1
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025. [PMID: 39999110 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven M Havens
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Sescil J, Fiel H, Havens SM, Fu E, Li X, Kroning KE, Solowiej I, Li P, Wang W. Functionalization of a versatile fluorescent sensor for detecting protease activity and temporally gated opioid sensing. RSC Chem Biol 2025:d4cb00276h. [PMID: 39975583 PMCID: PMC11835013 DOI: 10.1039/d4cb00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Genetically encoded fluorescent sensors have been widely applied to detect cell signaling molecules and events. We previously designed a fluorescent sensor motif suitable for detecting protease activity and opioids. In this manuscript, we demonstrated the motif's first use for reporting on protease activity in animal models, demonstrating a high signal-to-background ratio of 29. We further functionalized this sensor motif to detect the activity of the coronavirus main protease, Mpro, and demonstrated its utility in characterizing an Mpro inhibitor. The Mpro sensor will facilitate the study of coronaviral activity in cell cultures and potentially in animal models. Additionally, we developed an innovative method for engineering a protease-based time-gating mechanism using this versatile sensor motif, allowing the temporally controlled detection of opioids. This time-gating strategy for detecting opioids can be generalized to other similar sensors, enabling detection of G protein-coupled receptor ligands with improved temporal resolution.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Steven M Havens
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Emma Fu
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan Ann Arbor MI 48109 USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor MI 48109 USA
| | - Kayla E Kroning
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Isabel Solowiej
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Peng Li
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan Ann Arbor MI 48109 USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor MI 48109 USA
| | - Wenjing Wang
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Neuroscience Graduate Program, University of Michigan Ann Arbor MI 48109 USA
- Program in Chemical Biology, University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
3
|
Kirchhofer SB, Kurz C, Geier L, Krett AL, Krasel C, Bünemann M. Dynamics of agonist-evoked opioid receptor activation revealed by FRET- and BRET-based opioid receptor conformation sensors. Commun Biol 2025; 8:198. [PMID: 39920410 PMCID: PMC11806106 DOI: 10.1038/s42003-025-07630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
The opioid receptor family, particularly the µ opioid receptor, are the main drug targets in the management of severe pain. However, their pain-relieving effects are often accompanied by severe adverse effects, underlining the necessity for extensive research on this receptor family. Opioids, the agonists targeting these receptors, differ in their chemical structure and also in their mode of action in different aspects of signaling. Here we introduce novel tools that facilitate the analysis of this receptor family, by the development of FRET- and BRET-based receptor conformation sensors. With these sensors we were able to characterize especially the µ opioid receptor in more detail and reveal a strongly agonist-dependent activation kinetics for this receptor. Moreover, our sensors offer an assay independent from other signaling pathways, thereby minimizing the potential for interfering influences or biases within the system.
Collapse
Affiliation(s)
- Sina B Kirchhofer
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Claudia Kurz
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Lorenz Geier
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Anna-Lena Krett
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Cornelius Krasel
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Kroning K, Gannot N, Li X, Putansu A, Zhou G, Sescil J, Shen J, Wilson A, Fiel H, Li P, Wang W. Single-chain fluorescent integrators for mapping G-protein-coupled receptor agonists. Proc Natl Acad Sci U S A 2024; 121:e2307090121. [PMID: 38648487 PMCID: PMC11067452 DOI: 10.1073/pnas.2307090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Humans
- Mice
- HEK293 Cells
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/metabolism
- Isoproterenol/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Morphine/pharmacology
- Brain/metabolism
- Brain/drug effects
- Brain/diagnostic imaging
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Biosensing Techniques/methods
Collapse
Affiliation(s)
- Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Aubrey Putansu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Jennifer Sescil
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Avery Wilson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
5
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Sekhon H, Ha JH, Presti MF, Procopio SB, Jarvis AR, Mirsky PO, John AM, Loh SN. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells. Nat Methods 2023; 20:1920-1929. [PMID: 37945909 PMCID: PMC11080272 DOI: 10.1038/s41592-023-02065-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
A grand challenge in biosensor design is to develop a single-molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Here, we created a family of adaptable, turn-on maturation (ATOM) biosensors consisting of a monobody (circularly permuted at one of two positions) or a nanobody (circularly permuted at one of three positions) inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells coexpressing cyan, yellow and red ATOM sensors detected biosensor targets that were specifically localized to various subcellular compartments. Fluorescence activation involved ligand-dependent chromophore maturation with turn-on ratios of up to 62-fold in cells and 100-fold in vitro. Endoplasmic reticulum- and mitochondria-localized ATOM sensors detected ligands that were targeted to those organelles. The ATOM design was validated with three monobodies and one nanobody inserted into distinct fluorescent proteins, suggesting that customized ATOM sensors can be generated quickly.
