or "pink" has been identified as a new threat in the drug supply because of its potency and abuse potential. Conjugate vaccines that can produce antibodies against target drug molecules have emerged as a promising tool to treat substance use disorders. Herein, we report the design, synthesis, and in vivo characterization of a U-47700 vaccine. The vaccine demonstrated favorable results with rodents producing elevated levels of antibody titer and sub-micromolar affinity to U-47700. In addition, antibodies generated by the vaccine effectively mitigated drug-induced effects by preventing the drug from penetrating the blood-brain barrier, which was verified by antinociception and drug biodistribution studies. The development of a vaccine against U-47700 and other NPS opioids contributes to the continued advancement of non-conventional pharmacological treatments to address the global opioid epidemic.
Collapse
Affiliation(s)
- Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Jian Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
- The College of Chemistry, Nankai University, Tianjin, China
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
5
|
Eubanks LM, Pholcharee T, Oyen D, Natori Y, Zhou B, Wilson IA, Janda KD. An Engineered Human-Antibody Fragment with Fentanyl Pan-Specificity that Reverses Carfentanil-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547721. [PMID: 37461607 PMCID: PMC10349930 DOI: 10.1101/2023.07.04.547721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The opioid overdose crisis primarily driven by potent synthetic opioids resulted in more than 500,000 deaths in the US over the last 20 years. Though naloxone, a short acting medication, remains the primary treatment option for temporarily reversing opioid overdose effects, alternative countermeasures are needed. Monoclonal antibodies present a versatile therapeutic opportunity that can be tailored for synthetic opioids and that can help prevent post-treatment renarcotization. The ultrapotent analog carfentanil, is especially concerning due to its unique pharmacological properties. With this in mind, we generated a fully human antibody through a drug-specific B cell sorting strategy with a combination of carfentanil and fentanyl probes. The resulting pan-specific antibody was further optimized through scFv phage display. This antibody, C10-S66K, displays high affinity to carfentanil, fentanyl, and other analogs, and reversed carfentanil-induced respiratory depression. Additionally, x-ray crystal structures with carfentanil and fentanyl bound provided structural insight into key drug:antibody interactions.
Collapse
Affiliation(s)
- Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Yoshihiro Natori
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Scripps Research Institute, La Jolla, CA 92037, United States
- Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
6
|
Limratana P, Yuki K. Trailblazing through the Opioid Epidemic. Will Science Prevail? TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2023; 10:530-532. [PMID: 37538443 PMCID: PMC10399245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Affiliation(s)
- Panop Limratana
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Department of Immunology, Harvard Medical School, Boston, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Department of Immunology, Harvard Medical School, Boston, USA
- Broad Institute of Harvard and MIT, USA
| |
Collapse
|
7
|
Lin M, Eubanks LM, Karadkhelkar NM, Blake S, Janda KD. Catalytic Antibody Blunts Carfentanil-Induced Respiratory Depression. ACS Pharmacol Transl Sci 2023; 6:802-811. [PMID: 37200811 PMCID: PMC10186356 DOI: 10.1021/acsptsci.3c00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 05/20/2023]
Abstract
Carfentanil, the most potent of the fentanyl analogues, is at the forefront of synthetic opioid-related deaths, second to fentanyl. Moreover, the administration of the opioid receptor antagonist naloxone has proven inadequate for an increasing number of opioid-related conditions, often requiring higher/additional doses to be effective, as such interest in alternative strategies to combat more potent synthetic opioids has intensified. Increasing drug metabolism would be one strategy to detoxify carfentanil; however, carfentanil's major metabolic pathways involve N-dealkylation or monohydroxylation, which do not lend themselves readily to exogenous enzyme addition. Herein, we report, to our knowledge, the first demonstration that carfentanil's methyl ester when hydrolyzed to its acid was found to be 40,000 times less potent than carfentanil in activating the μ-opioid receptor. Physiological consequences of carfentanil and its acid were also examined through plethysmography, and carfentanil's acid was found to be incapable of inducing respiratory depression. Based upon this information, a hapten was chemically synthesized and immunized, allowing the generation of antibodies that were screened for carfentanil ester hydrolysis. From the screening campaign, three antibodies were found to accelerate the hydrolysis of carfentanil's methyl ester. From this series of catalytic antibodies, the most active underwent extensive kinetic analysis, allowing us to postulate its mechanism of hydrolysis against this synthetic opioid. In the context of potential clinical applications, the antibody, when passively administered, was able to reduce respiratory depression induced by carfentanil. The data presented supports further development of antibody catalysis as a biologic strategy to complement carfentanil overdose reversal.
