1
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Wang J, Lu X, Wang C, Yue Y, Wei B, Zhang H, Wang H, Chen J. Research Progress on the Combination of Quorum-Sensing Inhibitors and Antibiotics against Bacterial Resistance. Molecules 2024; 29:1674. [PMID: 38611953 PMCID: PMC11013322 DOI: 10.3390/molecules29071674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Bacterial virulence factors and biofilm development can be controlled by the quorum-sensing (QS) system, which is also intimately linked to antibiotic resistance in bacteria. In previous studies, many researchers found that quorum-sensing inhibitors (QSIs) can affect the development of bacterial biofilms and prevent the synthesis of many virulence factors. However, QSIs alone have a limited ability to suppress bacteria. Fortunately, when QSIs are combined with antibiotics, they have a better therapeutic effect, and it has even been demonstrated that the two together have a synergistic antibacterial effect, which not only ensures bactericidal efficiency but also avoids the resistance caused by excessive use of antibiotics. In addition, some progress has been made through in vivo studies on the combination of QSIs and antibiotics. This article mainly expounds on the specific effect of QSIs combined with antibiotics on bacteria and the combined antibacterial mechanism of some QSIs and antibiotics. These studies will provide new strategies and means for the clinical treatment of bacterial infections in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (J.W.); (X.L.); (C.W.); (Y.Y.); (B.W.); (H.Z.)
| | - Jianwei Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; (J.W.); (X.L.); (C.W.); (Y.Y.); (B.W.); (H.Z.)
| |
Collapse
|
3
|
Kang D, Xu Q, Kirienko NV. In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores. Microbiol Spectr 2024; 12:e0369323. [PMID: 38311809 PMCID: PMC10913452 DOI: 10.1128/spectrum.03693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
4
|
Xiao H, Li J, Yang D, Du J, Li J, Lin S, Zhou H, Sun P, Xu J. Multidimensional Criteria for Virtual Screening of PqsR Inhibitors Based on Pharmacophore, Docking, and Molecular Dynamics. Int J Mol Sci 2024; 25:1869. [PMID: 38339148 PMCID: PMC10856439 DOI: 10.3390/ijms25031869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Pseudomonas aeruginosa is a clinically challenging pathogen due to its high resistance to antibiotics. Quorum sensing inhibitors (QSIs) have been proposed as a promising strategy to overcome this resistance by interfering with the bacterial communication system. Among the potential targets of QSIs, PqsR is a key regulator of quorum sensing in Pseudomonas aeruginosa. However, the current research on PqsR inhibitors is limited by the lack of diversity in the chemical structures and the screening methods. Therefore, this study aims to develop a multidimensional screening model for PqsR inhibitors based on both ligand- and receptor-based approaches. First, a pharmacophore model was constructed from a training set of PqsR inhibitors to identify the essential features and spatial arrangement for the activity. Then, molecular docking and dynamics simulations were performed to explore the core interactions between PqsR inhibitors and their receptor. The results indicate that an effective PqsR inhibitor should possess two aromatic rings, one hydrogen bond acceptor, and two hydrophobic groups and should form strong interactions with the following four amino acid residues: TYR_258, ILE_236, LEU_208, and GLN_194. Moreover, the docking score and the binding free energy should be lower than -8 kcal/mol and -40 kcal/mol, respectively. Finally, the validity of the multidimensional screening model was confirmed by a test set of PqsR inhibitors, which showed a higher accuracy than the existing screening methods based on single characteristics. This multidimensional screening model would be a useful tool for the discovery and optimization of PqsR inhibitors in the future.
Collapse
Affiliation(s)
- Haichuan Xiao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jiahao Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Dongdong Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jiarui Du
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jie Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Shuqi Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Dai C, Qu Y, Wu W, Li S, Chen Z, Lian S, Jing J. QSP: An open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. WATER RESEARCH 2023; 235:119814. [PMID: 36934538 DOI: 10.1016/j.watres.2023.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) has attracted great attention due to its important role in the bacterial interactions and its relevance to water management. With the development of high-throughput sequencing technology, a specific database for QS-related sequence annotation is urgently needed. Here, Hidden Markov Model (HMM) profiles for 38 types of QS-related proteins were built using a total of 4024 collected seed sequences. Based on both homolog search and keywords confirmation against the non-redundant database, we established a QS-related protein (QSP) database, that includes 809,721 protein sequences and 186,133 nucleotide sequences, downloaded available at: https://github.com/chunxiao-dcx/QSP. The entries were classified into 38 types and 315 subtypes among 91 bacterial phyla. Furthermore, an automatic annotation pipeline, named QSAP, was developed for rapid annotation, classification and abundance quantification of QSP-like sequences from sequencing data. This pipeline provided the two homolog alignment strategies offered by Diamond (Blastp) or HMMER (Hmmscan), as well as a data cleansing function for a subset or union set of the hits. The pipeline was tested using 14 metagenomic samples from various water environments, including activated sludge, deep-sea sediments, estuary water, and reservoir water. The QSAP pipeline is freely available for academic use in the code repository at: https://github.com/chunxiao-dcx/QSAP. The establishment of this database and pipeline, provides a useful tool for QS-related sequence annotation in a wide range of projects, and will increase our understanding of QS communication in aquatic environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Khatun MA, Hoque MA, Koffas M, Feng Y. Reducing the virulence of Pseudomonas aeruginosa by using multiple quorum-quenching enzymes. J Ind Microbiol Biotechnol 2023; 50:kuad028. [PMID: 37738438 PMCID: PMC10536470 DOI: 10.1093/jimb/kuad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa in healthcare settings poses a tremendous challenge to traditional antibiotic therapy. Pseudomonas aeruginosa utilizes quorum sensing (QS) to coordinate the production of virulence factors and the formation of drug-resistant biofilms. QS is mediated by signal compounds produced by P. aeruginosa as well as signal molecules produced by other non-pseudomonad bacteria. A potential strategy to prevent bacterial pathogenicity is utilizing enzymes to interfere with QS. Here, we used AidC, a quorum-quenching (QQ) enzyme from Chryseobacterium sp. strain StRB126 that can effectively hydrolyze N-(3-oxododecanoyl) homoserine lactone (3OC12-HSL) and N-butanoyl-homoserine lactone (C4-HSL), the major signal molecules synthesized by P. aeruginosa. The exogenous addition of AidC to P. aeruginosa wild-type strain PAO1 cultures significantly reduced the total protease and elastase activities and the production of pyocyanin. In addition, the application of AidC resulted in thin and sparse biofilm formation. Later, we used a metagenomic-derived QQ enzyme, QQ-2, in combination with AidC to attenuate PAO1 virulence when the presence of a non-pseudomonad signal compound, autoinducer-2, aggravated it. These findings suggest that using a combined antimicrobial approach may lead to a more efficacious therapeutic intervention against P. aeruginosa PAO1 infection, as its behavior is modulated in the presence of intraspecies and interspecies signal compounds. ONE-SENTENCE SUMMARY In this work, the potential of dual enzymes was investigated to interfere with quorum sensing as a novel concept for reducing the virulence of P. aeruginosa, which is influenced by both intra species and interspecies communication.
