1
|
Nguyen BX, Gurusinga FF, Mettal U, Schäberle TF, Yokoyama K. Radical-Mediated Nucleophilic Peptide Cross-Linking in Dynobactin Biosynthesis. J Am Chem Soc 2024; 146:31715-31732. [PMID: 39528355 DOI: 10.1021/jacs.4c10425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dynobactins are recently discovered ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotics that selectively kill Gram-negative pathogens by inhibiting the β-barrel assembly machinery (Bam) located on their outer membranes. Such activity of dynobactins derives from their unique cross-links between Trp1-Asn4 and His6-Tyr8. In particular, the His6-Tyr8 cross-link is formed between Nτ of His6 and Cβ of Tyr8, an unprecedented type of cross-link in RiPP natural products. The mechanism of the C-N cross-link formation remains elusive. In this work, using in vitro characterizations, we demonstrate that both cross-links in dynobactins are biosynthesized by the radical S-adenosylmethionine (SAM) enzyme DynA. Subsequent mechanistic studies using deuterium-labeled DynB precursor peptides suggested that the C-N cross-linking proceeds through the Tyr8-Hβ atom abstraction by 5'-deoxyadenosyl radical. The absence of solvent exchange of Tyr8-Hα suggested that the mechanism unlikely involves α,β-desaturation of Tyr8. Furthermore, DynA catalyzed covalent modification of Tyr8 of H6A-DynB with small-molecule nucleophiles, suggesting the presence of a highly electrophilic Tyr-derived intermediate. Based on all these observations, we propose that DynA catalyzes Tyr8-Hβ atom abstraction to generate Tyr8-Cβ radical followed by its oxidation to a p-quinone methide intermediate, to which His6-Nτ attacks to form the C-N cross-link. This quinone methide-dependent mechanism of RiPPs cross-linking is distinct from the previously reported RiPPs cross-linking mechanisms and represents a novel mechanism in RiPPs biosynthesis. We will also discuss the functional, mechanistic, and evolutional relationships of DynA with other peptide-modifying radical SAM enzymes.
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Friscasari F Gurusinga
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Site Giessen/Marburg/Langen, 35392 Giessen, Germany
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Yuan L, Wu S, Tian K, Wang S, Wu H, Qiao J. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food Funct 2024; 15:9662-9677. [PMID: 39246095 DOI: 10.1039/d3fo05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Small pentacyclic peptides, represented by nisin, have been successfully utilized as preservatives in the food industry and have evolved into a paradigm for understanding the genetic structure, expression, and control of genes created by lantibiotics. Due to the ever-increasing antibiotic resistance, nisin-relevant antimicrobial peptides have received much attention, which calls for a summarization of their synthesis, modification and applications. In this review, we first provided a timeline of select highlights in nisin biosynthesis and engineering. Then, we outlined the current developments in nisin synthesis. We also provided an overview of the engineering, screening, and production of nisin-relevant antimicrobial peptides based on enzyme alteration, substrate modification, and sequence mining. Furthermore, an updated summary of applications of nisin-relevant antimicrobial peptides has been developed for food applications. Finally, this study offers insights into emerging technologies, limitations and the future development of nisin-relevant antimicrobial peptides for pathogen inhibition, food preservatives, and improved health.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Agricultural University, Tianjin 300072, China
| | - Shengbo Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kairen Tian
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Cheng B, Xue Y, Duan Y, Liu W. Enzymatic Formation of an Aminovinyl Cysteine Residue in Ribosomal Peptide Natural Products. Chempluschem 2024; 89:e202400047. [PMID: 38517224 DOI: 10.1002/cplu.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Indexed: 03/23/2024]
Abstract
The carboxyl-terminal (C-terminal) S-[(Z)-2-aminovinyl]-cysteine (AviCys) analogs have been identified in four families of ribosomally synthesized and post-translationally modified peptides (RiPPs): lanthipeptides, linaridins, thioamitides, and lipolanthines. Within identified biosynthetic pathways, a highly reactive enethiol intermediate, formed through an oxidative decarboxylation catalyzed by a LanD-like flavoprotein, can undergo two types of cyclization: a Michael addition with a dehydroamino acid or a coupling reaction initiated by a radical species. The collaborative actions of LanD-like proteins with diverse enzymes involved in dehydration, dethiolation or cyclization lead to the construction of structurally distinct peptide natural products with analogous C-terminal macrocyclic moieties. This concept summarizes existing knowledge regarding biosynthetic pathways of AviCys analogs to emphasize the diversity of biosynthetic mechanisms that paves the way for future genome mining explorations into diverse peptide natural products.