Collapse
Affiliation(s)
- Mingliang Lin
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Nishant M. Karadkhelkar
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Steven Blake
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry
and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute
of Research and Medicine (WIRM), The Scripps
Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Brockett AT, Xue W, King D, Deng CL, Zhai C, Shuster M, Rastogi S, Briken V, Roesch MR, Isaacs L. Pillar[6]MaxQ: A Potent Supramolecular Host for In Vivo Sequestration of Methamphetamine and Fentanyl. Chem 2023; 9:881-900. [PMID: 37346394 PMCID: PMC10281757 DOI: 10.1016/j.chempr.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[6]MaxQ (P6AS) functions as an in vivo sequestration agent for methamphetamine and fentanyl. We use 1H NMR, isothermal titration calorimetry, and molecular modelling to deduce the geometry and strength of the P6AS•drug complexes. P6AS forms tight complexes with fentanyl (Kd=9.8 nM), PCP (17.1 nM), MDMA (25.5 nM), mephedrone (52.4 nM), and methamphetamine (101 nM). P6AS has good in vitro biocompatibility according to MTS metabolic, Adenylate Kinase cell death, and hERG ion channel inhibition assays, and the Ames fluctuation test. The no observed adverse effect level for P6AS is 45 mg/kg. The hyperlocomotion of mice treated with methamphetamine (0.5 mg/kg) can be ameliorated by treatment with P6AS (35.7 mg/kg) 5-minutes later, whereas the hyperlocomotion of mice treated with fentanyl (0.1 mg/kg) can be controlled by treatment with P6AS (5 mg/kg) up to 15-minutes later. P6AS has significant potential for development as a broad spectrum in vivo sequestration agent.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
9
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
10
|
Martinez S, Harris H, Chao T, Luba R, Pravetoni M, Comer SD, Jones JD. The potential role of opioid vaccines and monoclonal antibodies in the opioid overdose crisis. Expert Opin Investig Drugs 2023; 32:181-185. [PMID: 36863002 PMCID: PMC10065938 DOI: 10.1080/13543784.2023.2187286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Affiliation(s)
- Suky Martinez
- Division on Substance Use Disorders, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Harris
- Division on Substance Use Disorders, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Thomas Chao
- Behavioural Reward Affect + Impulsivity Neuroscience Lab, Faculty of Medicine, the University of British Columbia, Vancouver, Bc, Canada
| | - Rachel Luba
- Division on Substance Use Disorders, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sandra D Comer
- Division on Substance Use Disorders, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Jermaine D Jones
- Division on Substance Use Disorders, Columbia University Irving Medical Center & New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
11
|
Luba R, Martinez S, Jones J, Pravetoni M, Comer SD. Immunotherapeutic strategies for treating opioid use disorder and overdose. Expert Opin Investig Drugs 2023; 32:77-87. [PMID: 36696567 PMCID: PMC10035039 DOI: 10.1080/13543784.2023.2173062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Development and implementation of effective treatments for opioid use disorder (OUD) and prevention of overdose are urgent public health needs. Though existing medications for OUD (MOUD) are effective, barriers to initiation and retention in treatment persist. Therefore, development of novel treatments, especially those may complement existing treatments, is needed. AREAS COVERED This review provides an overview of vaccines for substance use disorders (SUD) and mechanisms underlying their function and efficacy. Next, we focus on existing preclinical and clinical trials of SUD vaccines. We focus briefly on related strategies before providing an expert opinion on prior, current, and future work on vaccines for OUD. We included published findings from preclinical and clinical trials found on PubMed and ScienceDirect as well as ongoing or initiated trials listed on ClinicalTrials.gov. EXPERT OPINION The present opioid overdose and OUD crises necessitate urgent development and implementation of effective treatments, especially those that offer protection from overdose and can serve as adjuvants to existing medications. Promising preclinical trial results paired with careful efforts to develop vaccines that account for prior SUD vaccine shortcomings offer hope for current and future clinical trials of opioid vaccines. Clinical advantages of opioid vaccines appear to outnumber disadvantages, which may result in improved treatment options.
Collapse
Affiliation(s)
- Rachel Luba
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Suky Martinez
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Jermaine Jones
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Marco Pravetoni
- University of Washington, School of Medicine, Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, Center for Medication Development for Substance Use Disorders and Overdose, Seattle, WA
| | - Sandra D Comer
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| |
Collapse
|
12
|
DiMaggio D, Brockett AT, Shuster M, Murkli S, Zhai C, King D, O'Dowd B, Cheng M, Brady K, Briken V, Roesch MR, Isaacs L. Anthracene-Walled Acyclic CB[n] Receptors: in vitro and in vivo Binding Properties toward Drugs of Abuse. ChemMedChem 2022; 17:e202200046. [PMID: 35238177 PMCID: PMC9119912 DOI: 10.1002/cmdc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Indexed: 11/07/2022]
Abstract
We report studies of the interaction of six acyclic CB[n]-type receptors toward a panel of drugs of abuse by a combination of isothermal titration calorimetry and 1 H NMR spectroscopy. Anthracene walled acyclic CB[n] host (M3) displays highest binding affinity toward methamphetamine (Kd =15 nM) and fentanyl (Kd =4 nM). Host M3 is well tolerated by Hep G2 and HEK 293 cells up to 100 μM according to MTS metabolic and adenylate kinase release assays. An in vivo maximum tolerated dose study with Swiss Webster mice showed no adverse effects at the highest dose studied (44.7 mg kg-1 ). Host M3 is not mutagenic based on the Ames fluctuation test and does not inhibit the hERG ion channel. In vivo efficacy studies showed that pretreatment of mice with M3 significantly reduces the hyperlocomotion after treatment with methamphetamine, but M3 does not function similarly when administered 30 seconds after methamphetamine.
