1
|
Stefanović C, Hager-Mair FF, Breslmayr E, López-Guzmán A, Lim C, Blaukopf M, Kosma P, Oostenbrink C, Ludwig R, Schäffer C. Molecular modelling and site-directed mutagenesis provide insight into saccharide pyruvylation by the Paenibacillus alvei CsaB enzyme. Sci Rep 2023; 13:13394. [PMID: 37591902 PMCID: PMC10435577 DOI: 10.1038/s41598-023-40072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Pyruvylation is a biologically versatile but mechanistically unexplored saccharide modification. 4,6-Ketal pyruvylated N-acetylmannosamine within bacterial secondary cell wall polymers serves as a cell wall anchoring epitope for proteins possessing a terminal S-layer homology domain trimer. The pyruvyltransferase CsaB from Paenibacillus alvei served as a model to investigate the structural basis of the pyruvyltransfer reaction by a combination of molecular modelling and site-directed mutagenesis together with an enzyme assay using phosphoenolpyruvate (PEP; donor) and synthetic β-D-ManNAc-(1 → 4)-α-D-GlcNAc-diphosphoryl-11-phenoxyundecyl (acceptor). CsaB protein structure modelling was done using Phyre2 and I-Tasser based on the partial crystal structure of the Schizosaccharomyces pombe pyruvyltransferase Pvg1p and by AlphaFold. The models informed the construction of twelve CsaB mutants targeted at plausible PEP and acceptor binding sites and KM and kcat values were determined to evaluate the mutants, indicating the importance of a loop region for catalysis. R148, H308 and K328 were found to be critical to PEP binding and insight into acceptor binding was obtained from an analysis of Y14 and F16 mutants, confirming the modelled binding sites and interactions predicted using Molecular Operating Environment. These data lay the basis for future mechanistic studies of saccharide pyruvylation as a novel target for interference with bacterial cell wall assembly.
Collapse
Affiliation(s)
- Cordula Stefanović
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
| | - Fiona F Hager-Mair
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
| | - Erik Breslmayr
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
- Department of Material Sciences and Process Engineering, Institute for Molecular Modelling and Simulation, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Arturo López-Guzmán
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
- Covirabio GmbH, Brehmstrasse 14a, 1110, Vienna, Austria
| | - Charlie Lim
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Markus Blaukopf
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute for Molecular Modelling and Simulation, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria
| | - Roland Ludwig
- Department of Food Science and Technology, Biocatalysis and Biosensing Laboratory, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria.
- Department of Bionanosciences, Institute of Biologically Inspired Materials, Universität für Bodenkultur Wien, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
2
|
Fernandes PAR, Coimbra MA. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr Polym 2023; 314:120965. [PMID: 37173007 DOI: 10.1016/j.carbpol.2023.120965] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Over the last years, polysaccharides have been linked to antioxidant effects using both in vitro chemical and biological models. The reported structures, claimed to act as antioxidants, comprise chitosan, pectic polysaccharides, glucans, mannoproteins, alginates, fucoidans, and many others of all type of biological sources. The structural features linked to the antioxidant action include the polysaccharide charge, molecular weight, and the occurrence of non-carbohydrate substituents. The establishment of structure/function relationships can be, however, biased by secondary phenomena that tailor polysaccharides behavior in antioxidant systems. In this sense, this review confronts some basic concepts of polysaccharides chemistry with the current claim of carbohydrates as antioxidants. It critically discusses how the fine structure and properties of polysaccharides can define polysaccharides as antioxidants. Polysaccharides antioxidant action is highly dependent on their solubility, sugar ring structure, molecular weight, occurrence of positive or negatively charged groups, protein moieties and covalently linked phenolic compounds. However, the occurrence of phenolic compounds and protein as contaminants leads to misleading results in methodologies often used for screening and characterization purposes, as well as in vivo models. Despite falling in the concept of antioxidants, the role of polysaccharides must be well defined according with the matrices where they are involved.
Collapse
Affiliation(s)
- Pedro A R Fernandes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
4
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
5
|
Mettu R, Lih YH, Vulupala HR, Chen CY, Hsu MH, Lo HJ, Liao KS, Cheng YY, Chiu CH, Wu CY. Synthetic Library of Oligosaccharides Derived from the Capsular Polysaccharide of Streptococcus pneumoniae Serotypes 6A and 6B and Their Immunological Studies. ACS Infect Dis 2022; 8:626-634. [PMID: 35171577 DOI: 10.1021/acsinfecdis.1c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptococcus pneumoniae serotypes 6A and 6B are two of the common causes of invasive pneumococcal diseases. Although capsular polysaccharide conjugates of these two serotypes are included in the leading 13-valent pneumococcal conjugate vaccine, its low immunogenicity and high threshold for manufacturing technology indicated the need for vaccine improvement. Structurally defined synthetic immunogens have potential in dealing with these problems. To this end, we built a library of capsular polysaccharide fragments through convergent chemical synthesis in [2 + 2], [4 + 4], [4 + 3], [4 + 2], and [4 + 1] coupling manners. The library is comprised of 18 glycan antigens from trisaccharides to pseudo-octasaccharides, derived from the capsular repeating phosphorylated pseudo-tetrasaccharide with or without phosphate. Eight of them were selected for mouse immunization and further immunological studies. Four pseudo-tetrasaccharides with terminal or bridging phosphate elicited opsonic antibodies, which exhibited bactericidal activities and moderate cross-reactivities.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Hsuan Lih
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road, Section 2,
Nankang, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, 1 Roosevelt Road, Section 4, Daan, Taipei 10617, Taiwan
| | - Hanmanth Reddy Vulupala
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Mei-Hua Hsu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua first Road, Guishan, Taoyuan 33302, Taiwan