Collapse
Affiliation(s)
- Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Spencer B Procopio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ava R Jarvis
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Paige O Mirsky
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anna M John
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
7
|
Kroning K, Gannot N, Li X, Zhou G, Sescil J, Putansu A, Shen J, Wilson A, Fiel H, Li P, Wang W. Single-chain fluorescent integrators for mapping G-protein-coupled receptor agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543062. [PMID: 37398137 PMCID: PMC10312536 DOI: 10.1101/2023.05.31.543062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
GPCRs transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors to determine GPCR agonist localization in the whole brain. We previously engineered integrator sensors for the mu and kappa opioid receptor agonists called M- and K-SPOTIT, respectively. Here, we show a new integrator sensor design platform called SPOTall that we used to engineer sensors for the beta-2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. For multiplexed imaging of SPOTIT and SPOTall, we engineered a red version of the SPOTIT sensors. Finally, we used M-SPOTIT and B2AR-SPOTall to detect morphine, isoproterenol, and epinephrine in the mouse brain. The SPOTIT and SPOTall sensor design platform can be used to design a variety of GPCR integrator sensors for unbiased agonist detection of many synthetic and endogenous neuromodulators across the whole brain.
Collapse
Affiliation(s)
- Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Noam Gannot
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI
| | - Jennifer Sescil
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Aubrey Putansu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Avery Wilson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Zhou G, Wan WW, Wang W. Modular Peroxidase-Based Reporters for Detecting Protease Activity and Protein Interactions with Temporal Gating. J Am Chem Soc 2022; 144:22933-22940. [PMID: 36511757 PMCID: PMC10026560 DOI: 10.1021/jacs.2c08280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enzymatic reporters have been widely applied to study various biological processes because they can amplify signal through enzymatic reactions and provide good sensitivity. However, there is still a need for modular motifs for designing a series of enzymatic reporters. Here, we report a modular peroxidase-based motif, named CLAPon, that features acid-base coil-caged enhanced ascorbate peroxidase (APEX). We demonstrate the modularity of CLAPon by designing a series of reporters for detecting protease activity and protein-protein interactions (PPIs). CLAPon for protease activity showed a 390-fold fluorescent signal increase upon tobacco etch virus protease cleavage. CLAPon for PPI detection (PPI-CLAPon) has two variants, PPI-CLAPon1.0 and 1.1. PPI-CLAPon1.0 showed a signal-to-noise ratio (SNR) of up to 107 for high-affinity PPI pairs and enabled imaging with sub-cellular spatial resolution. However, the more sensitive PPI-CLAPon1.1 is required for detecting low-affinity PPI pairs. PPI-CLAPon1.0 was further engineered to a reporter with light-dependent temporal gating, called LiPPI-CLAPon1.0, which can detect a 3-min calcium-dependent PPI with an SNR of 17. LiPPI-CLAPon enables PPI detection within a specific time window with rapid APEX activation and diverse readout. Lastly, PPI-CLAPon1.0 was designed to have chemical gating, providing more versatility to complement the LiPPI-CLAPon. These CLAPon-based reporter designs can be broadly applied to study various signaling processes that involve protease activity and PPIs and provide a versatile platform to design various genetically encoded reporters.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Wei Wan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Author: Wenjing Wang,
| |
Collapse
|
9
|
Kroning KE, Wang W. Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution. Clin Transl Med 2022; 12:e1124. [PMID: 36446954 PMCID: PMC9708909 DOI: 10.1002/ctm2.1124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the most abundant receptor type in the human body and are responsible for regulating many physiological processes, such as sensation, cognition, muscle contraction and metabolism. Further, GPCRs are widely expressed in the brain where their agonists make up a large number of neurotransmitters and neuromodulators. Due to the importance of GPCRs in human physiology, genetically encoded sensors have been engineered to detect GPCR agonists at cellular resolution in vivo. These sensors can be placed into two main categories: those that offer real-time information on the signalling dynamics of GPCR agonists and those that integrate the GPCR agonist signal into a permanent, quantifiable mark that can be used to detect GPCR agonist localisation in a large brain area. In this review, we discuss the various designs of real-time and integration sensors, their advantages and limitations, and some in vivo applications. We also discuss the potential of using real-time and integrator sensors together to identify neuronal circuits affected by endogenous GPCR agonists and perform detailed characterisations of the spatiotemporal dynamics of GPCR agonist release in those circuits. By using these sensors together, the overall knowledge of GPCR-mediated signalling can be expanded.
Collapse
Affiliation(s)
- Kayla E. Kroning
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Wenjing Wang
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|