Collapse
Affiliation(s)
- Delaney DiMaggio
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Adam T Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Steven Murkli
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Brona O'Dowd
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ming Cheng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Kimberly Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
13
|
Baehr C, Robinson C, Kassick A, Jahan R, Gradinati V, Averick SE, Runyon SP, Pravetoni M. Preclinical Efficacy and Selectivity of Vaccines Targeting Fentanyl, Alfentanil, Sufentanil, and Acetylfentanyl in Rats. ACS OMEGA 2022; 7:16584-16592. [PMID: 35601290 PMCID: PMC9118421 DOI: 10.1021/acsomega.2c00820] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The ongoing public health emergency of opioid use disorders (OUD) and overdose in the United States is largely driven by fentanyl and its related analogues and has resulted in over 75 673 deaths in 2021. Immunotherapeutics such as vaccines have been investigated as a potential interventional strategy complementary to current pharmacotherapies to reduce the incidence of OUD and opioid-related overdose. Given the importance of targeting structurally distinct fentanyl analogues, this study compared a previously established lead conjugate vaccine (F1-CRM) to a series of novel vaccines incorporating haptens derived from alfentanil and acetylfentanyl (F8, 9a, 9b, 10), and evaluated their efficacy against drug-induced pharmacological effects in rats. While no vaccine tested provided significant protection against alfentanil, lead formulations were effective in reducing antinociception, respiratory depression, and bradycardia elicited by fentanyl, sufentanil, and acetylfentanyl. Compared with control, vaccination with F1-CRM also reduced drug levels in the brain of rats challenged with lethal doses of fentanyl. These data further support investigation of F1-CRM as a candidate vaccine against fentanyl and selected analogues.
Collapse
Affiliation(s)
- Carly Baehr
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Christine Robinson
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Andrew Kassick
- Neuroscience
Disruptive Research Lab, Allegheny Health
Network Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Rajwana Jahan
- RTI
International, Research
Triangle Park, North Carolina 27709, United States
| | - Valeria Gradinati
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
| | - Saadyah E. Averick
- Neuroscience
Disruptive Research Lab, Allegheny Health
Network Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Scott P. Runyon
- RTI
International, Research
Triangle Park, North Carolina 27709, United States
| | - Marco Pravetoni
- Department
of Pharmacology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- Center
for Immunology, University of Minnesota
Medical School, Minneapolis, Minnesota 55455, United States
- Department
of Psychiatry and Behavioral Sciences, University
of Washington School of Medicine, Seattle, Washington 98104, United States
| |
Collapse
|
14
|
Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull 2022; 38:1365-1382. [PMID: 35570233 PMCID: PMC9107910 DOI: 10.1007/s12264-022-00872-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Fentanyl is a fully synthetic opioid with analgesic and anesthetic properties. It has become a primary driver of the deadliest opioid crisis in the United States and elsewhere, consequently imposing devastating social, economic, and health burdens worldwide. However, the neural mechanisms that underlie the behavioral effects of fentanyl and its analogs are largely unknown, and approaches to prevent fentanyl abuse and fentanyl-related overdose deaths are scarce. This review presents the abuse potential and unique pharmacology of fentanyl and elucidates its potential mechanisms of action, including neural circuit dysfunction and neuroinflammation. We discuss recent progress in the development of pharmacological interventions, anti-fentanyl vaccines, anti-fentanyl/heroin conjugate vaccines, and monoclonal antibodies to attenuate fentanyl-seeking and prevent fentanyl-induced respiratory depression. However, translational studies and clinical trials are still lacking. Considering the present opioid crisis, the development of effective pharmacological and immunological strategies to prevent fentanyl abuse and overdose are urgently needed.