| | - Hong-Jay Lo
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 259 Wenhua first Road, Guishan, Taoyuan 33302, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, 128 Academia Road, Section 2,
Nankang, Taipei 11529, Taiwan
| |
Collapse
|
6
|
Lomont JP, Ralbovsky NM, Guza C, Saha-Shah A, Burzynski J, Konietzko J, Wang SC, McHugh PM, Mangion I, Smith JP. Process monitoring of polysaccharide deketalization for vaccine bioconjugation development using in situ analytical methodology. J Pharm Biomed Anal 2021; 209:114533. [PMID: 34929570 DOI: 10.1016/j.jpba.2021.114533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Pneumococcal conjugate vaccines (PCVs) are formed by bioconjugation of a carrier protein to the purified capsular polysaccharide (Ps) from multiple serological strains of Streptococcus pneumoniae. The associated bioconjugation chemistry relies on initial selective modifications to the Ps backbone structure. Among these modifications, removal of a ketal functional group, termed deketalization, is one that is important for pharmaceutical PCV production. Herein, we report a process monitoring investigation into the deketalization of a polysaccharide relevant to PCV process development. We have applied process analytical technology (PAT) for in situ process monitoring to study the deketalization reaction in real time. We find that in situ FTIR spectroscopy elucidates multiple classes of reaction kinetics, one of which correlates strongly with the deketalization reaction of interest. This PAT approach to real time reaction monitoring offers the possibility of improved process monitoring in the pharmaceutical production of PCVs. To our knowledge, this report represents the first PAT investigation into Ps deketalization. Our findings suggest that broader application of PAT to the chemical modifications associated with PCV bioconjugation, as well as other pharmaceutically relevant bioconjugation processes, carries the power to enhance process understanding, control, and efficiency through real time process monitoring.
Collapse
Affiliation(s)
- Justin P Lomont
- Analytical Research & Development, MRL, Merck & Co., Inc, West Point, PA 19486, USA.
| | - Nicole M Ralbovsky
- Analytical Research & Development, MRL, Merck & Co., Inc, West Point, PA 19486, USA
| | - Christine Guza
- Process Research & Development, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Anumita Saha-Shah
- Analytical Research & Development, MRL, Merck & Co., Inc, West Point, PA 19486, USA
| | - Joseph Burzynski
- Process Research & Development, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Janelle Konietzko
- Process Research & Development, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Sheng-Ching Wang
- Process Research & Development, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Patrick M McHugh
- Process Research & Development, MRL, Merck & Co., Inc., West Point, PA 19486, USA
| | - Ian Mangion
- Analytical Research & Development, MRL, Merck & Co., Inc, West Point, PA 19486, USA
| | - Joseph P Smith
- Analytical Research & Development, MRL, Merck & Co., Inc, West Point, PA 19486, USA.
| |
Collapse
|
7
|
Semi- and fully synthetic carbohydrate vaccines against pathogenic bacteria: recent developments. Biochem Soc Trans 2021; 49:2411-2429. [PMID: 34495299 PMCID: PMC8589429 DOI: 10.1042/bst20210766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
The importance of vaccine-induced protection was repeatedly demonstrated over the last three decades and emphasized during the recent COVID-19 pandemic as the safest and most effective way of preventing infectious diseases. Vaccines have controlled, and in some cases, eradicated global viral and bacterial infections with high efficiency and at a relatively low cost. Carbohydrates form the capsular sugar coat that surrounds the outer surface of human pathogenic bacteria. Specific surface-exposed bacterial carbohydrates serve as potent vaccine targets that broadened our toolbox against bacterial infections. Since first approved for commercial use, antibacterial carbohydrate-based vaccines mostly rely on inherently complex and heterogenous naturally derived polysaccharides, challenging to obtain in a pure, safe, and cost-effective manner. The introduction of synthetic fragments identical with bacterial capsular polysaccharides provided well-defined and homogenous structures that resolved many challenges of purified polysaccharides. The success of semisynthetic glycoconjugate vaccines against bacterial infections, now in different phases of clinical trials, opened up new possibilities and encouraged further development towards fully synthetic antibacterial vaccine solutions. In this mini-review, we describe the recent achievements in semi- and fully synthetic carbohydrate vaccines against a range of human pathogenic bacteria, focusing on preclinical and clinical studies.
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Seeberger PH. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem Rev 2021; 121:3598-3626. [PMID: 33794090 PMCID: PMC8154330 DOI: 10.1021/acs.chemrev.0c01210] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The glycocalyx, a thick layer of carbohydrates, surrounds the cell wall of most bacterial and parasitic pathogens. Recognition of these unique glycans by the human immune system results in destruction of the invaders. To elicit a protective immune response, polysaccharides either isolated from the bacterial cell surface or conjugated with a carrier protein, for T-cell help, are administered. Conjugate vaccines based on isolated carbohydrates currently protect millions of people against Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitides infections. Active pharmaceutical ingredients (APIs) are increasingly discovered by medicinal chemistry and synthetic in origin, rather than isolated from natural sources. Converting vaccines from biologicals to pharmaceuticals requires a fundamental understanding of how the human immune system recognizes carbohydrates and could now be realized. To illustrate the chemistry-based approach to vaccine discovery, I summarize efforts focusing on synthetic glycan-based medicinal chemistry to understand the mammalian antiglycan immune response and define glycan epitopes for novel synthetic glycoconjugate vaccines against Streptococcus pneumoniae, Clostridium difficile, Klebsiella pneumoniae, and other bacteria. The chemical tools described here help us gain fundamental insights into how the human system recognizes carbohydrates and drive the discovery of carbohydrate vaccines.