Collapse
Affiliation(s)
- Mst Afroza Khatun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Md Anarul Hoque
- Department of Chemical and Biochemical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biochemical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Effects of ginkgolic acid(C15:1)on biofilm formation, pathogenic factor production and quorum sensing of Pseudomonas aeruginosa. Microb Pathog 2022; 173:105813. [DOI: 10.1016/j.micpath.2022.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
8
|
Collalto D, Giallonardi G, Fortuna A, Meneghini C, Fiscarelli E, Visca P, Imperi F, Rampioni G, Leoni L. In vitro Activity of Antivirulence Drugs Targeting the las or pqs Quorum Sensing Against Cystic Fibrosis Pseudomonas aeruginosa Isolates. Front Microbiol 2022; 13:845231. [PMID: 35547141 PMCID: PMC9083110 DOI: 10.3389/fmicb.2022.845231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 01/24/2023] Open
Abstract
The chronic lung infection caused by Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Antivirulence drugs targeting P. aeruginosa quorum sensing (QS) systems are intensively studied as antibiotics substitutes or adjuvants. Previous studies, carried out in non-CF P. aeruginosa reference strains, showed that the old drugs niclosamide and clofoctol could be successfully repurposed as antivirulence drugs targeting the las and pqs QS systems, respectively. However, frequent emergence of QS-defective mutants in the CF lung undermines the use of QS inhibitors in CF therapy. Here, QS signal production and susceptibility to niclosamide and clofoctol have been investigated in 100 P. aeruginosa CF isolates, with the aim of broadening current knowledge on the potential of anti-QS compounds in CF therapy. Results showed that 85, 78, and 69% of the CF isolates from our collection were proficient for the pqs, rhl, and las QS systems, respectively. The ability of both niclosamide and clofoctol to inhibit QS and virulence in vitro was highly variable and strain-dependent. Niclosamide showed an overall low range of activity and its negative effect on las signal production did not correlate with a decreased production of virulence factors. On the other hand, clofoctol displayed a broader QS inhibitory effect in CF isolates, with consequent reduction of the pqs-controlled virulence factor pyocyanin. Overall, this study highlights the importance of testing new antivirulence drugs against large panels of P. aeruginosa CF clinical isolates before proceeding to further pre-clinical studies and corroborates previous evidence that strains naturally resistant to QS inhibitors occur among CF isolates. However, it is also shown that resistance to pqs inhibitors is less frequent than resistance to las inhibitors, thus supporting the development of pqs inhibitors for antivirulence therapy in CF.
Collapse
Affiliation(s)
| | - Giulia Giallonardi
- Department of Science, Roma Tre University, Rome, Italy.,Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ersilia Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, Diagnostic Medicine and Laboratory, Bambino Gesú Hospital, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
9
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
10
|
Horstmann JC, Laric A, Boese A, Yildiz D, Röhrig T, Empting M, Frank N, Krug D, Müller R, Schneider-Daum N, de Souza Carvalho-Wodarz C, Lehr CM. Transferring Microclusters of P. aeruginosa Biofilms to the Air-Liquid Interface of Bronchial Epithelial Cells for Repeated Deposition of Aerosolized Tobramycin. ACS Infect Dis 2022; 8:137-149. [PMID: 34919390 DOI: 10.1021/acsinfecdis.1c00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an alternative to technically demanding and ethically debatable animal models, the use of organotypic and disease-relevant human cell culture models may improve the throughput, speed, and success rate for the translation of novel anti-infectives into the clinic. Besides bacterial killing, host cell viability and barrier function appear as relevant but seldomly measured readouts. Moreover, bacterial virulence factors and signaling molecules are typically not addressed in current cell culture models. Here, we describe a reproducible protocol for cultivating barrier-forming human bronchial epithelial cell monolayers on Transwell inserts and infecting them with microclusters of pre-grown mature Pseudomonas aeruginosa PAO1 biofilms under the air-liquid interface conditions. Bacterial growth and quorum sensing molecules were determined upon tobramycin treatment. The host cell response was simultaneously assessed through cell viability, epithelial barrier function, and cytokine release. By repeated deposition of aerosolized tobramycin after 1, 24, and 48 h, bacterial growth was controlled (reduction from 10 to 4 log10 CFU/mL), which leads to epithelial cell survival for up to 72 h. E-cadherin's cell-cell adhesion protein expression was preserved with the consecutive treatment, and quorum sensing molecules were reduced. However, the bacteria could not be eradicated and epithelial barrier function was impaired, similar to the currently observed situation in the clinic in lack of more efficient anti-infective therapies. Such a human-based in vitro approach has the potential for the preclinical development of novel anti-infectives and nanoscale delivery systems for oral inhalation.
Collapse
Affiliation(s)
- Justus C. Horstmann
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Annabelle Laric
- Center for Molecular Signaling, Saarland University, Kirrbergerstr./Geb. 46, 66421 Homburg, Germany
| | - Annette Boese
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Daniela Yildiz
- Center for Molecular Signaling, Saarland University, Kirrbergerstr./Geb. 46, 66421 Homburg, Germany
| | - Teresa Röhrig
- Department of Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Nicolas Frank
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Daniel Krug
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
11
|
Duplantier M, Lohou E, Sonnet P. Quorum Sensing Inhibitors to Quench P. aeruginosa Pathogenicity. Pharmaceuticals (Basel) 2021; 14:1262. [PMID: 34959667 PMCID: PMC8707152 DOI: 10.3390/ph14121262] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence and the dissemination of multidrug-resistant bacteria constitute a major public health issue. Among incriminated Gram-negative bacteria, Pseudomonas aeruginosa has been designated by the WHO as a critical priority threat. During the infection process, this pathogen secretes various virulence factors in order to adhere and colonize host tissues. Furthermore, P. aeruginosa has the capacity to establish biofilms that reinforce its virulence and intrinsic drug resistance. The regulation of biofilm and virulence factor production of this micro-organism is controlled by a specific bacterial communication system named Quorum Sensing (QS). The development of anti-virulence agents targeting QS that could attenuate P. aeruginosa pathogenicity without affecting its growth seems to be a promising new therapeutic strategy. This could prevent the selective pressure put on bacteria by the conventional antibiotics that cause their death and promote resistant strain survival. This review describes the QS-controlled pathogenicity of P. aeruginosa and its different specific QS molecular pathways, as well as the recent advances in the development of innovative QS-quenching anti-virulence agents to fight anti-bioresistance.
Collapse
Affiliation(s)
| | | | - Pascal Sonnet
- AGIR, UR4294, UFR of Pharmacy, Jules Verne University of Picardie, 80037 Amiens, France; (M.D.); (E.L.)
| |
Collapse
|
12
|
Tajani AS, Jangi E, Davodi M, Golmakaniyoon S, Ghodsi R, Soheili V, Fazly Bazzaz BS. Anti-quorum sensing potential of ketoprofen and its derivatives against Pseudomonas aeruginosa: insights to in silico and in vitro studies. Arch Microbiol 2021; 203:5123-5132. [PMID: 34319419 DOI: 10.1007/s00203-021-02499-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Antibiotics are usually used for the treatment of bacterial infections, but multidrug-resistant strains are a phenomenon that has been growing at an increasing rate worldwide. Thus, there is an increasing need for novel strategies for combatting infectious diseases. Many pathogenic bacteria apply quorum sensing (QS) to regulate their pathogenicity and virulence factors production. This circuit makes the QS system an attractive target for antibacterial therapy. In the present study, an important member of non-steroidal anti-inflammatory drugs (NSAIDs), by reducing the biofilm and producing QS-regulated virulence factors, ketoprofen and its synthetic derivatives were screened against the Pseudomonas aeruginosa PAO1. All compounds showed anti-biofilm activity (16-79%) and most of them presented anti-virulence activity. In the co-treatment of ketoprofen, G20, G21, or G77 with tobramycin, biofilm is significantly reduced (potentiated to > 50%) in the number of cells protected inside the impermeable matrix. The in silico studies in addition to the similarities between the chemical structures of PqsR natural ligands and ketoprofen derivatives reinforce the possibility that the mechanism of action is through PqsR inhibition. Based on the results, the anti-pathogenic effect was more appreciable in ketoprofen, G77, and G20.