Collapse
Affiliation(s)
- Botao Cheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yanqing Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuting Duan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
4
|
Van Zyl WF, Van Staden AD, Dicks LMT, Trindade M. Use of the mCherry fluorescent protein to optimize the expression of class I lanthipeptides in Escherichia coli. Microb Cell Fact 2023; 22:149. [PMID: 37559122 PMCID: PMC10413542 DOI: 10.1186/s12934-023-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Lanthipeptides are a rapidly expanding family of ribosomally synthesized and post-translationally modified natural compounds with diverse biological functions. Lanthipeptide structural and biosynthetic genes can readily be identified in genomic datasets, which provides a substantial repository for unique peptides with a wide range of potentially novel bioactivities. To realize this potential efficiently optimized heterologous production systems are required. However, only a few class I lanthipeptides have been successfully expressed using Escherichia coli as heterologous producer. This may be attributed to difficulties experienced in the co-expression of structural genes and multiple processing genes as well as complex optimization experiments. RESULTS Here, an optimized modular plasmid system is presented for the complete biosynthesis for each of the class I lanthipeptides nisin and clausin, in E. coli. Genes encoding precursor lanthipeptides were fused to the gene encoding the mCherry red fluorescent protein and co-expressed along with the required synthetases from the respective operons. Antimicrobially active nisin and clausin were proteolytically liberated from the expressed mCherry fusions. The mCherry-NisA expression system combined with in vivo fluorescence monitoring was used to elucidate the effect of culture media composition, promoter arrangement, and culture conditions including choice of growth media and inducer agents on the heterologous expression of the class I lanthipeptides. To evaluate the promiscuity of the clausin biosynthetic enzymes, the optimized clausin expression system was used for the heterologous expression of epidermin. CONCLUSION We succeeded in developing novel mCherry-fusion based plug and play heterologous expression systems to produce two different subgroups of class I lanthipeptides. Fully modified Pre-NisA, Pre-ClausA and Pre-EpiA fused to the mCherry fluorescence gene was purified from the Gram-negative host E. coli BL21 (DE3). Our study demonstrates the potential of using in vivo fluorescence as a platform to evaluate the expression of mCherry-fused lanthipeptides in E. coli. This allowed a substantial reduction in optimization time, since expression could be monitored in real-time, without the need for extensive and laborious purification steps or the use of in vitro activity assays. The optimized heterologous expression systems developed in this study may be employed in future studies for the scalable expression of novel NisA derivatives, or novel genome mined derivatives of ClausA and other class I lanthipeptides in E. coli.
Collapse
Affiliation(s)
- Winschau F Van Zyl
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa.
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| | - Anton D Van Staden
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
5
|
Lee H, Wu C, Desormeaux EK, Sarksian R, van der Donk WA. Improved production of class I lanthipeptides in Escherichia coli. Chem Sci 2023; 14:2537-2546. [PMID: 36908960 PMCID: PMC9993889 DOI: 10.1039/d2sc06597e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Lanthipeptides are ribosomally synthesised and post-translationally modified peptides containing lanthionine (Lan) and methyllanthionine (MeLan) residues that are formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a co-substrate to glutamylate Ser/Thr followed by glutamate elimination. Here we report a new system to heterologously express class I lanthipeptides in Escherichia coli through co-expression of the producing organism's glutamyl-tRNA synthetase (GluRS) and tRNAGlu pair in the vector pEVOL. In contrast to the results in the absence of the pEVOL system, we observed the production of fully-dehydrated peptides, including epilancin 15X, and peptides from the Bacteroidota Chryseobacterium and Runella. A second common obstacle to production of lanthipeptides in E. coli is the formation of glutathione adducts. LanC-like (LanCL) enzymes were previously reported to add glutathione to dehydroamino-acid-containing proteins in Eukarya. Herein, we demonstrate that the LanCL enzymes can remove GSH adducts from C-glutathionylated peptides with dl- or ll-lanthionine stereochemistry. These two advances will aid synthetic biology-driven genome mining efforts to discover new lanthipeptides.
Collapse
Affiliation(s)
- Hyunji Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- College of Pharmacy, Kyungsung University Busan 48434 Republic of Korea
| | - Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Raymond Sarksian
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
6
|
Ongpipattanakul C, Liu S, Luo Y, Nair SK, van der Donk WA. The mechanism of thia-Michael addition catalyzed by LanC enzymes. Proc Natl Acad Sci U S A 2023; 120:e2217523120. [PMID: 36634136 PMCID: PMC9934072 DOI: 10.1073/pnas.2217523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.
Collapse
Affiliation(s)
| | - Shi Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Youran Luo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
7
|
Pei ZF, Zhu L, Sarksian R, van der Donk WA, Nair SK. Class V Lanthipeptide Cyclase Directs the Biosynthesis of a Stapled Peptide Natural Product. J Am Chem Soc 2022; 144:17549-17557. [PMID: 36107785 PMCID: PMC9621591 DOI: 10.1021/jacs.2c06808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lanthipeptides are a class of cyclic peptides characterized by the presence of one or more lanthionine (Lan) or methyllanthionine (MeLan) thioether rings. These cross-links are produced by α,β-unsaturation of Ser or Thr residues in peptide substrates by dehydration, followed by a Michael-type conjugate addition of Cys residues onto the dehydroamino acids. Lanthipeptides may be broadly classified into at least five different classes, and the biosynthesis of classes I-IV lanthipeptides requires catalysis by LanC cyclases that control both the site-specificity and the stereochemistry of the conjugate addition. In contrast, there are no current examples of LanCs that occur in class V biosynthetic clusters, despite the presence of lanthionine rings in these compounds. In this work, bioinformatics-guided co-occurrence analysis identifies more than 240 putative class V lanthipeptide clusters that contain a LanC cyclase. Reconstitution studies demonstrate that the cyclase-catalyzed product is notably distinct from the product formed spontaneously. Stereochemical analysis shows that the cyclase diverts the final product to a configuration that is distinct from one that is energetically favored. Structural characterization of the final product by multi-dimensional NMR spectroscopy reveals that it forms a helical stapled peptide. Mutational analysis identified a plausible order for cyclization and suggests that enzymatic rerouting to the final structure is largely directed by the construction of the first lanthionine ring. These studies show that lanthipeptide cyclases are needed for the biosynthesis of some constrained peptides, the formations of which would otherwise be energetically unfavored.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Raymond Sarksian
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Sarksian R, Hegemann JD, Simon MA, Acedo JZ, van der Donk WA. Unexpected Methyllanthionine Stereochemistry in the Morphogenetic Lanthipeptide SapT. J Am Chem Soc 2022; 144:6373-6382. [PMID: 35352944 PMCID: PMC9011353 DOI: 10.1021/jacs.2c00517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Lanthipeptides are
polycyclic peptides characterized by the presence
of lanthionine (Lan) and/or methyllanthionine (MeLan). They are members
of the ribosomally synthesized and post-translationally modified peptides (RiPPs). The stereochemical
configuration of (Me)Lan cross-links is important for the bioactivity
of lanthipeptides. To date, MeLan residues in characterized lanthipeptides
have either the 2S,3S or 2R,3R stereochemistry. Herein, we reconstituted
in Escherichia coli the biosynthetic pathway toward
SapT, a class I lanthipeptide that exhibits morphogenetic activity.