Collapse
|
10
|
Gening ML, Kurbatova EA, Nifantiev NE. Synthetic Analogs of Streptococcus pneumoniae Capsular Polysaccharides and Immunogenic Activities of Glycoconjugates. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:1-25. [PMID: 33776393 PMCID: PMC7980793 DOI: 10.1134/s1068162021010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium (pneumococcus) that causes severe diseases in adults and children. It was established that some capsular polysaccharides of the clinically significant serotypes of S. pneumoniae in the composition of commercial pneumococcal polysaccharide or conjugate vaccines exhibit low immunogenicity. The review considers production methods and structural features of the synthetic oligosaccharides from the problematic pneumococcal serotypes that are characterized with low immunogenicity due to destruction or detrimental modification occurring in the process of their preparation and purification. Bacterial serotypes that cause severe pneumococcal diseases as well as serotypes not included in the composition of the pneumococcal conjugate vaccines are also discussed. It is demonstrated that the synthetic oligosaccharides corresponding to protective glycotopes of the capsular polysaccharides of various pneumococcal serotypes are capable of inducing formation of the protective opsonizing antibodies and immunological memory. Optimal constructs of oligosaccharides from the epidemiologically significant pneumococcal serotypes are presented that can be used for designing synthetic pneumococcal vaccines, as well as test systems for diagnosis of S. pneumoniae infections and monitoring of vaccination efficiency .
Collapse
Affiliation(s)
- M. L. Gening
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - E A. Kurbatova
- Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia
| | - N. E. Nifantiev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
11
|
Javed, Mandal PK. Bacterial surface capsular polysaccharides from Streptococcus pneumoniae: A systematic review on structures, syntheses, and glycoconjugate vaccines. Carbohydr Res 2021; 502:108277. [PMID: 33743443 DOI: 10.1016/j.carres.2021.108277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The polysaccharide capsule of Streptococcus pneumoniae constitutes the outermost surface structure of the organism and plays a critical role in virulence. The capsule is the target of current pneumococcal vaccines and glycoconjugates and has important medical and industrial applications. Widespread use of these vaccines is driving changes in serotype prevalence in disease. A massive array of sugars and glycosidic linkages experienced with complete diversity of potential polysaccharide structures. However, it is impossible to collect a sufficient quantity of glycan antigens for the preparation of CPS-based glycoconjugate vaccines from natural sources with high purity and for thorough biological evaluation. So nowadays, the development of a chemical synthetic strategy and their conjugation with a carrier protein to form synthetic glycoconjugate vaccines has been used to gain access on a large scale. This review provides a comprehensive summary of structures, synthesis as well as recent development of synthetic glycoconjugate vaccines, which will support research and may benefit the glycochemical and medical sciences.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Bhetuwal BR, Wu F, Meng S, Zhu J. Stereoselective Synthesis of 2-Azido-2-deoxy-β-d-mannosides via Cs 2CO 3-Mediated Anomeric O-Alkylation with Primary Triflates: Synthesis of a Tetrasaccharide Fragment of Micrococcus luteus Teichuronic Acid. J Org Chem 2020; 85:16196-16206. [PMID: 33201716 DOI: 10.1021/acs.joc.0c02370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cesium carbonate-mediated anomeric O-alkylation of various protected 2-azido-2-deoxy-d-mannoses with primary triflate electrophiles afforded corresponding 2-azido-2-deoxy-β-mannosides in good yields and excellent anomeric selectivity. In addition, 1,3-dibromo-5,5-dimethylhydantoin was found to be the optimal oxidant for preparation of those 2-azido-2-deoxy-d-mannoses from their corresponding thioglycosides. The utilization of this method was demonstrated in the synthesis of a tetrasaccharide fragment of Micrococcus luteus teichuronic acid containing N-acetyl-β-d-mannosaminuronic acid (ManNAcA).
Collapse
Affiliation(s)
- Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
13
|
Campanero-Rhodes MA, Lacoma A, Prat C, García E, Solís D. Development and Evaluation of a Microarray Platform for Detection of Serum Antibodies Against Streptococcus pneumoniae Capsular Polysaccharides. Anal Chem 2020; 92:7437-7443. [DOI: 10.1021/acs.analchem.0c01009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- María A. Campanero-Rhodes
- Instituto de Quı́mica Fı́sica Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda. Monforte de Lemos 3−5, 28029 Madrid, Spain
| | - Alicia Lacoma
- CIBER de Enfermedades Respiratorias (CIBERES), Avda. Monforte de Lemos 3−5, 28029 Madrid, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias i Pujol, Carretera de Canyet s/n, 08916 Badalona, Spain
| | - Cristina Prat
- CIBER de Enfermedades Respiratorias (CIBERES), Avda. Monforte de Lemos 3−5, 28029 Madrid, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Germans Trias i Pujol, Carretera de Canyet s/n, 08916 Badalona, Spain
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Ernesto García
- CIBER de Enfermedades Respiratorias (CIBERES), Avda. Monforte de Lemos 3−5, 28029 Madrid, Spain
- Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Dolores Solís
- Instituto de Quı́mica Fı́sica Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda. Monforte de Lemos 3−5, 28029 Madrid, Spain
| |
Collapse
|
14
|
Campanero-Rhodes MA, Palma AS, Menéndez M, Solís D. Microarray Strategies for Exploring Bacterial Surface Glycans and Their Interactions With Glycan-Binding Proteins. Front Microbiol 2020; 10:2909. [PMID: 32010066 PMCID: PMC6972965 DOI: 10.3389/fmicb.2019.02909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bacterial surfaces are decorated with distinct carbohydrate structures that may substantially differ among species and strains. These structures can be recognized by a variety of glycan-binding proteins, playing an important role in the bacteria cross-talk with the host and invading bacteriophages, and also in the formation of bacterial microcolonies and biofilms. In recent years, different microarray approaches for exploring bacterial surface glycans and their recognition by proteins have been developed. A main advantage of the microarray format is the inherent miniaturization of the method, which allows sensitive and high-throughput analyses with very small amounts of sample. Antibody and lectin microarrays have been used for examining bacterial glycosignatures, enabling bacteria identification and differentiation among strains. In addition, microarrays incorporating bacterial carbohydrate structures have served to evaluate their recognition by diverse host/phage/bacterial glycan-binding proteins, such as lectins, effectors of the immune system, or bacterial and phagic cell wall lysins, and to identify antigenic determinants for vaccine development. The list of samples printed in the arrays includes polysaccharides, lipopoly/lipooligosaccharides, (lipo)teichoic acids, and peptidoglycans, as well as sequence-defined oligosaccharide fragments. Moreover, microarrays of cell wall fragments and entire bacterial cells have been developed, which also allow to study bacterial glycosylation patterns. In this review, examples of the different microarray platforms and applications are presented with a view to give the current state-of-the-art and future prospects in this field.