Collapse
Affiliation(s)
- Amineh Sadat Tajani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Jangi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Davodi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Golmakaniyoon
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Schütz C, Ho D, Hamed MM, Abdelsamie AS, Röhrig T, Herr C, Kany AM, Rox K, Schmelz S, Siebenbürger L, Wirth M, Börger C, Yahiaoui S, Bals R, Scrima A, Blankenfeldt W, Horstmann JC, Christmann R, Murgia X, Koch M, Berwanger A, Loretz B, Hirsch AKH, Hartmann RW, Lehr C, Empting M. A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004369. [PMID: 34165899 PMCID: PMC8224453 DOI: 10.1002/advs.202004369] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Indexed: 05/21/2023]
Abstract
Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10-9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.
Collapse
|
14
|
New Insight into Vitamins E and K 1 as Anti-Quorum-Sensing Agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:AAC.01342-20. [PMID: 33820770 DOI: 10.1128/aac.01342-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Today, antivirulence compounds that attenuate bacterial pathogenicity and have no interference with bacterial viability or growth are introduced as the next generation of antibacterial agents. However, the development of such compounds that can be used by humans is restricted by various factors, including the need for extensive economic investments, the inability of many molecules to penetrate the membrane of Gram-negative bacteria, and unfavorable pharmacological properties and cytotoxicity. Here, we take a new and different look into two frequent supplements, vitamin E and K1, as anti-quorum-sensing agents against Pseudomonas aeruginosa, a pathogen that is hazardous to human life and responsible for several diseases. Both vitamins showed significant anti-biofilm activity (62% and 40.3% reduction by vitamin E and K1, respectively), and the expression of virulence factors, including pyocyanin, pyoverdine, and protease, was significantly inhibited, especially in the presence of vitamin E. Cotreatment of constructed biofilms with these vitamins plus tobramycin significantly reduced the number of bacterial cells sheltered inside the impermeable matrix (71.6% and 69% by a combination of tobramycin and vitamin E or K1, respectively). The in silico studies, besides the similarities of chemical structures, reinforce the possibility that both vitamins act through inhibition of the PqsR protein. This is the first report of the antivirulence and antipathogenic activity of vitamin E and K1 against P. aeruginosa and confirms their potential for further research against other multidrug-resistant bacteria.
Collapse
|
15
|
Abstract
Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.
Collapse
|
16
|
Wullich SC, Wijma HJ, Janssen DB, Fetzner S. Stabilizing AqdC, a Pseudomonas Quinolone Signal-Cleaving Dioxygenase from Mycobacteria, by FRESCO-Based Protein Engineering. Chembiochem 2021; 22:733-742. [PMID: 33058333 PMCID: PMC7894191 DOI: 10.1002/cbic.202000641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Indexed: 12/11/2022]
Abstract
The mycobacterial PQS dioxygenase AqdC, a cofactor-less protein with an α/β-hydrolase fold, inactivates the virulence-associated quorum-sensing signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) produced by the opportunistic pathogen Pseudomonas aeruginosa and is therefore a potential anti-virulence tool. We have used computational library design to predict stabilizing amino acid replacements in AqdC. While 57 out of 91 tested single substitutions throughout the protein led to stabilization, as judged by increases in T app m of >2 °C, they all impaired catalytic activity. Combining substitutions, the proteins AqdC-G40K-A134L-G220D-Y238W and AqdC-G40K-G220D-Y238W showed extended half-lives and the best trade-off between stability and activity, with increases in T app m of 11.8 and 6.1 °C and relative activities of 22 and 72 %, respectively, compared to AqdC. Molecular dynamics simulations and principal component analysis suggested that stabilized proteins are less flexible than AqdC, and the loss of catalytic activity likely correlates with an inability to effectively open the entrance to the active site.
Collapse
Affiliation(s)
- Sandra C. Wullich
- Institut für Molekulare Mikrobiologie und BiotechnologieWWU MünsterCorrensstraße 348149 MünsterGermany
| | - Hein J. Wijma
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
| | - Dick B. Janssen
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747 AGGroningen (TheNetherlands
| | - Susanne Fetzner
- Institut für Molekulare Mikrobiologie und BiotechnologieWWU MünsterCorrensstraße 348149 MünsterGermany
| |
Collapse
|
17
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
18
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
19
|
The Nitrite Transporter Facilitates Biofilm Formation via Suppression of Nitrite Reductase and Is a New Antibiofilm Target in Pseudomonas aeruginosa. mBio 2020; 11:mBio.00878-20. [PMID: 32636243 PMCID: PMC7343986 DOI: 10.1128/mbio.00878-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms play roles in infections and avoidance of host defense mechanisms of medically important pathogens and increase the antibiotic resistance of the bacteria. Nitric oxide (NO) is reported to be involved in both biofilm formation and dispersal, which are conflicting processes. The mechanism by which NO regulates biofilm dispersal is relatively understood, but there are no reports about how NO is involved in biofilm formation. Here, by investigating the mechanism by which complestatin inhibits biofilm formation, we describe a novel mechanism for governing biofilm formation in Escherichia coli and Pseudomonas aeruginosa. Nitrite transporter is required for biofilm formation via regulation of NO levels and subsequent c-di-GMP production. Additionally, the nitrite transporter contributes more to P. aeruginosa virulence than quorum sensing. Thus, this study identifies nitrite transporters as new antibiofilm targets for future practical and therapeutic agent development. Biofilm-forming bacteria, including the Gram-negative Pseudomonas aeruginosa, cause multiple types of chronic infections and are responsible for serious health burdens in humans, animals, and plants. Nitric oxide (NO) has been shown to induce biofilm dispersal via triggering a reduction in cyclic-di-GMP levels in a variety of bacteria. However, how NO, at homeostatic levels, also facilitates biofilm formation is unknown. Here, we found that complestatin, a structural analog of vancomycin isolated from Streptomyces, inhibits P. aeruginosa biofilm formation by upregulating NO production via nitrite reductase (NIR) induction and c-di-GMP degradation via phosphodiesterase (PDE) stimulation. The complestatin protein target was identified as a nitrite transporter from a genome-wide screen using the Keio Escherichia coli knockout library and confirmed using nitrite transporter knockout and overexpression strains. We demonstrated that the nitrite transporter stimulated biofilm formation by controlled NO production via appropriate NIR suppression and subsequent diguanylate cyclase (DGC) activation, not PDE activity, and c-di-GMP production in E. coli and P. aeruginosa. Thus, this study provides a mechanism for NO-mediated biofilm formation, which was previously not understood.
