1
|
Qureshi M, Mokkawes T, Cao Y, de Visser SP. Mechanism of the Oxidative Ring-Closure Reaction during Gliotoxin Biosynthesis by Cytochrome P450 GliF. Int J Mol Sci 2024; 25:8567. [PMID: 39201254 PMCID: PMC11354885 DOI: 10.3390/ijms25168567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models. The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I, an initial proton transfer transition state is followed by a fast electron transfer en route to the radical intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that, through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on the arene to form an epoxide, are high in energy and are ruled out.
Collapse
Affiliation(s)
| | | | | | - Sam P. de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK (Y.C.)
| |
Collapse
|
2
|
Liu JZ, Wang YD, Fang HQ, Sun GB, Ding G. UPLC-Q-TOF-MS/MS-Based Targeted Discovery of Chetomin Analogues from Chaetomium cochliodes. JOURNAL OF NATURAL PRODUCTS 2024; 87:1660-1665. [PMID: 38888514 DOI: 10.1021/acs.jnatprod.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chetocochliodin M (5) containing a rare cage-ring and chetocochliodin N (6) featuring an unusual piperazine-2,3-dione ring system together with known analogues chetomin (1), chetoseminudin C (2), chetocochliodin I (3), and oidioperazine E (4) were targeted for purification from the fungus Chaetomium cochliodes using a UPLC-Q-TOF-MS/MS approach. The structures of the new compounds were elucidated using HR-ESI-MS, NMR, and ECD spectra. Compounds 1, 3, and 6 exhibited strong cytotoxic activities against A549 and HeLa cancer cell lines.
Collapse
Affiliation(s)
- Jian-Zi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Yan-Duo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Hui-Qi Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Gui-Bo Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Gang Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
4
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. Nat Commun 2024; 15:3574. [PMID: 38678027 PMCID: PMC11055893 DOI: 10.1038/s41467-024-48030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Steele AD, Kiefer AF, Shen B. The many facets of sulfur incorporation in natural product biosynthesis. Curr Opin Chem Biol 2023; 76:102366. [PMID: 37451204 PMCID: PMC10527158 DOI: 10.1016/j.cbpa.2023.102366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Sulfur-containing natural products (S-containing NPs) exhibit diverse chemical structures and biosynthetic machineries. Unraveling the intricate chemistry of S-incorporation requires innovative and multidisciplinary approaches. In this review, we surveyed the landscape of S-containing NP biosynthetic machineries, classified the S-incorporation chemistry into four distinct classes, and highlighted each of the four classes with representative examples from recent studies. All highlighted chemistry has been correlated to the genes encoding the biosynthetic machineries of the S-containing NPs, which open new opportunities to discover S-containing NPs through genome mining. These examples should inspire the community to explore uncharted territories in NP research, promoting further advancements in both novel S-containing NP discovery and S-incorporation chemistry.
Collapse
Affiliation(s)
- Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Alexander F Kiefer
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, United States.
| |
Collapse
|
6
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559410. [PMID: 37808672 PMCID: PMC10557607 DOI: 10.1101/2023.09.25.559410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that all CDO-like enzymes are likely enzyme filaments. Our work represents the first structural characterization of a CDO. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Ye W, Liu T, Liu Y, Li M, Wang S, Li S, Zhang W. Enhancing gliotoxins production in deep-sea derived fungus Dichotomocyes cejpii by engineering the biosynthetic pathway. BIORESOURCE TECHNOLOGY 2023; 377:128905. [PMID: 36931443 DOI: 10.1016/j.biortech.2023.128905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Gliotoxin can be developed as potent biopesticide. In this study, the positive transcriptional factor gliZ, glutathione-S transferase encoding gene gliG and gliN were firstly deleted by CRISPR/Cas9 system, which abolished the production of gliotoxin-like compounds in Dichotomomyces cejpii. CRISPR/dCas9 system targeting promoter of gliG was used to activate the biosynthetic genes in gli cluster. The overexpression of gliZ, gliN and gliG can significantly improve the yield of gliotoxin-like compunds. The gliotoxin yields was improved by 16.38 ± 1.36 fold, 18.98 ± 1.28 fold through gliZ overexpression and gliM deletion in D. cejpii FS110. In addtion, gliN was heterologously expressed in E. coli, the purified GliN can catalyze gliotoxin into methyl-gliotoxin. Furthermore, the binding sequences of GliZ in the promoters of gliG was determined by Dnase footprinting. This study firstly illustrated the transcriptional regulatory mechanism of DcGliZ for the gliotoxin biosynthesis in D. cejpii, and improved the yields of gliotoxins significantly in D. cejpii via biosynthetic approaches.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Yuping Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Mengran Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Shixin Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, No. 100 Xianlie Middle Road, Yuexiu District, Guangzhou 510070, China.