Collapse
Affiliation(s)
- María Asunción Campanero-Rhodes
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Angelina Sa Palma
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Margarita Menéndez
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Solís
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Hager FF, Sützl L, Stefanović C, Blaukopf M, Schäffer C. Pyruvate Substitutions on Glycoconjugates. Int J Mol Sci 2019; 20:E4929. [PMID: 31590345 PMCID: PMC6801904 DOI: 10.3390/ijms20194929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Glycoconjugates are the most diverse biomolecules of life. Mostly located at the cell surface, they translate into cell-specific "barcodes" and offer a vast repertoire of functions, including support of cellular physiology, lifestyle, and pathogenicity. Functions can be fine-tuned by non-carbohydrate modifications on the constituting monosaccharides. Among these modifications is pyruvylation, which is present either in enol or ketal form. The most commonly best-understood example of pyruvylation is enol-pyruvylation of N-acetylglucosamine, which occurs at an early stage in the biosynthesis of the bacterial cell wall component peptidoglycan. Ketal-pyruvylation, in contrast, is present in diverse classes of glycoconjugates, from bacteria to algae to yeast-but not in humans. Mild purification strategies preventing the loss of the acid-labile ketal-pyruvyl group have led to a collection of elucidated pyruvylated glycan structures. However, knowledge of involved pyruvyltransferases creating a ring structure on various monosaccharides is scarce, mainly due to the lack of knowledge of fingerprint motifs of these enzymes and the unavailability of genome sequences of the organisms undergoing pyruvylation. This review compiles the current information on the widespread but under-investigated ketal-pyruvylation of monosaccharides, starting with different classes of pyruvylated glycoconjugates and associated functions, leading to pyruvyltransferases, their specificity and sequence space, and insight into pyruvate analytics.
Collapse
Affiliation(s)
- Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Leander Sützl
- Department of Food Science and Technology, Food Biotechnology Laboratory, Muthgasse 11, Universität für Bodenkultur Wien, A-1190 Vienna, Austria.
| | - Cordula Stefanović
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| | - Markus Blaukopf
- Department of Chemistry, Division of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria.
| |
Collapse
|
16
|
Taylor ME, Drickamer K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J 2019; 286:1800-1814. [PMID: 30657247 PMCID: PMC6563452 DOI: 10.1111/febs.14759] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Mammalian glycan-binding receptors, sometimes known as lectins, interact with glycans, the oligosaccharide portions of endogenous mammalian glycoproteins and glycolipids as well as sugars on the surfaces of microbes. These receptors guide glycoproteins out of and back into cells, facilitate communication between cells through both adhesion and signaling, and allow the innate immune system to respond quickly to viral, fungal, bacterial, and parasitic pathogens. For many of the roughly 100 glycan-binding receptors that are known in humans, there are good descriptions of what types of glycans they bind and how selectivity for these ligands is achieved at the molecular level. In some cases, there is also comprehensive evidence for the roles that the receptors play at the cellular and organismal levels. In addition to highlighting these well-understood paradigms for glycan-binding receptors, this review will suggest where gaps remain in our understanding of the physiological functions that they can serve.
Collapse
|
17
|
Geissner A, Reinhardt A, Rademacher C, Johannssen T, Monteiro J, Lepenies B, Thépaut M, Fieschi F, Mrázková J, Wimmerova M, Schuhmacher F, Götze S, Grünstein D, Guo X, Hahm HS, Kandasamy J, Leonori D, Martin CE, Parameswarappa SG, Pasari S, Schlegel MK, Tanaka H, Xiao G, Yang Y, Pereira CL, Anish C, Seeberger PH. Microbe-focused glycan array screening platform. Proc Natl Acad Sci U S A 2019; 116:1958-1967. [PMID: 30670663 PMCID: PMC6369816 DOI: 10.1073/pnas.1800853116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anika Reinhardt
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Timo Johannssen
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - João Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michel Thépaut
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Franck Fieschi
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Jana Mrázková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Michaela Wimmerova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Frank Schuhmacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sebastian Götze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Dan Grünstein
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Xiaoqiang Guo
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heung Sik Hahm
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jeyakumar Kandasamy
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Daniele Leonori
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Christopher E Martin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Sandip Pasari
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mark K Schlegel
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Hidenori Tanaka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Guozhi Xiao
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - You Yang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany;
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
18
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
20
|
Hasan T, Kumari K, Devi SC, Handa J, Rehman T, Ansari NA, Singh LR. Osmolytes in vaccine production, flocculation and storage: a critical review. Hum Vaccin Immunother 2018; 15:514-525. [PMID: 30273503 DOI: 10.1080/21645515.2018.1526585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small molecule osmolytes, responsible for protecting stresses have long been known to rescue proteins and enzymes from loss of function. In addition to protecting macromolecules integrity, many osmolytes also act as potential antioxidant and also help to prevent protein aggregation, amyloid formation or misfolding, and therefore are considered promising molecules for neurodegenerative and many other genetic diseases. Osmolytes are also known to be involved in the regulation of several key immunological processes. In the present review we discuss in detail the effect of these compounds on important aspects of vaccines i.e., increasing the efficiency, production and purification steps. The present review therefore will help researchers to make a better strategy in vaccine production to formulation by incorporating specific and appropriate osmolytes in the processes.