Collapse
|
20
|
da Silva RTP, Petri MV, Valencia EY, Camargo PHC, de Torresi SIC, Spira B. Visible light plasmon excitation of silver nanoparticles against antibiotic-resistant Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2020; 31:101908. [PMID: 32634655 DOI: 10.1016/j.pdpdt.2020.101908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
The interaction of metallic nanoparticles with light excites a local surface plasmon resonance (LSPR). This phenomenon enables the transfer of hot electrons to substrates that release Reactive Oxygen Species (ROS). In this context, the present study aimed at enhancing the antibacterial effect of citrate-covered silver nanoparticles (AgNPs) by LSPR excitation with visible LED. AgNPs possess excellent antimicrobial properties against Pseudomonas aeruginosa, one of the most refractory organisms to antibiotic treatment. The Minimum Inhibitory Concentration (MIC) of the AgNPs was 10 μg/ml under dark conditions and 5 μg/ml under light conditions. The combination of light and AgNPs led to 100% cell death after 60 min. Flow cytometry quantification showed that bacteria treated with LSPR-stimulated AgNPs displayed 4.8 times more ROS. This significant increase in ROS possibly accounts for most of the antimicrobial effect of the AgNPs. In addition, light exposition caused a small release of silver ions (0.4%) suggesting that silver ions may play a secondary role in P. aeruginosa death. Overall, the results presented here show that LSPR stimulation of AgNPs by visible light enhances the antimicrobial activity of silver nanoparticles and can be an alternative for the treatment of topic infections caused by antibiotic-resistant bacteria such as P. aeruginosa.
Collapse
Affiliation(s)
- Rafael T P da Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Marcos V Petri
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Estela Y Valencia
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Pedro H C Camargo
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Susana I C de Torresi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
21
|
Ho D, Murgia X, De Rossi C, Christmann R, Hüfner de Mello Martins AG, Koch M, Andreas A, Herrmann J, Müller R, Empting M, Hartmann RW, Desmaele D, Loretz B, Couvreur P, Lehr C. Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of
P. aeruginosa
Biofilm Infections. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duy‐Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
- Current address: Department of Bioengineering School of Medicine University of Washington Seattle WA 98195 USA
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
- Current address: Kusudama Therapeutics Parque Científico y Tecnológico de Gipuzkoa 20014 Donostia-San Sebastián Spain
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
| | - Rebekka Christmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | | | - Marcus Koch
- INM—Leibniz Institute for New Materials 66123 Saarbrücken Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Didier Desmaele
- Faculté de Pharmacie Institut Galien Paris Sud Université Paris-Saclay, UMR CNRS 8612 92296 Châtenay-Malabry France
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
| | - Patrick Couvreur
- Faculté de Pharmacie Institut Galien Paris Sud Université Paris-Saclay, UMR CNRS 8612 92296 Châtenay-Malabry France
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| |
Collapse
|
22
|
Ho DK, Murgia X, De Rossi C, Christmann R, Hüfner de Mello Martins AG, Koch M, Andreas A, Herrmann J, Müller R, Empting M, Hartmann RW, Desmaele D, Loretz B, Couvreur P, Lehr CM. Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections. Angew Chem Int Ed Engl 2020; 59:10292-10296. [PMID: 32243047 PMCID: PMC7317969 DOI: 10.1002/anie.202001407] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Indexed: 12/02/2022]
Abstract
Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self‐assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug‐loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16‐fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.,Current address: Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.,Current address: Kusudama Therapeutics, Parque Científico y Tecnológico de Gipuzkoa, 20014, Donostia-San Sebastián, Spain
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Rebekka Christmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | | | - Marcus Koch
- INM-Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Didier Desmaele
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, UMR CNRS 8612, 92296, Châtenay-Malabry, France
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, UMR CNRS 8612, 92296, Châtenay-Malabry, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
23
|
Soukarieh F, Liu R, Romero M, Roberston SN, Richardson W, Lucanto S, Oton EV, Qudus NR, Mashabi A, Grossman S, Ali S, Sou T, Kukavica-Ibrulj I, Levesque RC, Bergström CAS, Halliday N, Mistry SN, Emsley J, Heeb S, Williams P, Cámara M, Stocks MJ. Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa. Front Chem 2020; 8:204. [PMID: 32432073 PMCID: PMC7213079 DOI: 10.3389/fchem.2020.00204] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Current treatments for Pseudomonas aeruginosa infections are becoming less effective because of the increasing rates of multi-antibiotic resistance. Pharmacological targeting of virulence through inhibition of quorum sensing (QS) dependent virulence gene regulation has considerable therapeutic potential. In P. aeruginosa, the pqs QS system regulates the production of multiple virulence factors as well as biofilm maturation and is a promising approach for developing antimicrobial adjuvants for combatting drug resistance. In this work, we report the hit optimisation for a series of potent novel inhibitors of PqsR, a key regulator of the pqs system, bearing a 2-((5-methyl-5H-[1,2,4]triazino[5,6-b]indol-3-yl)thio) acetamide scaffold. The initial hit compound 7 (PAO1-L IC50 0.98 ± 0.02 μM, PA14 inactive at 10 μM) was obtained through a virtual screening campaign performed on the PqsR ligand binding domain using the University of Nottingham Managed Chemical Compound Collection. Hit optimisation gave compounds with enhanced potency against strains PAO1-L and PA14, evaluated using P. aeruginosa pqs-based QS bioreporter assays. Compound 40 (PAO1-L IC50 0.25 ± 0.12 μM, PA14 IC50 0.34 ± 0.03 μM) is one of the most potent PqsR antagonists reported showing significant inhibition of P. aeruginosa pyocyanin production and pqs system signaling in both planktonic cultures and biofilms. The co-crystal structure of 40 with the PqsR ligand binding domain revealed the specific binding interactions occurring between inhibitor and this key regulatory protein.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ruiling Liu
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Manuel Romero
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Shaun N Roberston
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - William Richardson
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone Lucanto
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Eduard Vico Oton
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Naim Ruhul Qudus
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alaa Mashabi
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Scott Grossman
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sadiqur Ali
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tomás Sou
- Drug Delivery Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Pharmacometrics Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC, Canada
| | - Christel A S Bergström
- Drug Delivery Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.,The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nigel Halliday
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Shailesh N Mistry
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom.,School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom
| | - Michael J Stocks
- The National Biofilms Innovation Centre, University of Nottingham, Nottingham, United Kingdom.,School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
Shaw E, Wuest WM. Virulence attenuating combination therapy: a potential multi-target synergy approach to treat Pseudomonas aeruginosa infections in cystic fibrosis patients. RSC Med Chem 2020; 11:358-369. [PMID: 33479641 PMCID: PMC7580779 DOI: 10.1039/c9md00566h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
The World Health Organization considers the discovery of new treatments for P. aeruginosa a top priority. Virulence attenuating combination therapy (VACT) is a pragmatic strategy to improve bacterial clearance, repurpose outmoded antibiotics, improve drug efficacy at lower doses, and reduce the evolution of resistance. In vitro and in vivo studies have shown that adding a quorum sensing inhibitor or an extracellular polymeric substance repressor to classical antibiotics synergistically improves antipseudomonal activity. This review highlights why VACT could specifically benefit cystic fibrosis patients harboring chronic P. aeruginosa infections, outlines the current landscape of synergistic combinations between virulence-targeting small-molecules and anti-pseudomonal drugs, and suggests future directions for VACT research.
Collapse
Affiliation(s)
- Elana Shaw
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
| | - William M Wuest
- Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , USA .