Through the synthesis of standards, the heterologously produced peptide
was shown to possess three MeLan residues with the 2S,3R stereochemistry (d-allo-l-MeLan), the first time such stereochemistry has been
observed in a lanthipeptide. Bioinformatic analysis of the biosynthetic
enzymes suggests this stereochemistry may also be present in other
lanthipeptides. Analysis of another gene cluster in Streptomyces
coelicolor that is widespread in actinobacteria confirmed
another example of d-allo-l-MeLan
and verified the bioinformatic prediction. We propose a mechanism
for the origin of the unexpected stereochemistry and provide support
using site-directed mutagenesis.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Max A Simon
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States.,Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| |
Collapse
|
9
|
Hamry SR, Thibodeaux CJ. Biochemical and biophysical investigation of the HalM2 lanthipeptide synthetase using mass spectrometry. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid emergence of antimicrobial resistance in clinical settings has called for renewed efforts to discover and develop new antimicrobial compounds. Lanthipeptides present a promising, genetically encoded molecular scaffold for the engineering of structurally complex, biologically active peptides. These peptide natural products are constructed by enzymes (lanthipeptide synthetases) with relaxed substrate specificity that iteratively modify the precursor lanthipeptide to generate structures with defined sets of thioether macrocycles. The mechanistic features that guide the maturation of lanthipeptides into their proper, fully modified forms are obscured by the complexity of the multistep maturation and the large size and dynamic structures of the synthetases and precursor peptides. Over the past several years, our lab has been developing a suite of mass spectrometry-based techniques that are ideally suited to untangling the complex reaction sequences and molecular interactions that define lanthipeptide biosynthesis. This review focuses on our development and application of these mass spectrometry-based techniques to investigate the biochemical, kinetic, and biophysical properties of the haloduracin β class II lanthipeptide synthetase, HalM2.
Collapse
Affiliation(s)
- Sally R. Hamry
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Christopher J. Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
10
|
Hegemann JD, Süssmuth RD. Identification of the Catalytic Residues in the Cyclase Domain of the Class IV Lanthipeptide Synthetase SgbL. Chembiochem 2021; 22:3169-3172. [PMID: 34490957 PMCID: PMC9292228 DOI: 10.1002/cbic.202100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Indexed: 11/08/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are subdivided into different classes based on their processing enzymes. The three-domain class IV lanthipeptide synthetases (LanL enzymes) consist of N-terminal lyase, central kinase, and C-terminal cyclase domains. While the catalytic residues of the kinase domains (mediating ATP-dependent Ser/Thr phosphorylations) and the lyase domains (carrying out subsequent phosphoserine/phosphothreonine (pSer/pThr) eliminations to yield dehydroalanine/dehydrobutyrine (Dha/Dhb) residues) have been characterized previously, such studies are missing for LanL cyclase domains. To close this gap of knowledge, this study reports on the identification and validation of the catalytic residues in the cyclase domain of the class IV lanthipeptide synthetase SgbL, which facilitate the nucleophilic attacks by Cys thiols on Dha/Dhb residues for the formation of β-thioether crosslinks.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
11
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Bothwell IR, Caetano T, Sarksian R, Mendo S, van der Donk WA. Structural Analysis of Class I Lanthipeptides from Pedobacter lusitanus NL19 Reveals an Unusual Ring Pattern. ACS Chem Biol 2021; 16:1019-1029. [PMID: 34085816 PMCID: PMC9845027 DOI: 10.1021/acschembio.1c00106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptide natural products characterized by the presence of lanthionine and methyllanthionine cross-linked amino acids formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a cosubstrate to glutamylate Ser/Thr followed by glutamate elimination. A vast majority of lanthipeptides identified from class I synthase systems have been from Gram-positive bacteria. Herein, we report the heterologous expression and modification in Escherichia coli of two lanthipeptides from the Gram-negative Bacteroidetes Pedobacter lusitanus NL19. These peptides are representative of a group of compounds frequently encoded in Pedobacter genomes. Structural characterization of the lanthipeptides revealed a novel ring pattern as well as an unusual ll-lanthionine stereochemical configuration and a cyclase that lacks the canonical zinc ligands found in most LanC enzymes.