Collapse
Affiliation(s)
- Tauheed Hasan
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Kritika Kumari
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | | | - Jaya Handa
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Tabish Rehman
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | - Nasim Akhtar Ansari
- a Dr. B.R. Ambedkar Center for Biomedical Research , University of Delhi , Delhi , India
| | | |
Collapse
|
21
|
Colombo C, Pitirollo O, Lay L. Recent Advances in the Synthesis of Glycoconjugates for Vaccine Development. Molecules 2018; 23:molecules23071712. [PMID: 30011851 PMCID: PMC6099631 DOI: 10.3390/molecules23071712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
During the last decade there has been a growing interest in glycoimmunology, a relatively new research field dealing with the specific interactions of carbohydrates with the immune system. Pathogens’ cell surfaces are covered by a thick layer of oligo- and polysaccharides that are crucial virulence factors, as they mediate receptors binding on host cells for initial adhesion and organism invasion. Since in most cases these saccharide structures are uniquely exposed on the pathogen surface, they represent attractive targets for vaccine design. Polysaccharides isolated from cell walls of microorganisms and chemically conjugated to immunogenic proteins have been used as antigens for vaccine development for a range of infectious diseases. However, several challenges are associated with carbohydrate antigens purified from natural sources, such as their difficult characterization and heterogeneous composition. Consequently, glycoconjugates with chemically well-defined structures, that are able to confer highly reproducible biological properties and a better safety profile, are at the forefront of vaccine development. Following on from our previous review on the subject, in the present account we specifically focus on the most recent advances in the synthesis and preliminary immunological evaluation of next generation glycoconjugate vaccines designed to target bacterial and fungal infections that have been reported in the literature since 2011.
Collapse
Affiliation(s)
- Cinzia Colombo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Olimpia Pitirollo
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| | - Luigi Lay
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
22
|
Broecker F, Götze S, Hudon J, Rathwell DCK, Pereira CL, Stallforth P, Anish C, Seeberger PH. Synthesis, Liposomal Formulation, and Immunological Evaluation of a Minimalistic Carbohydrate-α-GalCer Vaccine Candidate. J Med Chem 2018; 61:4918-4927. [PMID: 29742893 DOI: 10.1021/acs.jmedchem.8b00312] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fully synthetic glycan-based vaccines hold great potential as preventive and therapeutic vaccines against infectious diseases as well as cancer. Here, we present a two-component platform based on the facile conjugation of carbohydrate antigens to α-galactosylceramide (α-GalCer) to yield fully synthetic vaccine candidates. Formulation of the cancer-associated Tn antigen glycolipid model vaccine candidate into liposomes of different sizes and subsequent immunization of mice generated specific, high-affinity antibodies against the carbohydrate antigen with characteristics of T cell-dependent immunity. Liposome formulation elicited more reproducible glycan immunity than a conventional glycoconjugate vaccine bearing the same glycan antigen did. Further evaluation of the immune response revealed that the size of the liposomes influenced the glycan antibody responses toward either a cellular (Th1) or a humoral (Th2) immune phenotype. The glycolipid vaccine platform affords strong and robust antiglycan antibody responses in vivo without the need for an external adjuvant.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Sebastian Götze
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Jonathan Hudon
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Dominea C K Rathwell
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Claney L Pereira
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Pierre Stallforth
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
23
|
Ménová P, Sella M, Sellrie K, Pereira CL, Seeberger PH. Identification of the Minimal Glycotope of Streptococcus pneumoniae 7F Capsular Polysaccharide using Synthetic Oligosaccharides. Chemistry 2018; 24:4181-4187. [PMID: 29333751 DOI: 10.1002/chem.201705379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/10/2022]
Abstract
Streptococcus pneumoniae causes life-threatening diseases including meningitis, pneumonia and sepsis. Existing glycoconjugate vaccines based on purified capsular polysaccharides are widely used and help to prevent millions of deaths every year. Herein, the total syntheses of oligosaccharides resembling portions of the S. pneumoniae serotype 7F (ST7F) capsular polysaccharide repeating unit are reported. To define minimal glycan epitopes, glycan microarrays containing the synthetic oligosaccharides were used to screen human reference serum and revealed that both side chains of the ST7F play a key role in antigen recognition. The identification of protective minimal epitopes is vital to design efficient semi- and fully-synthetic glycoconjugate vaccines.