- Emory Antibiotic Resistance Center , Emory University School of Medicine , 201 Dowman Drive , Atlanta , Georgia 30322 , USA
| |
Collapse
|
25
|
Spray-drying of inhalable, multifunctional formulations for the treatment of biofilms formed in cystic fibrosis. J Control Release 2019; 314:62-71. [DOI: 10.1016/j.jconrel.2019.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 10/19/2019] [Indexed: 12/22/2022]
|
26
|
Shin D, Gorgulla C, Boursier ME, Rexrode N, Brown EC, Arthanari H, Blackwell HE, Nagarajan R. N-Acyl Homoserine Lactone Analog Modulators of the Pseudomonas aeruginosa Rhll Quorum Sensing Signal Synthase. ACS Chem Biol 2019; 14:2305-2314. [PMID: 31545595 DOI: 10.1021/acschembio.9b00671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Virulence in the Gram-negative pathogen Pseudomonas aeruginosa relies in part on the efficient functioning of two LuxI/R dependent quorum sensing (QS) cascades, namely, the LasI/R and RhlI/R systems that generate and respond to N-(3-oxo)-dodecanoyl-l-homoserine lactone and N-butyryl-l-homoserine lactone, respectively. The two acyl homoserine lactone (AHL) synthases, LasI and RhlI, use 3-oxododecanoyl-ACP and butyryl-ACP, respectively, as the acyl-substrates to generate the corresponding autoinducer signals for the bacterium. Although AHL synthases represent excellent targets for developing QS modulators in P. aeruginosa, and in other related bacteria, the identification of potent and signal synthase specific inhibitors has represented a significant technical challenge. In the current study, we sought to test the utility of AHL analogs as potential modulators of an AHL synthase and selected RhlI in P. aeruginosa as an initial target. We systematically varied the chemical functionalities of the AHL headgroup, acyl chain tail, and head-to-tail linkage to construct a small library of signal analogs and evaluated them for RhlI modulatory activity. Although the native N-butyryl-l-homoserine lactone did not inhibit RhlI, we discovered that several of our long-chain, unsubstituted acyl-d-homoserine lactones and acyl-d-homocysteine thiolactones inhibited while a few of the 3-oxoacyl-chain counterparts activated the enzyme. Additional mechanistic investigations with acyl-substrate analogs and docking experiments with AHL analogs revealed two distinct inhibitor and activator binding pockets in the enzyme. This study provides the first evidence of the yet untapped potential of AHL analogs as signal synthase modulators of QS pathways.
Collapse
Affiliation(s)
- Daniel Shin
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, Massachusetts 02115, United States
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Michelle E. Boursier
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Neilson Rexrode
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Eric C. Brown
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Rajesh Nagarajan
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, Idaho 83725, United States
| |
Collapse
|
27
|
Mellini M, Di Muzio E, D’Angelo F, Baldelli V, Ferrillo S, Visca P, Leoni L, Polticelli F, Rampioni G. In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Front Microbiol 2019; 10:2355. [PMID: 31649658 PMCID: PMC6796623 DOI: 10.3389/fmicb.2019.02355] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistant bacterial pathogens is increasing at an unprecedented pace, calling for the development of new therapeutic options. Small molecules interfering with virulence processes rather than growth hold promise as an alternative to conventional antibiotics. Anti-virulence agents are expected to decrease bacterial virulence and to pose reduced selective pressure for the emergence of resistance. In the opportunistic pathogen Pseudomonas aeruginosa the expression of key virulence traits is controlled by quorum sensing (QS), an intercellular communication process that coordinates gene expression at the population level. Hence, QS inhibitors represent promising anti-virulence agents against P. aeruginosa. Virtual screenings allow fast and cost-effective selection of target ligands among vast libraries of molecules, thus accelerating the time and limiting the cost of conventional drug-discovery processes, while the drug-repurposing approach is based on the identification of off-target activity of FDA-approved drugs, likely endowed with low cytotoxicity and favorable pharmacological properties. This study aims at combining the advantages of virtual screening and drug-repurposing approaches to identify new QS inhibitors targeting the pqs QS system of P. aeruginosa. An in silico library of 1,467 FDA-approved drugs has been screened by molecular docking, and 5 hits showing the highest predicted binding affinity for the pqs QS receptor PqsR (also known as MvfR) have been selected. In vitro experiments have been performed by engineering ad hoc biosensor strains, which were used to verify the ability of hit compounds to decrease PqsR activity in P. aeruginosa. Phenotypic analyses confirmed the impact of the most promising hit, the antipsychotic drug pimozide, on the expression of P. aeruginosa PqsR-controlled virulence traits. Overall, this study highlights the potential of virtual screening campaigns of FDA-approved drugs to rapidly select new inhibitors of important bacterial functions.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Fabio Polticelli
- Department of Science, University Roma Tre, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | | |
Collapse
|
28
|
Reen FJ, McGlacken GP, O'Gara F. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 2019; 365:4953739. [PMID: 29718276 DOI: 10.1093/femsle/fny076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Population dynamics within natural ecosystems is underpinned by microbial diversity and the heterogeneity of host-microbe and microbe-microbe interactions. Small molecule signals that intersperse between species have been shown to govern many virulence-related processes in established and emerging pathogens. Understanding the capacity of microbes to decode diverse languages and adapt to the presence of 'non-self' cells will provide an important new direction to the understanding of the 'polycellular' interactome. Alkyl quinolones (AQs) have been described in the ESKAPE pathogen Pseudomonas aeruginosa, the primary agent associated with mortality in patients with cystic fibrosis and the third most prevalent nosocomial pathogen worldwide. The role of these molecules in governing the physiology and virulence of P. aeruginosa and other pathogens has received considerable attention, while a role in interspecies and interkingdom communication has recently emerged. Herein we discuss recent advances in our understanding of AQ signalling and communication in the context of microbe-microbe and microbe-host interactions. The integrated knowledge from these systems-based investigations will facilitate the development of new therapeutics based on the AQ framework that serves to disarm the pathogenesis of P. aeruginosa and competing pathogens.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, USA
| |
Collapse
|
29
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
30
|
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol 2019; 9:74. [PMID: 31001485 PMCID: PMC6454102 DOI: 10.3389/fcimb.2019.00074] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance constitutes one of the major challenges facing humanity in the Twenty-First century. The spread of resistant pathogens has been such that the possibility of returning to a pre-antibiotic era is real. In this scenario, innovative therapeutic strategies must be employed to restrict resistance. Among the innovative proposed strategies, anti-virulence therapy has been envisioned as a promising alternative for effective control of the emergence and spread of resistant pathogens. This review presents some of the anti-virulence strategies that are currently being developed, it will cover strategies focused on quench pathogen quorum sensing (QS) systems, disassemble of bacterial functional membrane microdomains (FMMs), disruption of biofilm formation and bacterial toxin neutralization.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Marlon Henrique Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Suzana Meira Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
31
|
Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. Eur J Med Chem 2019; 172:26-35. [PMID: 30939351 DOI: 10.1016/j.ejmech.2019.03.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/31/2023]
Abstract
Nowadays, due to spreading antibiotic resistance among clinically relevant pathogens, the requirement of novel therapeutic approaches is felt more than ever. One of the alternative strategies is anti-virulence therapy without affecting bacterial growth or viability. In Pseudomonas aeruginosa, an opportunistic human pathogen that exhibits intrinsic multi-drug resistance, both virulence factors' production and biofilm formation depends on its quorum sensing (QS) network. Therefore, targeting the key proteins involved in QS system is an attractive method to overcome P. aeruginosa pathogenicity and resistance. The transcriptional regulator PqsR, also called MvfR, is one of these major proteins which employs 3,4-dihydroxy-2-heptylquinoline (PQS) and 4-hydroxy-2-heptylquinoline (HHQ) as signaling molecules. Reviewing the advances in development of small molecules inhibit this protein, assist to open a new window to smart molecule design that may revolutionize treatment of P. aeruginosa infections.