| |
Collapse
|
8
|
Traynor AM, Sarikaya-Bayram Ö, Bayram Ö, Antonio Calera J, Doyle S. Proteomic dissection of the role of GliZ in gliotoxin biosynthesis in Aspergillus fumigatus. Fungal Genet Biol 2023; 166:103795. [PMID: 37023941 DOI: 10.1016/j.fgb.2023.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Gliotoxin (GT) biosynthesis in fungi is encoded by the gli biosynthetic gene cluster. While GT addition autoinduces biosynthesis, Zn2+ has been shown to attenuate cluster activity, and it was speculated that identification of Zn2Cys6 binuclear transcription factor GliZ binding partners might provide insight into this observation. Using the Tet-ON induction system, doxycycline (DOX) presence induced GliZ fusion protein expression in, and recovery of GT biosynthesis by, A. fumigatus ΔgliZ::HA-gliZ and ΔgliZ::TAP-gliZ strains, respectively. Quantitative RT-PCR confirmed that DOX induces gli cluster gene expression (n = 5) in both A. fumigatus HA-GliZ and TAP-GliZ strains. GT biosynthesis was evident in Czapek-Dox and in Sabouraud media, however tagged GliZ protein expression was more readily detected in Sabouraud media. Unexpectedly, Zn2+ was essential for GliZ fusion protein expression in vivo, following 3 h DOX induction. Moreover, HA-GliZ abundance was significantly higher in either DOX/GT or DOX/Zn2+, compared to DOX-only. This suggests that while GT induction is still intact, Zn2+ inhibition of HA-GliZ production in vivo is lost. Co-immunoprecipitation revealed that GT oxidoreductase GliT associates with GliZ in the presence of GT, suggesting a potential protective role. Additional putative HA-GliZ interacting proteins included cystathionine gamma lyase, ribosomal protein L15 and serine hydroxymethyltransferase (SHMT). Total mycelial quantitative proteomic data revealed that GliT and GtmA, as well as several other gli cluster proteins, are increased in abundance or uniquely expressed with GT addition. Proteins involved in sulphur metabolism are also differentially expressed with GT or Zn2+ presence. Overall, we disclose that under DOX induction GliZ functionality is unexpectedly evident in zinc-replete media, subject to GT induction and that GliT appears to associate with GliZ, potentially to prevent DTG-mediated GliZ inactivation by zinc ejection.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - José Antonio Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain, Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
9
|
Melse O, Antes I, Kaila VRI, Zacharias M. Benchmarking biomolecular force field-based Zn 2+ for mono- and bimetallic ligand binding sites. J Comput Chem 2023; 44:912-926. [PMID: 36495007 DOI: 10.1002/jcc.27052] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Zn2+ is one of the most versatile biologically available metal ions, but accurate modeling of Zn2+ -containing metalloproteins at the biomolecular force field level can be challenging. Since most Zn2+ models are parameterized in bulk solvent, in-depth knowledge about their performance in a protein environment is limited. Thus, we systematically investigate here the behavior of non-polarizable Zn2+ models for their ability to reproduce experimentally determined metal coordination and ligand binding in metalloproteins. The benchmarking is performed in challenging environments, including mono- (carbonic anhydrase II) and bimetallic (metallo-β-lactamase VIM-2) ligand binding sites. We identify key differences in the performance between the Zn2+ models with regard to the preferred ligating atoms (charged/non-charged), attraction of water molecules, and the preferred coordination geometry. Based on these results, we suggest suitable simulation conditions for varying Zn2+ site geometries that could guide the further development of biomolecular Zn2+ models.