Collapse
Affiliation(s)
- Petra Ménová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interphases, Am Mühlenberg 1, 14476, Potsdam, Germany.,Present address: University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Mauro Sella
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interphases, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Katrin Sellrie
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interphases, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interphases, Am Mühlenberg 1, 14476, Potsdam, Germany.,Present address: Vaxxilon (Deutschland) GmbH, Magnusstraße 11, 12489, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interphases, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
24
|
Interplay of Carbohydrate and Carrier in Antibacterial Glycoconjugate Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:355-378. [PMID: 30143807 DOI: 10.1007/10_2018_71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are a serious health concern and are responsible for millions of illnesses and deaths each year in communities around the world. Vaccination is an important public health measure for reducing and eliminating this burden, and regions with comprehensive vaccination programs have achieved significant reductions in infection and mortality. This is often accomplished by immunization with bacteria-derived carbohydrates, typically in conjunction with other biomolecules, which induce immunological memory and durable protection against bacterial human pathogens. For many species, however, vaccines are currently unavailable or have suboptimal efficacy characterized by short-lived memory and incomplete protection, especially among at-risk populations. To address this challenge, new tools and techniques have emerged for engineering carbohydrates and conjugating them to carrier molecules in a tractable and scalable manner. Collectively, these approaches are yielding carbohydrate-based vaccine designs with increased immunogenicity and protective efficacy, thereby opening up new opportunities for this important class of antigens. In this chapter we detail the current understanding of how carbohydrates interact with the immune system to provide immunity; how glycoengineering, especially in the context of glycoconjugate vaccines, can be used to modify and enhance immune responses; and current trends and strategies being pursued for the rational design of next-generation glycosylated antibacterial vaccines. Graphical Abstract.
Collapse
|
25
|
Meng X, Yang M, Li Y, Li X, Jia T, He H, Yu Q, Guo N, He Y, Yu P, Yang Y. Multivalent neuraminidase hydrolysis resistant triazole-sialoside protein conjugates as influenza-adsorbents. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Zheng RB, Jégouzo SAF, Joe M, Bai Y, Tran HA, Shen K, Saupe J, Xia L, Ahmed MF, Liu YH, Patil PS, Tripathi A, Hung SC, Taylor ME, Lowary TL, Drickamer K. Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans. ACS Chem Biol 2017; 12:2990-3002. [PMID: 29048873 PMCID: PMC5735379 DOI: 10.1021/acschembio.7b00797] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
An
array of homogeneous glycans representing all the major carbohydrate
structures present in the cell wall of the human pathogen Mycobacterium tuberculosis and other mycobacteria has been
probed with a panel of glycan-binding receptors expressed on cells
of the mammalian innate immune system. The results provide an overview
of interactions between mycobacterial glycans and receptors that mediate
uptake and survival in macrophages, dendritic cells, and sinusoidal
endothelial cells. A subset of the wide variety of glycan structures
present on mycobacterial surfaces interact with cells of the innate
immune system through the receptors tested. Endocytic receptors, including
the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact
predominantly with mannose-containing caps found on the mycobacterial
polysaccharide lipoarabinomannan. Some of these receptors also interact
with phosphatidyl-myo-inositol mannosides and mannose-containing
phenolic glycolipids. Many glycans are ligands for overlapping sets
of receptors, suggesting multiple, redundant routes by which mycobacteria
can enter cells. Receptors with signaling capability interact with
two distinct sets of mycobacterial glycans: targets for dectin-2 overlap
with ligands for the mannose-binding endocytic receptors, while mincle
binds exclusively to trehalose-containing structures such as trehalose
dimycolate. None of the receptors surveyed bind furanose residues,
which often form part of the epitopes recognized by antibodies to
mycobacteria. Thus, the innate and adaptive immune systems can target
different sets of mycobacterial glycans. This array, the first of
its kind, represents an important new tool for probing, at a molecular
level, biological roles of a broad range of mycobacterial glycans,
a task that has not previously been possible.
Collapse
Affiliation(s)
- Ruixiang Blake Zheng
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Maju Joe
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yu Bai
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Huu-Anh Tran
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ke Shen
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jörn Saupe
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Li Xia
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Md. Faiaz Ahmed
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yu-Hsuan Liu
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Ashish Tripathi
- Genomics
Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Shang-Cheng Hung
- Genomics
Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Maureen E. Taylor
- Department
of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Todd L. Lowary
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Kurt Drickamer
- Department
of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
27
|
Seeberger PH, Pereira CL, Khan N, Xiao G, Diago-Navarro E, Reppe K, Opitz B, Fries BC, Witzenrath M. A Semi-Synthetic Glycoconjugate Vaccine Candidate for Carbapenem-Resistant Klebsiella pneumoniae. Angew Chem Int Ed Engl 2017; 56:13973-13978. [PMID: 28815890 PMCID: PMC5819008 DOI: 10.1002/anie.201700964] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/05/2017] [Indexed: 12/15/2022]
Abstract
Hospital-acquired infections are an increasingly serious health concern. Infections caused by carpabenem-resistant Klebsiella pneumoniae (CR-Kp) are especially problematic, with a 50 % average survival rate. CR-Kp are isolated from patients with ever greater frequency, 7 % within the EU but 62 % in Greece. At a time when antibiotics are becoming less effective, no vaccines to protect from this severe bacterial infection exist. Herein, we describe the convergent [3+3] synthesis of the hexasaccharide repeating unit from its capsular polysaccharide and related sequences. Immunization with the synthetic hexasaccharide 1 glycoconjugate resulted in high titers of cross-reactive antibodies against CR-Kp CPS in mice and rabbits. Whole-cell ELISA was used to establish the surface staining of CR-Kp strains. The antibodies raised were found to promote phagocytosis. Thus, this semi-synthetic glycoconjugate is a lead for the development of a vaccine against a rapidly progressing, deadly bacterium.