Collapse
|
32
|
Fleitas Martínez O, Rigueiras PO, Pires ÁDS, Porto WF, Silva ON, de la Fuente-Nunez C, Franco OL. Interference With Quorum-Sensing Signal Biosynthesis as a Promising Therapeutic Strategy Against Multidrug-Resistant Pathogens. Front Cell Infect Microbiol 2019; 8:444. [PMID: 30805311 PMCID: PMC6371041 DOI: 10.3389/fcimb.2018.00444] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Faced with the global health threat of increasing resistance to antibiotics, researchers are exploring interventions that target bacterial virulence factors. Quorum sensing is a particularly attractive target because several bacterial virulence factors are controlled by this mechanism. Furthermore, attacking the quorum-sensing signaling network is less likely to select for resistant strains than using conventional antibiotics. Strategies that focus on the inhibition of quorum-sensing signal production are especially attractive because the enzymes involved are expressed in bacterial cells but are not present in their mammalian counterparts. We review here various approaches that are being taken to interfere with quorum-sensing signal production via the inhibition of autoinducer-2 synthesis, PQS synthesis, peptide autoinducer synthesis, and N-acyl-homoserine lactone synthesis. We expect these approaches will lead to the discovery of new quorum-sensing inhibitors that can help to stem the tide of antibiotic resistance.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Pietra Orlandi Rigueiras
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Állan da Silva Pires
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - William Farias Porto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Porto Reports, Brasília, Brazil
| | - Osmar Nascimento Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, United States
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
33
|
Xu Y, Wang C, Hou J, Wang P, You G, Miao L. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34765-34776. [PMID: 30324376 DOI: 10.1007/s11356-018-3418-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
In this study, the biofilm formation of Pseudomonas aeruginosa in the presence of cerium oxide nanoparticles (CeO2 NPs) was investigated. With the addition of 0.1 mg/L and 1 mg/L CeO2 NPs, the biofilm development was substantially enhanced. During the attachment process, the enhanced surface hydrophobicity and excess production of mannosan and rhamnolipids in CeO2 NP treatments were detected, which were conductive to the colonization of bacterial cells. During the maturation period, the biofilm biomass was accelerated by the improved aggregation percentage as well as the secretion of extracellular DNA and pyocyanin. The reactive oxygen species (ROS) generated by CeO2 NPs were found to activate the N-butyryl homoserine lactone (C4-HSL) and quinolone signals secreted by Pseudomonas aeruginosa. Moreover, the quorum sensing (QS) systems of rhl and pqs were initiated, reflected by the stimulated expression levels of biofilm formation-related genes rhlI-rhlR, rhlAB, and pqsR-pqsA. The addition of a quorum quencher, furanone C-30, significantly declined the activities of QS-controlled catalase and superoxide dismutase. A dose of antioxidant, ascorbic acid, effectively relieved the accelerating effects of NPs on biofilm formation. These results indicated that CeO2 NPs could accelerate biofilm formation through the interference of QS system by generating ROS, which provides possible targets for controlling biofilm growth in the NP exposure environments.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| |
Collapse
|
34
|
D'Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, Williams P, Visca P, Leoni L, Rampioni G. Identification of FDA-Approved Drugs as Antivirulence Agents Targeting the pqs Quorum-Sensing System of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:e01296-18. [PMID: 30201815 PMCID: PMC6201120 DOI: 10.1128/aac.01296-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/01/2018] [Indexed: 12/11/2022] Open
Abstract
The long-term use of antibiotics has led to the emergence of multidrug-resistant bacteria. A promising strategy to combat bacterial infections aims at hampering their adaptability to the host environment without affecting growth. In this context, the intercellular communication system quorum sensing (QS), which controls virulence factor production and biofilm formation in diverse human pathogens, is considered an ideal target. Here, we describe the identification of new inhibitors of the pqs QS system of the human pathogen Pseudomonas aeruginosa by screening a library of 1,600 U.S. Food and Drug Administration-approved drugs. Phenotypic characterization of ad hoc engineered strains and in silico molecular docking demonstrated that the antifungal drugs clotrimazole and miconazole, as well as an antibacterial compound active against Gram-positive pathogens, clofoctol, inhibit the pqs system, probably by targeting the transcriptional regulator PqsR. The most active inhibitor, clofoctol, specifically inhibited the expression of pqs-controlled virulence traits in P. aeruginosa, such as pyocyanin production, swarming motility, biofilm formation, and expression of genes involved in siderophore production. Moreover, clofoctol protected Galleria mellonella larvae from P. aeruginosa infection and inhibited the pqs QS system in P. aeruginosa isolates from cystic fibrosis patients. Notably, clofoctol is already approved for clinical treatment of pulmonary infections caused by Gram-positive bacterial pathogens; hence, this drug has considerable clinical potential as an antivirulence agent for the treatment of P. aeruginosa lung infections.
Collapse
Affiliation(s)
| | | | - Nigel Halliday
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Pantalone
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fabio Polticelli
- Department of Science, University Roma Tre, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | - Ersilia Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, Bambino Gesú Hospital, Rome, Italy
| | - Paul Williams
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | | |
Collapse
|
35
|
Prothiwa M, Englmaier F, Böttcher T. Competitive Live-Cell Profiling Strategy for Discovering Inhibitors of the Quinolone Biosynthesis of Pseudomonas aeruginosa. J Am Chem Soc 2018; 140:14019-14023. [DOI: 10.1021/jacs.8b07629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michaela Prothiwa
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Felix Englmaier
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
36
|
Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2018; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
|
37
|
Schütz C, Empting M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J Org Chem 2018; 14:2627-2645. [PMID: 30410625 PMCID: PMC6204780 DOI: 10.3762/bjoc.14.241] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa causes severe nosocomial infections. It uses quorum sensing (QS) to regulate and coordinate population-wide group behaviours in the infection process like concerted secretion of virulence factors. One very important signalling network is the Pseudomonas quinolone signal (PQS) QS. With the aim to devise novel and innovative anti-infectives, inhibitors have been designed to address the various potential drug targets present within pqs QS. These range from enzymes within the biosynthesis cascade of the signal molecules PqsABCDE to the receptor of these autoinducers PqsR (MvfR). This review shortly introduces P. aeruginosa and its pathogenicity traits regulated by the pqs system and highlights the published drug discovery efforts providing insights into the compound binding modes if available. Furthermore, suitability of the individual targets for pathoblocker design is discussed.
Collapse
Affiliation(s)
- Christian Schütz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany
| |
Collapse
|
38
|
Kany AM, Sikandar A, Yahiaoui S, Haupenthal J, Walter I, Empting M, Köhnke J, Hartmann RW. Tackling Pseudomonas aeruginosa Virulence by a Hydroxamic Acid-Based LasB Inhibitor. ACS Chem Biol 2018; 13:2449-2455. [PMID: 30088919 DOI: 10.1021/acschembio.8b00257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In search of novel antibiotics to combat the challenging spread of resistant pathogens, bacterial proteases represent promising targets for pathoblocker development. A common motif for protease inhibitors is the hydroxamic acid function, yet this group has often been related to unspecific inhibition of various metalloproteases. In this work, the inhibition of LasB, a harmful zinc metalloprotease secreted by Pseudomonas aeruginosa, through a hydroxamate derivative is described. The present inhibitor was developed based on a recently reported, highly selective thiol scaffold. Using X-ray crystallography, the lack of inhibition of a range of human matrix metalloproteases could be attributed to a distinct binding mode sparing the S1' pocket. The inhibitor was shown to restore the effect of the antimicrobial peptide LL-37, decrease the formation of P. aeruginosa biofilm and, for the first time for a LasB inhibitor, reduce the release of extracellular DNA. Hence, it is capable of disrupting several important bacterial resistance mechanisms. These results highlight the potential of protease inhibitors to fight bacterial infections and point out the possibility to achieve selective inhibition even with a strong zinc anchor.