Collapse
Affiliation(s)
- Ian R. Bothwell
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61822
| | - Tânia Caetano
- Molecular Biotechnology Laboratory, CESAM & Departamento de Biologia
- Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Raymond Sarksian
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61822
| | - Sónia Mendo
- Molecular Biotechnology Laboratory, CESAM & Departamento de Biologia
- Campus de Santiago, University of Aveiro, 3810-189 Aveiro, Portugal
| | - Wilfred A. van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61822
| |
Collapse
|
13
|
Abstract
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products characterized by the presence of lanthionine and methyllanthionine. During the maturation of select lanthipeptides, five different alterations have been observed to the chemical structure of the peptide backbone. First, dehydratases generate dehydroalanine and dehydrobutyrine from Ser or Thr residues, respectively. A second example of introduction of unsaturation is the oxidative decarboxylation of C-terminal Cys residues catalyzed by the decarboxylase LanD. Both modifications result in loss of chirality at the α-carbon of the amino acid residues. Attack of a cysteine thiol onto a dehydrated amino acid results in thioether crosslink formation with either inversion or retention of the l-stereochemical configuration at the α-carbon of former Ser and Thr residues. A fourth modification of the protein backbone is the hydrogenation of dehydroamino acids to afford d-amino acids catalyzed by NAD(P)H-dependent reductases. A fifth modification is the conversion of Asp to isoAsp. Herein, the methods used to produce and characterize the lanthipeptide bicereucin will be described in detail along with a brief overview of other lanthipeptides.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
14
|
Lai KY, Galan SRG, Zeng Y, Zhou TH, He C, Raj R, Riedl J, Liu S, Chooi KP, Garg N, Zeng M, Jones LH, Hutchings GJ, Mohammed S, Nair SK, Chen J, Davis BG, van der Donk WA. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 2021; 184:2680-2695.e26. [PMID: 33932340 DOI: 10.1016/j.cell.2021.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.
Collapse
Affiliation(s)
- Kuan-Yu Lai
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sébastien R G Galan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Yibo Zeng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Tianhui Hina Zhou
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang He
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ritu Raj
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Jitka Riedl
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Shi Liu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - K Phin Chooi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Neha Garg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Min Zeng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lyn H Jones
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02115, USA
| | - Graham J Hutchings
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Shabaz Mohammed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK.
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
|
16
|
Uggowitzer KA, Habibi Y, Wei W, Moitessier N, Thibodeaux CJ. Mutations in Dynamic Structural Elements Alter the Kinetics and Fidelity of the Multifunctional Class II Lanthipeptide Synthetase, HalM2. Biochemistry 2021; 60:412-430. [PMID: 33507068 DOI: 10.1021/acs.biochem.0c00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Class II lanthipeptide synthetases (LanM enzymes) catalyze the multistep post-translational modification of genetically encoded precursor peptides into macrocyclic (often antimicrobial) lanthipeptides. The reaction sequence involves dehydration of serine/threonine residues, followed by intramolecular addition of cysteine thiols onto the nascent dehydration sites to construct thioether bridges. LanMs utilize two separate active sites in an iterative yet highly coordinated manner to maintain a remarkable level of regio- and stereochemical control over the multistep maturation. The mechanisms underlying this biosynthetic fidelity remain enigmatic. We recently demonstrated that proper function of the haloduracin β synthetase (HalM2) requires dynamic structural elements scattered across the surface of the enzyme. Here, we perform kinetic simulations, structural analysis of reaction intermediates, hydrogen-deuterium exchange mass spectrometry studies, and molecular dynamics simulations to investigate the contributions of these dynamic HalM2 structural elements to biosynthetic efficiency and fidelity. Our studies demonstrate that a large, conserved loop (HalM2 residues P349-P405) plays essential roles in defining the precursor peptide binding site, facilitating efficient peptide dehydration, and guiding the order of thioether ring formation. Moreover, mutations near the interface of the HalM2 dehydratase and cyclase domains perturb cyclization fidelity and result in aberrant thioether topologies that cannot be corrected by the wild type enzyme, suggesting an element of kinetic control in the normal cyclization sequence. Overall, this work provides the most comprehensive correlation of the structural and functional properties of a LanM enzyme reported to date and should inform mechanistic studies of the biosynthesis of other ribosomally synthesized and post-translationally modified peptide natural products.
Collapse
|
17
|
Lu J, Li Y, Bai Z, Lv H, Wang H. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C-S and C-C bond formation. Nat Prod Rep 2021; 38:981-992. [PMID: 33185226 DOI: 10.1039/d0np00044b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2000 to 2020 Ribosomally synthesized and posttranslational modified peptides (RiPPs) are a rapidly growing class of bioactive natural products. Many members of RiPPs contain macrocyclic structural units constructed by modification enzymes through macrocyclization of linear precursor peptides. In this study, we summarize recent progress in the macrocyclization of RiPPs by C-S and C-C bond formation with a focus on the current understanding of the enzymatic mechanisms.