Collapse
Affiliation(s)
- Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam (Germany)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | - Claney L. Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam (Germany)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | - Naeem Khan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam (Germany)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | - Guozhi Xiao
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam (Germany)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin (Germany)
| | - Elizabeth Diago-Navarro
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794 (USA)
| | - Katrin Reppe
- Charité—Universitätsmedizin Berlin, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin (Germany)
| | - Bastian Opitz
- Charité—Universitätsmedizin Berlin, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin (Germany)
| | - Bettina C. Fries
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, 101 Nicolls Road, Stony Brook, NY 11794 (USA)
| | - Martin Witzenrath
- Charité—Universitätsmedizin Berlin, Department of Infectious Diseases and Pulmonary Medicine, Charitéplatz 1, 10117 Berlin (Germany)
| |
Collapse
|
28
|
Seeberger PH, Pereira CL, Khan N, Xiao G, Diago-Navarro E, Reppe K, Opitz B, Fries BC, Witzenrath M. A Semi-Synthetic Glycoconjugate Vaccine Candidate for Carbapenem-ResistantKlebsiella pneumoniae. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peter H. Seeberger
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Arnimallee 22 14195 Berlin Germany
| | - Claney L. Pereira
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Arnimallee 22 14195 Berlin Germany
| | - Naeem Khan
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Arnimallee 22 14195 Berlin Germany
| | - Guozhi Xiao
- Department of Biomolecular Systems; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14424 Potsdam Germany
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Arnimallee 22 14195 Berlin Germany
| | - Elizabeth Diago-Navarro
- Department of Medicine, Division of Infectious Diseases; Stony Brook University; 101 Nicolls Road Stony Brook NY 11794 USA
| | - Katrin Reppe
- Charité-Universitätsmedizin Berlin; Department of Infectious Diseases and Pulmonary Medicine; Charitéplatz 1 10117 Berlin Germany
| | - Bastian Opitz
- Charité-Universitätsmedizin Berlin; Department of Infectious Diseases and Pulmonary Medicine; Charitéplatz 1 10117 Berlin Germany
| | - Bettina C. Fries
- Department of Medicine, Division of Infectious Diseases; Stony Brook University; 101 Nicolls Road Stony Brook NY 11794 USA
| | - Martin Witzenrath
- Charité-Universitätsmedizin Berlin; Department of Infectious Diseases and Pulmonary Medicine; Charitéplatz 1 10117 Berlin Germany
| |
Collapse
|
29
|
Emmadi M, Khan N, Lykke L, Reppe K, G Parameswarappa S, Lisboa MP, Wienhold SM, Witzenrath M, Pereira CL, Seeberger PH. A Streptococcus pneumoniae Type 2 Oligosaccharide Glycoconjugate Elicits Opsonic Antibodies and Is Protective in an Animal Model of Invasive Pneumococcal Disease. J Am Chem Soc 2017; 139:14783-14791. [PMID: 28945368 DOI: 10.1021/jacs.7b07836] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasive pneumococcal diseases (IPDs) remain the leading cause of vaccine-preventable childhood death, even though highly effective pneumococcal conjugate vaccines (PCVs) are used in national immunization programs in many developing countries. Licensed PCVs currently cover only 13 of the over 90 serotypes of Streptococcus pneumoniae (Sp), so nonvaccine serotypes are a major obstacle to the effective control of IPD. Sp serotype 2 (ST2) is such a nonvaccine serotype that is the main cause of IPD in many countries, including Nepal, Bangladesh, and Guatemala. Glycoconjugate vaccines based on synthetic oligosaccharides instead of isolated polysaccharides offer an attractive alternative to the traditional process for PCV development. To prevent the IPDs caused by ST2, we identified an effective ST2 neoglycoconjugate vaccine candidate that was identified using a medicinal chemistry approach. Glycan microarrays containing a series of synthetic glycans resembling portions of the ST2 capsular polysaccharide (CPS) repeating unit were used to screen human and rabbit sera and identify epitope hits. Synthetic hexasaccharide 2, resembling one repeating unit (RU) of ST2 CPS, emerged as a hit from the glycan array screens. Vaccination with neoglycoconjugates consisting of hexasaccharide 2 coupled to carrier protein CRM197 stimulates a T-cell-dependent B-cell response that induced CPS-specific opsonic antibodies in mice, resulting in killing of encapsulated bacteria by phagocytic activity. Subcutaneous immunization with neoglycoconjugate protected mice from transnasal challenge with the highly virulent ST2 strain NCTC 7466 by reducing the bacterial load in lung tissue and blood.
Collapse
Affiliation(s)
- Madhu Emmadi
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Naeem Khan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Lennart Lykke
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Sharavathi G Parameswarappa
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Marilda P Lisboa
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin , Charitéplatz 1, 10117 Berlin, Germany
| | - Claney L Pereira
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, D-14195 Berlin, Germany
| |
Collapse
|
30
|
Wang DM, Meng X, Li XB, He HJ, Zhao TF, Jia TW, He Y, Yang Y, Yu P. Modification of bovine serum albumin with aminophenylboronic acid as glycan sensor based on surface plasmon resonance and isothermal titration calorimetry. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractAminophenylboronic acid (ABA) modified bovine serum albumin (BSA) was prepared as neolectin and its interactions with oligosaccharides and glycopolymer were studied by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). The conjugation between the primary amine group of the ABA molecule and lysine residues on BSA was performed with an adipate-based strategy to afford the synthetic neoprotein. The number of ABA molecules loaded to BSA surface was determined by matrix-assisted laser desorption/ionization – time of flight (MALDI-TOF) mass spectrometry. In the BSA-ABA and sugar interaction study, no signal was observed for both the SPR and ITC sensor platform using monosaccharides as the analyte, indicating a weak binding affnity, while the galactose modified polymer showed an enhanced response. The binding affinities of the galactosyl-polymer to BSA-ABA from SPR and ITC data were in the micromolar range.
Collapse
Affiliation(s)
- De-Min Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xin Meng
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao-Bin Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao-Jie He
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Teng-Fei Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tian-Wei Jia
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yun He
- Angstrom Biotechnologies Company, 3350 Scott Blvd., Bldg. 9, Santa Clara, CA 95054, USA
| | - Yang Yang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peng Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
31
|
Jaurigue JA, Seeberger PH. Parasite Carbohydrate Vaccines. Front Cell Infect Microbiol 2017; 7:248. [PMID: 28660174 PMCID: PMC5467010 DOI: 10.3389/fcimb.2017.00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.