Collapse
Affiliation(s)
- Andreas M. Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabell Walter
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jesko Köhnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
39
|
Soukarieh F, Williams P, Stocks MJ, Cámara M. Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives. J Med Chem 2018; 61:10385-10402. [PMID: 29999316 DOI: 10.1021/acs.jmedchem.8b00540] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is a serious threat to public health globally, manifested by the frequent emergence of multidrug resistant pathogens that render current chemotherapy inadequate. Health organizations worldwide have recognized the severity of this crisis and implemented action plans to contain its adverse consequences and prolong the utility of conventional antibiotics. Hence, there is a pressing need for new classes of antibacterial agents with novel modes of action. Quorum sensing (QS), a communication system employed by bacterial populations to coordinate virulence gene expression, is a potential target that has been intensively investigated over the past decade. This Perspective will focus on recent advances in targeting the three main quorum sensing systems ( las, rhl, and pqs) of a major opportunistic human pathogen, Pseudomonas aeruginosa, and will specifically evaluate the medicinal chemistry strategies devised to develop QS inhibitors from a drug discovery perspective.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Michael J Stocks
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| |
Collapse
|
40
|
Kany AM, Sikandar A, Haupenthal J, Yahiaoui S, Maurer CK, Proschak E, Köhnke J, Hartmann RW. Binding Mode Characterization and Early in Vivo Evaluation of Fragment-Like Thiols as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect Dis 2018; 4:988-997. [PMID: 29485268 DOI: 10.1021/acsinfecdis.8b00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increasing emergence of antibiotic resistance necessitates the development of anti-infectives with novel modes of action. Targeting bacterial virulence is considered a promising approach to develop novel antibiotics with reduced selection pressure. The extracellular collagenase elastase (LasB) plays a pivotal role in the infection process of Pseudomonas aeruginosa and therefore represents an attractive antivirulence target. Mercaptoacetamide-based thiols have been reported to inhibit LasB as well as collagenases from clostridia and bacillus species. The present work provides an insight into the structure-activity relationship (SAR) of these fragment-like LasB inhibitors, demonstrating an inverse activity profile compared to similar inhibitors of clostridial collagenase H (ColH). An X-ray cocrystal structure is presented, revealing distinct binding of two compounds to the active site of LasB, which unexpectedly maintains an open conformation. We further demonstrate in vivo efficacy in a Galleria mellonella infection model and high selectivity of the LasB inhibitors toward human matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Andreas M. Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine K. Maurer
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Jesko Köhnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
41
|
Goes A, Fuhrmann G. Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infect Dis 2018; 4:881-892. [PMID: 29553240 DOI: 10.1021/acsinfecdis.8b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biogenic and biomimetic therapeutics are a relatively new class of systems that are of physiological origin and/or take advantage of natural pathways or aim at mimicking these to improve selective interaction with target tissue. The number of biogenic and bioengineered avenues for drug therapy and diagnostics has multiplied over the past years for many applications, indicating the high expectations associated with this biological route. Nevertheless, the use of "bio"-related approaches for treating or diagnosing infectious diseases is still rare. Given that infectious diseases, in particular bacterial resistances, are seriously on the rise, there is an urgent need to take advantage of biogenic and bioengineered systems to target these challenges. In this manuscript, we first give a definition of the various "bio" terms, including biogenic, biomimetic, bioinspired, and bioengineered and we highlight them using tangible applications in the field of infectious diseases. Our examples cover cell-derived systems, including bioengineered bacteria, virus-like particles, and different cell-mimetics. Moreover, we discuss natural and bioengineered particles such as extracellular vesicles from mammalian and bacterial sources and liposomes. A concluding section outlines the potential for biomaterial-related avenues to overcome challenges associated with difficult-to-treat infections. We critically discuss benefits and risks for these applications and give an outlook on the future of biogenic engineering.
Collapse
Affiliation(s)
- Adriely Goes
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Biogenic Nanotherapeutics group (BION), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
42
|
Kamal AAM, Petrera L, Eberhard J, Hartmann RW. Structure-functionality relationship and pharmacological profiles of Pseudomonas aeruginosa alkylquinolone quorum sensing modulators. Org Biomol Chem 2018; 15:4620-4630. [PMID: 28513746 DOI: 10.1039/c7ob00263g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An important paradigm in anti-infective research is the antivirulence concept. Pathoblockers are compounds which disarm bacteria of their arsenal of virulence factors. PqsR is a transcriptional regulator controlling the production of such factors in Pseudomonas aeruginosa, most prominently pyocyanin. In this work, a series of tool compounds based on the structure of the natural ligand 2-heptyl-4-quinolone (HHQ) were used for probing the structure-functionality relationship. Four different profiles are identified namely agonists, antagonists, inverse agonists and biphasic modulators. Molecular docking studies revealed that each class of the PqsR modulators showed distinctive interactions in the PqsR binding domain. It was found that the substituents in position 3 of the quinolone core act as a switch between the different profiles, according to their ability to donate or accept a hydrogen bond, or form a hydrophobic interaction. Finally, it was shown that only inverse agonists were able to strongly inhibit pyocyanin production.
Collapse
Affiliation(s)
- Ahmed A M Kamal
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
43
|
Pharmacological Inhibition of the Pseudomonas aeruginosa MvfR Quorum-Sensing System Interferes with Biofilm Formation and Potentiates Antibiotic-Mediated Biofilm Disruption. Antimicrob Agents Chemother 2017; 61:AAC.01362-17. [PMID: 28923875 DOI: 10.1128/aac.01362-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa biofilms contribute to its survival on biotic and abiotic surfaces and represent a major clinical threat due to their high tolerance to antibiotics. Therefore, the discovery of antibiofilm agents may hold great promise. We show that pharmacological inhibition of the P. aeruginosa quorum-sensing regulator MvfR (PqsR) using a benzamide-benzimidazole compound interferes with biofilm formation and potentiates biofilm sensitivity to antibiotics. Such a strategy could have great potential against P. aeruginosa persistence in diverse environments.