Collapse
Affiliation(s)
- Okke Melse
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany.,SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Iris Antes
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany.,SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany
| |
Collapse
|
10
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
11
|
The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. Int J Mol Sci 2021; 22:ijms222413510. [PMID: 34948306 PMCID: PMC8705807 DOI: 10.3390/ijms222413510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gliotoxin is a kind of epipolythiodioxopiperazine derived from different fungi that is characterized by a disulfide bridge. Gliotoxins can be biosynthesized by a gli gene cluster and regulated by a positive GliZ regulator. Gliotoxins show cytotoxic effects via the suppression the function of macrophage immune function, inflammation, antiangiogenesis, DNA damage by ROS production, peroxide damage by the inhibition of various enzymes, and apoptosis through different signal pathways. In the other hand, gliotoxins can also be beneficial with different doses. Low doses of gliotoxin can be used as an antioxidant, in the diagnosis and treatment of HIV, and as an anti-tumor agent in the future. Gliotoxins have also been used in the control of plant pathogens, including Pythium ultimum and Sclerotinia sclerotiorum. Thus, it is important to elucidate the toxic mechanism of gliotoxins. The toxic mechanism of gliotoxins and biosynthetic strategies to reduce the toxicity of gliotoxins and their producing strains are summarized in this review.
Collapse
|
12
|
Scherlach K, Kuttenlochner W, Scharf DH, Brakhage AA, Hertweck C, Groll M, Huber EM. Strukturelle und mechanistische Einblicke in die Bildung der C‐S‐Bindungen in Gliotoxin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kirstin Scherlach
- Abteilung Biomolekulare Chemie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
| | - Wolfgang Kuttenlochner
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| | - Daniel H. Scharf
- Abteilung Molekulare und Angewandte Mikrobiologie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Abteilung Mikrobiologie und Kinderkrankenhaus Zhejiang Universität Fakultät für Medizin Hangzhou 310058 Zhejiang V.R. China
| | - Axel A. Brakhage
- Abteilung Molekulare und Angewandte Mikrobiologie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Fakultät für Biowissenschaften Friedrich Schiller Universität Jena 07743 Jena Deutschland
| | - Christian Hertweck
- Abteilung Biomolekulare Chemie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Fakultät für Biowissenschaften Friedrich Schiller Universität Jena 07743 Jena Deutschland
| | - Michael Groll
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| | - Eva M. Huber
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| |
Collapse
|
13
|
Scherlach K, Kuttenlochner W, Scharf DH, Brakhage AA, Hertweck C, Groll M, Huber EM. Structural and Mechanistic Insights into C-S Bond Formation in Gliotoxin. Angew Chem Int Ed Engl 2021; 60:14188-14194. [PMID: 33909314 PMCID: PMC8251611 DOI: 10.1002/anie.202104372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/01/2022]
Abstract
Glutathione‐S‐transferases (GSTs) usually detoxify xenobiotics. The human pathogenic fungus Aspergillus fumigatus however uses the exceptional GST GliG to incorporate two sulfur atoms into its virulence factor gliotoxin. Because these sulfurs are essential for biological activity, glutathionylation is a key step of gliotoxin biosynthesis. Yet, the mechanism of carbon−sulfur linkage formation from a bis‐hydroxylated precursor is unresolved. Here, we report structures of GliG with glutathione (GSH) and its reaction product cyclo[‐l‐Phe‐l‐Ser]‐bis‐glutathione, which has been purified from a genetically modified A. fumigatus strain. The structures argue for stepwise processing of first the Phe and second the Ser moiety. Enzyme‐mediated dehydration of the substrate activates GSH and a helix dipole stabilizes the resulting anion via a water molecule for the nucleophilic attack. Activity assays with mutants validate the interactions of GliG with the ligands and enrich our knowledge about enzymatic C−S bond formation in gliotoxin and epipolythiodioxopiperazine (ETP) natural compounds in general.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Wolfgang Kuttenlochner
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Department of Microbiology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, P.R. China
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Groll
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Eva M Huber
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| |
Collapse
|
14
|
Fernandes GC, Sierra EGM, Brear P, Pereira MR, Lemos EGM. From Data Mining of Chitinophaga sp. Genome to Enzyme Discovery of a Hyperthermophilic Metallocarboxypeptidase. Microorganisms 2021; 9:393. [PMID: 33673011 PMCID: PMC7918520 DOI: 10.3390/microorganisms9020393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/24/2023] Open
Abstract
For several centuries, microorganisms and enzymes have been used for many different applications. Although many enzymes with industrial applications have already been reported, different screening technologies, methods and approaches are constantly being developed in order to allow the identification of enzymes with even more interesting applications. In our work, we have performed data mining on the Chitinophaga sp. genome, a gram-negative bacterium isolated from a bacterial consortium of sugarcane bagasse isolated from an ethanol plant. The analysis of 8 Mb allowed the identification of the chtcp gene, previously annotated as putative Cht4039. The corresponding codified enzyme, denominated as ChtCP, showed the HEXXH conserved motif of family M32 from thermostable carboxypeptidases. After expression in E. coli, the recombinant enzyme was characterized biochemically. ChtCP showed the highest activity versus benziloxicarbonil Ala-Trp at pH 7.5, suggesting a preference for hydrophobic substrates. Surprisingly, the highest activity of ChtCP observed was between 55 °C and 75 °C, and 62% activity was still displayed at 100 °C. We observed that Ca2+, Ba2+, Mn2+ and Mg2+ ions had a positive effect on the activity of ChtCP, and an increase of 30 °C in the melting temperature was observed in the presence of Co2+. These features together with the structure of ChtCP at 1.2 Å highlight the relevance of ChtCP for further biotechnological applications.