Collapse
|
15
|
Crouse B, Wu MM, Gradinati V, Kassick AJ, Song D, Jahan R, Averick S, Runyon S, Comer SD, Pravetoni M. Efficacy and Selectivity of Monovalent and Bivalent Vaccination Strategies to Protect against Exposure to Carfentanil, Fentanyl, and Their Mixtures in Rats. ACS Pharmacol Transl Sci 2022; 5:331-343. [PMID: 35592436 PMCID: PMC9112413 DOI: 10.1021/acsptsci.1c00260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Drug-related fatal overdoses have significantly increased in the past decade due to the widespread availability of illicit fentanyl and other potent synthetic opioids such as carfentanil. Deliberate or accidental consumption or exposure to carfentanil, fentanyl, and their mixture induces respiratory depression and bradycardia that can be difficult to reverse with the opioid receptor antagonist naloxone. Vaccines offer a promising strategy to reduce the incidence of fatalities associated with fentanyl-related substances, as well as treatment for opioid use disorder (OUD). This study reports monovalent and bivalent vaccination strategies that elicit polyclonal antibody responses effective in protecting against the pharmacological actions of carfentanil, fentanyl, or carfentanil/fentanyl mixtures. Rats were prophylactically immunized with individual conjugate vaccines containing either carfentanil- or fentanyl-based haptens, or their combination in bivalent vaccine formulations, and then challenged with carfentanil, fentanyl, or their mixture. First, these studies identified a lead vaccine protective against carfentanil-induced antinociception, respiratory depression, and bradycardia. Then, efficacy against both carfentanil and fentanyl was achieved through bivalent vaccination strategies that combined lead anti-carfentanil and anti-fentanyl vaccines via either heterologous prime/boost or co-administration immunization regimens. These preclinical data support the development of vaccines as a viable strategy to prevent toxicity from exposure to excessive doses of carfentanil, fentanyl, or their mixtures.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,School of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Mariah M Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,School of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Valeria Gradinati
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Andrew J Kassick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospita, Pittsburgh, Pennsylvania 15212, United States
| | - Daihyun Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Rajwana Jahan
- RTI International, Durham, North Carolina 27709, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospita, Pittsburgh, Pennsylvania 15212, United States
| | - Scott Runyon
- RTI International, Durham, North Carolina 27709, United States
| | - Sandra D Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Lee JC, Park H, Eubanks LM, Ellis B, Zhou B, Janda KD. A Vaccine against Benzimidazole-Derived New Psychoactive Substances That Are More Potent Than Fentanyl. J Med Chem 2022; 65:2522-2531. [PMID: 34994550 DOI: 10.1021/acs.jmedchem.1c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New psychoactive substance (NPS) opioids have proliferated within the international drug market. While synthetic opioids are traditionally composed of fentanyl analogues, benzimidazole-derived isotonitazene and its derivatives are the current NPS opioids of concern. Hence, in this study, we implement immunopharmacotherapy wherein antibodies are produced with high titers and nanomolar affinity to multiple benzimidazole-derived NPS opioids (BNO). Notably, these antibodies blunt psychoactive and physiological repercussions from BNO exposure, which was observed through antinociception, whole-body plethysmography, and blood-brain biodistribution studies. Moreover, we detail previously unreported pharmacokinetics of these drugs, which explains the struggle of traditional pharmaceutical opioid antagonists against BNO substances. These findings provide further insight into the in vivo effects of BNO drugs and the development of effective broad-spectrum therapeutics against NPS opioids.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Lee JC, Janda KD. Development of effective therapeutics for polysubstance use disorders. Curr Opin Chem Biol 2021; 66:102105. [PMID: 34936944 DOI: 10.1016/j.cbpa.2021.102105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
Traditional pharmacotherapies for substance use disorders have focused on mono-substance abuse. However, recent epidemiological studies have found polysubstance use disorders (PUD) are becoming more prevalent and the abuse of adulterated drugs has led to increasing unintentional overdose deaths. Unfortunately, there are no approved pharmacological agents for PUD. Hence, a therapeutic model of interest to address this growing epidemic is immunopharmacotherapy, where individuals are inoculated with conjugate vaccines formulated with haptens that mimic the drug of abuse. These conjugate vaccines have demonstrated significant therapeutic potential against mono-substance abuse, thus recent studies have applied this model to address PUD. This review presents immunopharmacotherapeutic advancements against polysubstance abuse and discusses necessary developments for conjugate vaccines in order to effectively treat this unaddressed epidemic.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
18
|
Barrientos R, Whalen C, Torres OB, Sulima A, Bow EW, Komla E, Beck Z, Jacobson AE, Rice KC, Matyas GR. Bivalent Conjugate Vaccine Induces Dual Immunogenic Response That Attenuates Heroin and Fentanyl Effects in Mice. Bioconjug Chem 2021; 32:2295-2306. [PMID: 34076427 PMCID: PMC8603354 DOI: 10.1021/acs.bioconjchem.1c00179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.
Collapse
Affiliation(s)
- Rodell
C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Eric W. Bow
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Essie Komla
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Zoltan Beck
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Kenner C. Rice
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|