Collapse
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Hongmei Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
18
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 440] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
19
|
Hegemann JD, Süssmuth RD. Matters of class: coming of age of class III and IV lanthipeptides. RSC Chem Biol 2020; 1:110-127. [PMID: 34458752 PMCID: PMC8341899 DOI: 10.1039/d0cb00073f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lanthipeptides belong to the superfamily of ribosomally-synthesized and posttranslationally-modified peptides (RiPPs). Despite the fact that they represent one of the longest known RiPP subfamilies, their youngest members, classes III and IV, have only been described more recently. Since then, a plethora of studies furthered the understanding of their biosynthesis. While there are commonalities between classes III and IV due to the similar domain architectures of their processing enzymes, there are also striking differences that allow their discrimination. In this concise review article, we summarize what is known about the underlying biosynthetic principles of these lanthipeptides and discuss open questions for future research.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
20
|
Ren H, Shi C, Bothwell IR, van der Donk WA, Zhao H. Discovery and Characterization of a Class IV Lanthipeptide with a Nonoverlapping Ring Pattern. ACS Chem Biol 2020; 15:1642-1649. [PMID: 32356655 DOI: 10.1021/acschembio.0c00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lanthipeptides constitute a major family of ribosomally synthesized and post-translationally modified peptides (RiPPs). They are classified into four subfamilies, based on the characteristics of their lanthipeptide synthetases. While over a hundred lanthipeptides have been discovered to date, very few of them are class IV lanthipeptides and the latter are all structurally similar. Here, we identified an uncharacterized group of class IV lanthipeptides using bioinformatics analysis. One representative pathway from Streptomyces sp. NRRL S-1022 was expressed in Escherichia coli, which generated a lanthipeptide with two nonoverlapping rings that have not been reported for known class IV lanthipeptides. Further investigation into the biosynthetic mechanism revealed that multiple modification pathways are in operation in which dehydration and cyclization occur in parallel. While peptidases for maturation of class IV lanthipeptides have been elusive, two aminopeptidases encoded in the genome of Streptomyces sp. NRRL S-1022 were shown to process the modified peptide by the dual endopeptidase/aminopeptidase activity. This work opens doors to discover more class IV lanthipeptides with interesting structural features and biological activities.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chengyou Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ian R. Bothwell
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Feldeková E, Solichová K, Horáčková Š, Kumherová M, Kyselka J. The impact of l-lanthionine supplementation on the production of nisin by lactococci. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Van Staden ADP, Faure LM, Vermeulen RR, Dicks LMT, Smith C. Functional Expression of GFP-Fused Class I Lanthipeptides in Escherichia coli. ACS Synth Biol 2019; 8:2220-2227. [PMID: 31553571 DOI: 10.1021/acssynbio.9b00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides, with several having antimicrobial activity. The biosynthetic machinery responsible for modification of the class I lanthipeptide nisin provides a means for modification of a diverse range of lanthipeptides. However, literature regarding expression of class I lanthipeptides in a malleable Gram-negative host such as Escherichia coli is limited. Here, we coexpressed precursor class I lanthipeptides fused to green fluorescent protein (GFP) along with the dehydratase and cyclase from the nisin operon. Fusion to GFP did not interfere with post-translational modifications as antimicrobially active nisin could be proteolytically liberated from the expressed GFP fusion. Additionally, we used this system to express two other class I lanthipeptides precursors fused to GFP (Pep5 and epilancin 15X), although only Pep5 exhibited consistent antimicrobial activity. This is the first report of a GFP-based fusion expression system for the expression of class I lanthipeptides in E. coli. The GFP-based fusion expression system is a robust system with the advantage of directly visualizing expression and purification through GFP fluorescence.
Collapse
Affiliation(s)
- Anton Du Preez Van Staden
- Department of Physiological Sciences, Stellenbosch University, Matieland 7602, South Africa
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Lindsay M. Faure
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Ross R. Vermeulen
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
23
|
Acedo JZ, Bothwell IR, An L, Trouth A, Frazier C, van der Donk WA. O-Methyltransferase-Mediated Incorporation of a β-Amino Acid in Lanthipeptides. J Am Chem Soc 2019; 141:16790-16801. [PMID: 31568727 DOI: 10.1021/jacs.9b07396] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lanthipeptides represent a large class of cyclic natural products defined by the presence of lanthionine (Lan) and methyllanthionine (MeLan) cross-links. With the advances in DNA sequencing technologies and genome mining tools, new biosynthetic enzymes capable of installing unusual structural features are continuously being discovered. In this study, we investigated an O-methyltransferase that is a member of the most prominent auxiliary enzyme family associated with class I lanthipeptide biosynthetic gene clusters. Despite the prevalence of these enzymes, their function has not been established. Herein, we demonstrate that the O-methyltransferase OlvSA encoded in the olv gene cluster from Streptomyces olivaceus NRRL B-3009 catalyzes the rearrangement of a highly conserved aspartate residue to a β-amino acid, isoaspartate, in the lanthipeptide OlvA(BCSA). We elucidated the NMR solution structure of the GluC-digested peptide, OlvA(BCSA)GluC, which revealed a unique ring topology comprising four interlocking rings and positions the isoaspartate residue in a solvent exposed loop that is stabilized by a MeLan ring. Gas chromatography-mass spectrometry analysis further indicated that OlvA(BCSA) contains two dl-MeLan rings and two Lan rings with an unusual ll-stereochemistry. Lastly, in vitro reconstitution of OlvSA activity showed that it is a leader peptide-independent and S-adenosyl methionine-dependent O-methyltransferase that mediates the conversion of a highly conserved aspartate residue in a cyclic substrate into a succinimide, which is hydrolyzed to generate an Asp or isoAsp containing peptide. This overall transformation converts an α-amino acid into a β-amino acid in a ribosomally synthesized peptide, via an electrophilic intermediate that may be the intended product.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ian R Bothwell