Collapse
Affiliation(s)
- Gabriela Cabral Fernandes
- Department of Technology, São Paulo State University (UNESP), Jaboticabal, São Paulo State 14884-900, Brazil; (G.C.F.); (E.G.M.S.)
- Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State 14884-900, Brazil
| | - Elwi Guillermo Machado Sierra
- Department of Technology, São Paulo State University (UNESP), Jaboticabal, São Paulo State 14884-900, Brazil; (G.C.F.); (E.G.M.S.)
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, UK;
| | - Mariana Rangel Pereira
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, UK;
- CAPES Foundation, Ministry of Education of Brazil, Brasília-DF 70.040-02, Brazil
| | - Eliana G. M. Lemos
- Department of Technology, São Paulo State University (UNESP), Jaboticabal, São Paulo State 14884-900, Brazil; (G.C.F.); (E.G.M.S.)
| |
Collapse
|
15
|
Scharf DH, Chankhamjon P, Scherlach K, Dworschak J, Heinekamp T, Roth M, Brakhage AA, Hertweck C. N-Heterocyclization in Gliotoxin Biosynthesis is Catalyzed by a Distinct Cytochrome P450 Monooxygenase. Chembiochem 2021; 22:336-339. [PMID: 32835438 PMCID: PMC7891397 DOI: 10.1002/cbic.202000550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Gliotoxin and related epidithiodiketopiperazines (ETP) from diverse fungi feature highly functionalized hydroindole scaffolds with an array of medicinally and ecologically relevant activities. Mutation analysis, heterologous reconstitution, and biotransformation experiments revealed that a cytochrome P450 monooxygenase (GliF) from the human-pathogenic fungus Aspergillus fumigatus plays a key role in the formation of the complex heterocycle. In vitro assays using a biosynthetic precursor from a blocked mutant showed that GliF is specific to ETPs and catalyzes an unprecedented heterocyclization reaction that cannot be emulated with current synthetic methods. In silico analyses indicate that this rare biotransformation takes place in related ETP biosynthetic pathways.
Collapse
Affiliation(s)
- Daniel H. Scharf
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Department of MicrobiologyZhejiang University School of MedicineYuhangtang Road 866Hangzhou310058P. R. China
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthBinsheng Road 3333Hangzhou310052P. R. China
| | - Pranatchareeya Chankhamjon
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Kirstin Scherlach
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Jan Dworschak
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Thorsten Heinekamp
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Martin Roth
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Axel A. Brakhage
- Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstrasse 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
16
|
Wang MH, Zhang XY, Tan XM, Niu SB, Sun BD, Yu M, Ding G, Zou ZM. Chetocochliodins A-I, Epipoly(thiodioxopiperazines) from Chaetomium cochliodes. JOURNAL OF NATURAL PRODUCTS 2020; 83:805-813. [PMID: 32115958 DOI: 10.1021/acs.jnatprod.9b00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nine new epipoly(thiodioxopiperazine) (ETP) analogues, chetocochliodins A-I (1-9), along with two known ones, chetoseminudins E and C (10 and 11), were purified from the fungus Chaetomium cochliodes. The planar structures and absolute configurations of these new compounds were determined by extensive NMR spectroscopic analysis, CD spectra, and chemical reactions. Shielding effects from the indole on the 3-SCH3/3-OCH3/3-OCH2- groups facilitated the determination of relative configuration of the analogues. Compound 9 was cytotoxic, suggesting the importance of the sulfide bridge for the diketopiperazine bioactivities.