Collapse
|
44
|
Pleshkova NV, Nikolaenkova EB, Krivopalov VP, Mamatyuk VI. 2,6-Disubstituted 4-azidopyrimidines: synthesis, kinetic and thermodynamic studies of azide-tetrazole rearrangement by NMR spectroscopy. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1986-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Maura D, Drees SL, Bandyopadhaya A, Kitao T, Negri M, Starkey M, Lesic B, Milot S, Déziel E, Zahler R, Pucci M, Felici A, Fetzner S, Lépine F, Rahme LG. Polypharmacology Approaches against the Pseudomonas aeruginosa MvfR Regulon and Their Application in Blocking Virulence and Antibiotic Tolerance. ACS Chem Biol 2017; 12:1435-1443. [PMID: 28379691 DOI: 10.1021/acschembio.6b01139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa is an important nosocomial pathogen that is frequently recalcitrant to available antibiotics, underlining the urgent need for alternative therapeutic options against this pathogen. Targeting virulence functions is a promising alternative strategy as it is expected to generate less-selective resistance to treatment compared to antibiotics. Capitalizing on our nonligand-based benzamide-benzimidazole (BB) core structure compounds reported to efficiently block the activity of the P. aeruginosa multiple virulence factor regulator MvfR, here we report the first class of inhibitors shown to interfere with PqsBC enzyme activity, responsible for the synthesis of the MvfR activating ligands HHQ and PQS, and the first to target simultaneously MvfR and PqsBC activity. The use of these compounds reveals that inhibiting PqsBC is sufficient to block P. aeruginosa's acute virulence functions, as the synthesis of MvfR ligands is inhibited. Our results show that MvfR remains the best target of this QS pathway, as we show that antagonists of this target block both acute and persistence-related functions. The structural properties of the compounds reported in this study provide several insights that are instrumental for the design of improved MvfR regulon inhibitors against both acute and persistent P. aeruginosa infections. Moreover, the data presented offer the possibility of a polypharmacology approach of simultaneous silencing two targets in the same pathway. Such a combined antivirulence strategy holds promise in increasing therapeutic efficacy and providing alternatives in the event of a single target's resistance development.
Collapse
Affiliation(s)
- Damien Maura
- Shriners Hospitals for Children Boston, Boston, Massachusetts 02114, United States
| | - Steffen L. Drees
- Institute
for Molecular Microbiology and Biotechnology, University of Münster, 48149 Münster, Germany
| | | | - Tomoe Kitao
- Shriners Hospitals for Children Boston, Boston, Massachusetts 02114, United States
| | | | - Melissa Starkey
- Shriners Hospitals for Children Boston, Boston, Massachusetts 02114, United States
| | - Biliana Lesic
- Shriners Hospitals for Children Boston, Boston, Massachusetts 02114, United States
| | - Sylvain Milot
- INRS Institut Armand Frappier, Laval, Quebec H7V 1B7, Canada
| | - Eric Déziel
- INRS Institut Armand Frappier, Laval, Quebec H7V 1B7, Canada
| | - Robert Zahler
- Spero Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Mike Pucci
- Spero Therapeutics, Cambridge, Massachusetts 02139, United States
| | | | - Susanne Fetzner
- Institute
for Molecular Microbiology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - François Lépine
- INRS Institut Armand Frappier, Laval, Quebec H7V 1B7, Canada
| | - Laurence G. Rahme
- Shriners Hospitals for Children Boston, Boston, Massachusetts 02114, United States
| |
Collapse
|
46
|
Strategies for inhibiting quorum sensing. Emerg Top Life Sci 2017; 1:23-30. [DOI: 10.1042/etls20160021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 11/17/2022]
Abstract
The ability of bacterial cells to synchronize their behaviour through quorum sensing (QS) regulatory networks enables bacterial populations to mount co-operative responses against competing micro-organisms and host immune defences and to adapt to environmental challenges. Since QS controls the ability of many pathogenic bacteria to cause disease, it is an attractive target for novel antibacterial agents that control infection through inhibition of virulence and by rendering biofilms more susceptible to conventional antibiotics and host clearance pathways. QS systems provide multiple druggable molecular targets for inhibitors (QSIs) that include the enzymes involved in QS signal molecule biosynthesis and the receptors involved in signal transduction. Considerable advances in our understanding of the chemical biology of QS systems and their inhibition have been made, some promising QS targets structurally characterized, QSI screens devised and inhibitors identified. However, much more work is required before any QSI ‘hits’ with the appropriate pharmacological and pharmacokinetic properties can enter human clinical trials. Indeed, the relative efficacy of QSIs alone or as prophylactics or therapeutics or as adjuvants in combination with conventional antibiotics still needs to be extensively evaluated in vivo. Particular attention must be given to the measurement of successful QSI therapy outcomes with respect to bacterial clearance, immune response and pathophysiology. Currently, our understanding of the potential of QS as a promising antibacterial target suggests that it is likely to be of value with respect to a limited number of major pathogens.
Collapse
|
47
|
Zhou Z, Ma S. Recent Advances in the Discovery of PqsD Inhibitors as Antimicrobial Agents. ChemMedChem 2017; 12:420-425. [PMID: 28195681 DOI: 10.1002/cmdc.201700015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Ziteng Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 PR China)
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 PR China)
| |
Collapse
|
48
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Prothiwa M, Szamosvári D, Glasmacher S, Böttcher T. Chemical probes for competitive profiling of the quorum sensing signal synthase PqsD of Pseudomonas aeruginosa. Beilstein J Org Chem 2016; 12:2784-2792. [PMID: 28144351 PMCID: PMC5238532 DOI: 10.3762/bjoc.12.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
The human pathogen Pseudomonas aeruginosa uses the pqs quorum sensing system to coordinate the production of its broad spectrum of virulence factors to facilitate colonization and infection of its host. Hereby, the enzyme PqsD is a virulence related quorum sensing signal synthase that catalyzes the central step in the biosynthesis of the Pseudomonas quinolone signals HHQ and PQS. We developed a library of cysteine reactive chemical probes with an alkyne handle for fluorescence tagging and report the selective and highly sensitive in vitro labelling of the active site cysteine of this important enzyme. Interestingly, only one type of probe, with a reactive α-chloroacetamide was capable of covalently reacting with the active site. We demonstrated the potential of our probes in a competitive labelling platform where we screened a library of synthetic HHQ and PQS analogues with heteroatom replacements and found several inhibitors of probe binding that may represent promising scaffolds for the development of customized PqsD inhibitors as well as a chemical toolbox to investigate the activity and active site specificity of the enzyme.
Collapse
Affiliation(s)
- Michaela Prothiwa
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dávid Szamosvári
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sandra Glasmacher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
50
|
Ji C, Sharma I, Pratihar D, Hudson LL, Maura D, Guney T, Rahme LG, Pesci EC, Coleman JP, Tan DS. Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa. ACS Chem Biol 2016; 11:3061-3067. [PMID: 27658001 PMCID: PMC5117135 DOI: 10.1021/acschembio.6b00575] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular
signaling systems regulated
by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate
bacterial cell–cell communication via small-molecule natural
products and control the production of a variety of virulence factors.
The MvfR system is activated by and controls the biosynthesis of the
quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis
of these quinolones is catalyzed by the anthranilyl-CoA synthetase
PqsA. To develop inhibitors of PqsA as novel potential antivirulence
antibiotics, we report herein the design and synthesis of sulfonyladeonsine-based
mimics of the anthranilyl-AMP reaction intermediate that is bound
tightly by PqsA. Biochemical, microbiological, and pharmacological
studies identified two potent PqsA inhibitors, anthranilyl-AMS (1) and anthranilyl-AMSN (2), that decreased HHQ
and PQS production in P. aeruginosa strain
PA14. However, these compounds did not inhibit
production of the virulence factor pyocyanin. Moreover, they exhibited
limited bacterial penetration in compound accumulation studies. This
work provides the most potent PqsA inhibitors reported to date and
sets the stage for future efforts to develop analogues with improved
cellular activity to investigate further the complex relationships
between quinolone biosynthesis and virulence factor production in P. aeruginosa and the therapeutic potential of targeting
PqsA.
Collapse
Affiliation(s)
| | | | | | - L. Lynn Hudson
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - Damien Maura
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
| | | | - Laurence G. Rahme
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Shriners Hospitals for
Children Boston, Boston, Massachusetts 02114, United States
| | - Everett C. Pesci
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - James P. Coleman
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | | |
Collapse
|