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Linna An
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Abby Trouth
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Clara Frazier
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
24
|
Ongey EL, Santolin L, Waldburger S, Adrian L, Riedel SL, Neubauer P. Bioprocess Development for Lantibiotic Ruminococcin-A Production in Escherichia coli and Kinetic Insights Into LanM Enzymes Catalysis. Front Microbiol 2019; 10:2133. [PMID: 31572338 PMCID: PMC6753504 DOI: 10.3389/fmicb.2019.02133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Ruminococcin-A (RumA) is a peptide antibiotic with post-translational modifications including thioether cross-links formed from non-canonical amino acids, called lanthionines, synthesized by a dedicated lanthionine-generating enzyme RumM. RumA is naturally produced by Ruminococcus gnavus, which is part of the normal bacterial flora in the human gut. High activity of RumA against pathogenic Clostridia has been reported, thus allowing potential exploitation of RumA for clinical applications. However, purifying RumA from R. gnavus is challenging due to low production yields (<1 μg L-1) and difficulties to cultivate the obligately anaerobic organism. We recently reported the reconstruction of the RumA biosynthesis machinery in Escherichia coli where the fully modified and active peptide was expressed as a fusion protein together with GFP. In the current study we developed a scale-up strategy for the biotechnologically relevant heterologous production of RumA, aimed at overproducing the peptide under conditions comparable with those in industrial production settings. To this end, glucose-limited fed-batch cultivation was used. Firstly, parallel cultivations were performed in 24-microwell plates using the enzyme-based automated glucose-delivery cultivation system EnPresso® B to determine optimal conditions for IPTG induction. We combined the bioprocess development with ESI-MS and tandem ESI-MS to monitor modification of the precursor peptide (preRumA) during bioreactor cultivation. Dehydration of threonine and serine residues in the core peptide, catalyzed by RumM, occurs within 1 h after IPTG induction while formation of thioether cross-bridges occur around 2.5 h after induction. Our data also supplies important information on modification kinetics especially with respect to the fluctuations observed in the various dehydrated precursor peptide versions or intermediates produced at different time points during bioreactor cultivation. Overall, protein yields obtained from the bioreactor cultivations were >120 mg L-1 for the chimeric construct and >150 mg L-1 for RumM. The correlation observed between microscale and lab-scale bioreactor cultivations suggests that the process is robust and realistically applicable to industrial-scale conditions.
Collapse
Affiliation(s)
- Elvis L Ongey
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lara Santolin
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Saskia Waldburger
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany.,Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sebastian L Riedel
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Barbosa J, Caetano T, Mösker E, Süssmuth R, Mendo S. Lichenicidin rational site-directed mutagenesis library: A tool to generate bioengineered lantibiotics. Biotechnol Bioeng 2019; 116:3053-3062. [PMID: 31350903 DOI: 10.1002/bit.27130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides that arise as an alternative to the traditional antibiotics. Lichenicidin is active against clinically relevant bacteria and it was the first lantibiotic to be fully produced in vivo in the Gram-negative host Escherichia coli. Here, we present the results of a library of lichenicidin mutants, in which the mutations were generated based on the extensive bibliographical search available for other lantibiotics. The antibacterial activity of two-peptide lantibiotics, as is lichenicidin, requires the synergistic activity of two peptides. We established a method that allows screening for bioactivity which does not require the purification of the complementary peptide. It is an inexpensive, fast and user-friendly method that can be scaled up to screen large libraries of bioengineered two-peptide lantibiotics. The applied system is reliable and robust because, in general, the results obtained corroborate structure-activity relationship studies carried out for other lantibiotics.
Collapse
Affiliation(s)
- Joana Barbosa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Eva Mösker
- Institut für Chemie, Technical University of Berlin, Berlin, Germany
| | - Roderich Süssmuth
- Institut für Chemie, Technical University of Berlin, Berlin, Germany
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
27
|
Cebrián R, Macia-Valero A, Jati AP, Kuipers OP. Design and Expression of Specific Hybrid Lantibiotics Active Against Pathogenic Clostridium spp. Front Microbiol 2019; 10:2154. [PMID: 31616392 PMCID: PMC6768957 DOI: 10.3389/fmicb.2019.02154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile has been reported as the most common cause of nosocomial diarrhea (antibiotic-associated diarrhea), resulting in significant morbidity and mortality in hospitalized patients. The resistance of the clostridial spores to antibiotics and their side effects on the gut microbiota are two factors related to the emergence of infection and its relapses. Lantibiotics provide an innovative alternative for cell growth inhibition due to their dual mechanism of action (membrane pore-forming and cell wall synthesis inhibition) and low resistance rate. Based on the fact that bacteriocins are usually active against bacteria closely related to the producer strains, a new dual approach combining genome mining and synthetic biology was performed, by designing new lantibiotics with high activity and specificity toward Clostridium. We first attempted the heterologous expression of putative lantibiotics identified following Clostridium genome mining. Subsequently, we designed new hybrid lantibiotics combining the start or end of the putative clostridial peptides and the start or end parts of nisin. The designed peptides were cloned and expressed using the nisin biosynthetic machinery in Lactococcus lactis. From the 20 initial peptides, only 1 fulfilled the requirements established in this work to be considered as a good candidate: high heterologous production level and high specificity/activity against clostridial species. The high specificity and activity observed for the peptide AMV10 makes it an interesting candidate as an alternative to traditional antibiotics in the treatment of C. difficile infections, avoiding side effects and protecting the normal gut microbiota.