Collapse
Affiliation(s)
- Meng-Hua Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xiao-Yan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xian-Mei Tan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Shu-Bin Niu
- Department of Pharmacy, Beijing City University, Beijing 100083, People's Republic of China
| | - Bing-Da Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100090, People's Republic of China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| |
Collapse
|
17
|
Gao WC, Tian J, Shang YZ, Jiang X. Steric and stereoscopic disulfide construction for cross-linkage via N-dithiophthalimides. Chem Sci 2020; 11:3903-3908. [PMID: 34122859 PMCID: PMC8152801 DOI: 10.1039/d0sc01060j] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disulfide bonds are a significant motif in life and drug-delivery systems. In particular, steric hindrance and stereoscopic disulfide linkers are closely associated with the stability of antibody–drug conjugates, which affects the potency, selectivity, and pharmacokinetics of drugs. However, limited availability and diversity of tertiary thiols impede the construction of steric and stereoscopic disulfides for cross-linkage in biochemistry and pharmaceuticals. Through modulating the mask effect of disulfurating reagents, we develop a facile and robust strategy for construction of diverse steric and stereoscopic disulfides via N-dithiophthalimides. The practical cross-linkage of biomolecules including amino acids, saccharides, and nucleosides with different drugs and fluorescent molecules is successfully established through hindered disulfide linkers. A series of steric and stereoscopic disulfides are constructed with N-dithiophthalimides, enabling the cross-linkage of biomolecules, drugs and fluorescent molecules.![]()
Collapse
Affiliation(s)
- Wen-Chao Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University Shanghai 200062 P. R. China .,College of Biomedical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Jun Tian
- College of Biomedical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Yu-Zhu Shang
- College of Biomedical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University Shanghai 200062 P. R. China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
18
|
Hofmann AJ, Jandl C, Hess CR. Structural Differences and Redox Properties of Unsymmetric Diiron PDIxCy Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas J. Hofmann
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Christian Jandl
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Corinna R. Hess
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
19
|
Seo H, Kang S, Park YS, Yun CW. The Role of Zinc in Gliotoxin Biosynthesis of Aspergillus fumigatus. Int J Mol Sci 2019; 20:E6192. [PMID: 31817957 PMCID: PMC6940964 DOI: 10.3390/ijms20246192] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Zinc performs diverse physiological functions, and virtually all living organisms require zinc as an essential trace element. To identify the detailed function of zinc in fungal pathogenicity, we carried out cDNA microarray analysis using the model system of Aspergillus fumigatus, a fungal pathogen. From microarray analysis, we found that the genes involved in gliotoxin biosynthesis were upregulated when zinc was depleted, and the microarray data were confirmed by northern blot analysis. In particular, zinc deficiency upregulated the expression of GliZ, which encodes a Zn2-Cys6 binuclear transcription factor that regulates the expression of the genes required for gliotoxin biosynthesis. The production of gliotoxin was decreased in a manner inversely proportional to the zinc concentration, and the same result was investigated in the absence of ZafA, which is a zinc-dependent transcription activator. Interestingly, we found two conserved ZafA-binding motifs, 5'-CAAGGT-3', in the upstream region of GliZ on the genome and discovered that deletion of the ZafA-binding motifs resulted in loss of ZafA-binding activity; gliotoxin production was decreased dramatically, as demonstrated with a GliZ deletion mutant. Furthermore, mutation of the ZafA-binding motifs resulted in an increase in the conidial killing activity of human macrophage and neutrophil cells, and virulence was decreased in a murine model. Finally, transcriptomic analysis revealed that the expression of ZafA and GliZ was upregulated during phagocytosis by macrophages. Taken together, these results suggest that zinc plays an important role in the pathogenicity of A. fumigatus by regulating gliotoxin production during the phagocytosis pathway to overcome the host defense system.
Collapse
Affiliation(s)
| | | | | | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (H.S.); (S.K.); (Y.-S.P.)