Collapse
Affiliation(s)
- Jonnel A. Jaurigue
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
32
|
Basava V, Romlein H, Bitsaktsis C, Marzabadi CH. Synthesis and immunological evaluation of a low molecular weight saccharide with TLR-4 agonist activity. Bioorg Med Chem 2017; 25:697-705. [PMID: 27979367 DOI: 10.1016/j.bmc.2016.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022]
Abstract
The paucity of FDA approved adjuvants renders the synthesis, characterization, and use of new compounds as vaccine adjuvants, a necessity. For this purpose, a novel saccharide analog has been synthesized from glucosamine, pyruvylated galactose and 1,4-cyclohexanediol and its biological efficacy was determined in innate immune cells. More specifically, we assessed the production of pro-inflammatory cytokines from the murine monocyte cell line, Raw 264.7 and from C57 BL/6 mouse peritoneal macrophages following exposure to the saccharide analog. Our data conclude that the novel saccharide has immunostimulatory activity on mouse macrophages as indicated by the elevated levels of IL-6 and TNF-α in culture supernatants. This effect was TLR-4-dependent but TLR-2-independent. Our data, suggest TLR-4 agonism; a key feature of vaccine adjuvants.
Collapse
Affiliation(s)
- Vikram Basava
- Department of Chemistry & Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079, USA
| | - Heather Romlein
- Department of Biological Science, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079, USA
| | - Constantine Bitsaktsis
- Department of Biological Science, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079, USA
| | - Cecilia H Marzabadi
- Department of Chemistry & Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079, USA.
| |
Collapse
|
33
|
Pashova S, Schneider C, von Gunten S, Pashov A. Antibody repertoire profiling with mimotope arrays. Hum Vaccin Immunother 2016; 13:314-322. [PMID: 27929733 DOI: 10.1080/21645515.2017.1264786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Large-scale profiling and monitoring of antibody repertoires is possible through next generation sequencing (NGS), phage display libraries and microarrays. These methods can be combined in a pipeline, which ultimately maps the antibody reactivities onto defined arrays of structures - peptides or carbohydrates. The arrays can help analyze the individual specificities or can be used as complex patterns. In any case, the targets recognized should formally be considered mimotopes unless they are proven to be epitopes driving the antibody synthesis. Here, the advantages and disadvantages of the major profiling techniques as well as their current and future application in disease prediction and vaccination are discussed.
Collapse
Affiliation(s)
- Shina Pashova
- a Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | | | | | - Anastas Pashov
- c Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| |
Collapse
|
34
|
Parameswarappa SG, Reppe K, Geissner A, Ménová P, Govindan S, Calow ADJ, Wahlbrink A, Weishaupt MW, Monnanda BP, Bell RL, Pirofski LA, Suttorp N, Sander LE, Witzenrath M, Pereira CL, Anish C, Seeberger PH. A Semi-synthetic Oligosaccharide Conjugate Vaccine Candidate Confers Protection against Streptococcus pneumoniae Serotype 3 Infection. Cell Chem Biol 2016; 23:1407-1416. [PMID: 27818299 PMCID: PMC5234679 DOI: 10.1016/j.chembiol.2016.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/07/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
The identification of immunogenic glycotopes that render glycoconjugate vaccines protective is key to improving vaccine efficacy. Synthetic oligosaccharides are an attractive alternative to the heterogeneous preparations of purified polysaccharides that most marketed glycoconjugate vaccines are based on. To investigate the potency of semi-synthetic glycoconjugates, we chose the least-efficient serotype in the current pneumococcal conjugate vaccine Prevnar 13, Streptococcus pneumoniae serotype 3 (ST3). Glycan arrays containing synthetic ST3 repeating unit oligosaccharides were used to screen a human reference serum for antibodies and to define the recognition site of two ST3-specific protective monoclonal antibodies. The glycan array screens identified a tetrasaccharide that was selected for in-depth immunological evaluation. The tetrasaccharide-CRM197 carrier protein conjugate elicited protective immunity as evidenced by opsonophagocytosis assays and protection against pneumonia caused by ST3 in mice. Formulation of the defined protective lead candidate glycotope has to be further evaluated to elicit optimal long-term immunity.
Collapse
Affiliation(s)
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andreas Geissner
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Petra Ménová
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Subramanian Govindan
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Adam D J Calow
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Annette Wahlbrink
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus W Weishaupt
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bopanna Ponnappa Monnanda
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Roland Lawrence Bell
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| | - Claney Lebev Pereira
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
35
|
Geissner A, Seeberger PH. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:223-47. [PMID: 27306309 DOI: 10.1146/annurev-anchem-071015-041641] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.
Collapse
Affiliation(s)
- Andreas Geissner
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
36
|
Yu K, Qiao Y, Gu G, Gao J, Cai S, Long Z, Guo Z. Synthesis of the biological repeating unit of Streptococcus pneumoniae serotype 23F capsular polysaccharide. Org Biomol Chem 2016; 14:11462-11472. [DOI: 10.1039/c6ob02363k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 3-aminopropyl glycoside of the biological repeating unit ofStreptococcus pneumoniaeserotype 23F capsular polysaccharide was efficiently synthesized by a linear assembly strategy.
Collapse
Affiliation(s)
- Kang Yu
- National Glycoengineering Research Centre and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Yin Qiao
- National Glycoengineering Research Centre and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Guofeng Gu
- National Glycoengineering Research Centre and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Jian Gao
- National Glycoengineering Research Centre and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Jinan 250100
- China
| | - Shuihong Cai
- Qidong Dongyue Pharmaceutical Company
- Qidong
- China
| | | | - Zhongwu Guo
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| |
Collapse
|