Collapse
|
28
|
Di Costanzo L, Dutta S, Burley SK. Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank. Biopolymers 2018; 109:e23230. [PMID: 30368772 DOI: 10.1002/bip.23230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Extensive efforts invested in understanding the rules of protein folding are now being applied, with good effect, in de novo design of proteins/peptides. For proteins containing standard α-amino acids alone, knowledge derived from experimentally determined three-dimensional (3D) structures of proteins and biologically active peptides are available from the Protein Data Bank (PDB), and the Cambridge Structural Database (CSD). These help predict and design protein structures, with reasonable confidence. However, our knowledge of 3D structures of biomolecules containing backbone modified amino acids is still evolving. A major challenge in de novo protein/peptide design concerns the engineering of conformationally constrained molecules with specific structural elements and chemical groups appropriately positioned for biological activity. This review explores four classes of amino acid modifications that constrain protein/peptide backbone structure. Systematic analysis of peptidic molecule structures (eg, bioactive peptides, inhibitors, antibiotics, and designed molecules), containing these backbone-modified amino acids, found in the PDB and CSD are discussed. The review aims to provide structure-function insights that will guide future design of proteins/peptides.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Shuchismita Dutta
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, U.S.A.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| |
Collapse
|
29
|
Denoël T, Lemaire C, Luxen A. Progress in Lanthionine and Protected Lanthionine Synthesis. Chemistry 2018; 24:15421-15441. [PMID: 29714402 DOI: 10.1002/chem.201801115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Indexed: 01/01/2023]
Abstract
Lanthionine (Lan), a non-proteinogenic natural amino acid, is an essential component of peptidoglycan found in the cell wall of Fusobacterium species. Lan and β-methyllanthionine are also key constituents in lantibiotics, a prevalent class of peptide antibiotics. The development of those new antibacterial drugs with enhanced properties is the focus of recent research. Since multiple isomers of Lan are possible, a regio- and diastereoselective synthesis is challenging. This comprehensive review summarizes the known chemical syntheses of lanthionine from various precursors (e.g., β-chloroalanine, cystine, dehydroalanine, β-iodoalanine, aziridine, serine lactone, sulfamidate) since 1941. Methods for preparation of unprotected, protected, orthogonally protected, and mutually orthogonally protected lanthionine with relevant experimental details and perspectives on their usefulness are provided. The potential of these Lan derivatives is illustrated by one recent application.
Collapse
Affiliation(s)
- Thibaut Denoël
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - Christian Lemaire
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - André Luxen
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| |
Collapse
|
30
|
Ongey EL, Giessmann RT, Fons M, Rappsilber J, Adrian L, Neubauer P. Heterologous Biosynthesis, Modifications and Structural Characterization of Ruminococcin-A, a Lanthipeptide From the Gut Bacterium Ruminococcus gnavus E1, in Escherichia coli. Front Microbiol 2018; 9:1688. [PMID: 30093894 PMCID: PMC6071512 DOI: 10.3389/fmicb.2018.01688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
Ruminococcin A (RumA) is a lanthipeptide with high activity against pathogenic clostridia and is naturally produced by the strict anaerobic bacterium Ruminococcus gnavus E1, isolated from human intestine. Cultivating R. gnavus E1 is challenging, limiting high-quality production, further biotechnological development and therapeutic exploitation of RumA. To supply an alternative production system, the gene encoding RumA-modifying enzyme (RumM) and the gene encoding the unmodified precursor peptide (preRumA) were amplified from the chromosome of R. gnavus E1 and coexpressed in Escherichia coli. Our results show that the ruminococcin-A lanthionine synthetase RumM catalyzed dehydration of threonine and serine residues and subsequently installed thioether bridges into the core structure of a mutant version of preRumA (preRumA∗). These modifications were achieved when the peptide was expressed as a fusion protein together with green fluorescence protein (GFP), demonstrating that a larger attachment to the N-terminus of the leader peptide does not obstruct in vivo processivity of RumM in modifying the core peptide. The leader peptide serves as a docking sequence which the modifying enzyme recognizes and interacts with, enabling its catalytic role. We further investigated RumM catalysis in conjunction with the formation of complexes observed between RumM and the chimeric GFP fusion protein. Results obtained suggested some insights into the catalytic mechanisms of class II lanthipeptide synthetases. Our data further indicated the presence of three thioether bridges, contradicting a previous report whose findings ruled out the possibility of forming a third ring in RumA. Modified preRumA∗ was activated in vitro by removing the leader peptide using trypsin and biological activity was achieved against Bacillus subtilis ATCC 6633. A production yield of 6 mg of pure modified preRumA∗ per liter of E. coli culture was attained and considering the size ratio of the leader-to-core segments of preRumA∗, this amount would generate a final yield of approximately 1-2 mg of active RumA when the leader peptide is removed. The yield of our system exceeds that attainable in the natural producer by several 1000-fold. The system developed herein supplies useful tools for product optimization and for performing in vivo peptide engineering to generate new analogs with superior anti-infective properties.
Collapse
Affiliation(s)
- Elvis L Ongey
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robert T Giessmann
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Michel Fons
- Aix Marseille Univ, CNRS, BIP UMR 7281, Marseille, France
| | - Juri Rappsilber
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
31
|
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides containing thioether cross-links formed through addition of a cysteine to a dehydroalanine (to form lanthionine) or to a dehydrobutyrine (to form 3-methyllanthionine). Genome sequencing of marine cyanobacteria lead to the discovery of 1.6 million open reading frames encoding lanthipeptides. In many cases, a genome encodes a single lanthipeptide synthetase, but a large number of substrates. The enzymatic modification process in Prochlorococcus MIT9313 has been reconstituted in vitro, and a variety of experimental approaches have been used to try and understand how one enzyme is capable of modifying 30 different substrates. The methods used to characterize this system will be described along with a brief genomic description of the lanthipeptide landscape found in Prochlorococcus and Synechococcus.