| |
Collapse
|
20
|
Baccile JA, Le HH, Pfannenstiel BT, Bok JW, Gomez C, Brandenburger E, Hoffmeister D, Keller NP, Schroeder FC. Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joshua A. Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
- Present Address: Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA USA
| | - Henry H. Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
| | - Brandon T. Pfannenstiel
- Departments of Bacteriology Medical Microbiology and Immunology University of Wisconsin-Madison Madison WI USA
| | - Jin Woo Bok
- Departments of Bacteriology Medical Microbiology and Immunology University of Wisconsin-Madison Madison WI USA
| | - Christian Gomez
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
| | - Eileen Brandenburger
- Department of Pharmaceutical Microbiology Hans-Knöll-Institute Friedrich Schiller University Jena Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology Hans-Knöll-Institute Friedrich Schiller University Jena Germany
| | - Nancy P. Keller
- Departments of Bacteriology Medical Microbiology and Immunology University of Wisconsin-Madison Madison WI USA
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University Ithaca NY USA
| |
Collapse
|
21
|
Baccile JA, Le HH, Pfannenstiel BT, Bok JW, Gomez C, Brandenburger E, Hoffmeister D, Keller NP, Schroeder FC. Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains. Angew Chem Int Ed Engl 2019; 58:14589-14593. [PMID: 31342608 PMCID: PMC6764874 DOI: 10.1002/anie.201909052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 01/08/2023]
Abstract
Cyclization of linear dipeptidyl precursors derived from nonribosomal peptide synthetases (NRPSs) into 2,5-diketopiperazines (DKPs) is a crucial step in the biosynthesis of a large number of bioactive natural products. However, the mechanism of DKP formation in fungi has remained unclear, despite extensive studies of their biosyntheses. Here we show that DKP formation en route to the fungal virulence factor gliotoxin requires a seemingly extraneous couplet of condensation (C) and thiolation (T) domains in the NRPS GliP. In vivo truncation of GliP to remove the CT couplet or just the T domain abrogated production of gliotoxin and all other gli pathway metabolites. Point mutation of conserved active sites in the C and T domains diminished cyclization activity of GliP in vitro and abolished gliotoxin biosynthesis in vivo. Verified NRPSs of other fungal DKPs terminate with similar CT domain couplets, suggesting a conserved strategy for DKP biosynthesis by fungal NRPSs.
Collapse
Affiliation(s)
- Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Present Address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brandon T Pfannenstiel
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin Woo Bok
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gomez
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Eileen Brandenburger
- Department of Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Nancy P Keller
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019; 24:E2362. [PMID: 31247992 PMCID: PMC6651818 DOI: 10.3390/molecules24132362] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are highly dangerous natural compounds produced by various fungi. Enzymatic transformation seems to be the most promising method for detoxification of mycotoxins. This review summarizes current information on enzymes of different classes to convert various mycotoxins. An in-depth analysis of 11 key enzyme mechanisms towards dozens of major mycotoxins was realized. Additionally, molecular docking of mycotoxins to enzymes' active centers was carried out to clarify some of these catalytic mechanisms. Analyzing protein homologues from various organisms (plants, animals, fungi, and bacteria), the prevalence and availability of natural sources of active biocatalysts with a high practical potential is discussed. The importance of multifunctional enzyme combinations for detoxification of mycotoxins is posed.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia.
| |
Collapse
|
23
|
Scharf DH, Dworschak JD, Chankhamjon P, Scherlach K, Heinekamp T, Brakhage AA, Hertweck C. Reconstitution of Enzymatic Carbon-Sulfur Bond Formation Reveals Detoxification-Like Strategy in Fungal Toxin Biosynthesis. ACS Chem Biol 2018; 13:2508-2512. [PMID: 30075079 DOI: 10.1021/acschembio.8b00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gliotoxin is a virulence factor of the human pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. The activity of this metabolite is mediated by a transannular disulfide bond, a hallmark of the epipolythiodiketopiperazine (ETP) family. Through the creation of fungal gene deletion mutants and heterologous protein expression, we unveiled the critical role of the cytochrome P450 monooxygenase (CYP450) GliC for the stepwise bishydroxylation of the diketopiperazine (DKP) core. We show for the first time the formation of the C-S bond from the DKP in a combined assay of GliC and the glutathione- S-transferase (GST) GliG in vitro. Furthermore, we present experimental evidence for an intermediary imine species. The flexible substrate scope of GliC and GliG in combination parallels P450/GST pairs used in eukaryotic phase I/II detoxification pathways.
Collapse
Affiliation(s)
- Daniel H. Scharf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Jan D. Dworschak
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Pranatchareeya Chankhamjon
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
- Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
24
|
Green MT, Peczkowski GR, Al-Ani AJ, Benjamin S, Simpkins NS, Jones AM. Total synthesis and structural revision of a mangrove alkaloid. RSC Adv 2017. [DOI: 10.1039/c7ra10483a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the photochemical total synthesis and structural revision of an alkaloid isolated from the mangrove fungi Hypocrea virens.
Collapse
Affiliation(s)
- Michael T. Green
- Division of Chemistry and Environmental Science
- Manchester Metropolitan University
- UK
| | | | - Aneesa J. Al-Ani
- Division of Chemistry and Environmental Science
- Manchester Metropolitan University
- UK
| | | | | | | |
Collapse
|