Collapse
|
32
|
Jalan A, Kastner DW, Webber KGI, Smith MS, Price JL, Castle SL. Bulky Dehydroamino Acids Enhance Proteolytic Stability and Folding in β-Hairpin Peptides. Org Lett 2017; 19:5190-5193. [PMID: 28910115 PMCID: PMC6085080 DOI: 10.1021/acs.orglett.7b02455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bulky dehydroamino acids dehydrovaline (ΔVal) and dehydroethylnorvaline (ΔEnv) can be inserted into the turn regions of β-hairpin peptides without altering their secondary structures. These residues increase proteolytic stability, with ΔVal at the (i + 1) position having the most substantial impact. Additionally, a bulky dehydroamino acid can be paired with a d-amino acid (i.e., d-Pro) to synergistically enhance resistance to proteolysis. A link between proteolytic stability and peptide structure is established by the finding that a stabilized ΔVal-containing β-hairpin is more highly folded than its Asn-containing congener.
Collapse
Affiliation(s)
- Ankur Jalan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - David W. Kastner
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Kei G. I. Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Mason S. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Joshua L. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Steven L. Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| |
Collapse
|
33
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Montalbán-López M, van Heel AJ, Kuipers OP. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiol Rev 2016; 41:5-18. [PMID: 27591436 DOI: 10.1093/femsre/fuw034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post-translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics. Various approaches, where the modifying enzymes and corresponding leader peptides are decoupled from their natural core peptide and integrated in designed plug-and-play production systems, enable the production of modified peptides that are either derived from vast genomic data or designed using functional parts from a wide diversity of core peptides. These approaches constitute a powerful discovery platform to develop novel antimicrobials with high therapeutic potential.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Auke J van Heel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
35
|
Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Fact 2016; 15:97. [PMID: 27267232 PMCID: PMC4897893 DOI: 10.1186/s12934-016-0502-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described. In this review we provide a synoptic comparison of research efforts on total synthesis and in vivo biosynthesis aimed at fostering lanthipeptides production. We further examine current applications and propose measures to enhance product yields. Owing to their elaborate chemical structures, chemical synthesis of these biomolecules is economically less feasible for large-scale applications, and hence biological production seems to be the only realistic alternative.
Collapse
Affiliation(s)
- Elvis Legala Ongey
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| |
Collapse
|
36
|
Huo L, van der Donk WA. Discovery and Characterization of Bicereucin, an Unusual d-Amino Acid-Containing Mixed Two-Component Lantibiotic. J Am Chem Soc 2016; 138:5254-7. [PMID: 27074593 PMCID: PMC4851115 DOI: 10.1021/jacs.6b02513] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lantibiotics are a group of ribosomally synthesized and post-translationally modified peptides (RiPPs) exhibiting antimicrobial activity. They are characterized by the presence of the thioether-containing bisamino acids lanthionine and methyllanthionine. Here, we report a two-component lantibiotic from Bacillus cereus SJ1 with unusual structural features that we named bicereucin. Unlike all previous two-component lantibiotics, only one of the two peptides of bicereucin contains a lanthionine. The second peptide lacks any cysteines but contains several d-amino acids. These are installed by the dehydrogenase BsjJB, the activity of which was successfully reconstituted in vitro. The proteolytic removal of the leader peptide was also performed in vitro. Bicereucin displayed synergistic antimicrobial activities against Gram-positive strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci as well as hemolytic activity. To illustrate the utility of the enzymes, an analog of the d-amino acid containing opioid dermorphin was successfully produced in E. coli by employing the dehydratase BsjM and the dehydrogenase NpnJA.
Collapse
Affiliation(s)
- Liujie Huo
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 2016; 100:2939-51. [PMID: 26860942 PMCID: PMC4786598 DOI: 10.1007/s00253-016-7343-9] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/24/2022]
Abstract
Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.
Collapse
|
38
|
Yu Y, Mukherjee S, van der Donk WA. Product Formation by the Promiscuous Lanthipeptide Synthetase ProcM is under Kinetic Control. J Am Chem Soc 2015; 137:5140-8. [PMID: 25803126 DOI: 10.1021/jacs.5b01409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lanthipeptides are natural products that belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). They contain characteristic lanthionine (Lan) or methyllanthionine (MeLan) structures that contribute to their diverse biological activities. Despite its structurally diverse set of 30 substrates, the highly substrate-tolerant lanthipeptide synthetase ProcM is shown to display high selectivity for formation of a single product from selected substrates. Mutation of the active site zinc ligands to alanine or the unique zinc ligand Cys971 to histidine resulted in a decrease of the cyclization rate, especially for the second cyclization of the substrates ProcA1.1, ProcA2.8, and ProcA3.3. Surprisingly, for ProcA3.3 these mutations also altered the regioselectivity of cyclization resulting in a new major product. ProcM was not able to correct the ring topology of incorrectly cyclized intermediates and products, suggesting that thermodynamic control is not operational. Collectively, the data in this study suggest that the high regioselectivity of product formation is governed by the selectivity of the initially formed ring.
Collapse
Affiliation(s)
- Yi Yu
- †Department of Biochemistry, ‡Department of Chemistry, and §Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Subha Mukherjee
- †Department of Biochemistry, ‡Department of Chemistry, and §Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- †Department of Biochemistry, ‡Department of Chemistry, and §Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| |
Collapse
|