1
|
Manabe S, Iwamoto S, Nagatoishi S, Hoshinoo A, Mitani A, Sumiyoshi W, Kinoshita T, Yamaguchi Y, Tsumoto K. Systematic Preparation of a 66-IgG Library with Symmetric and Asymmetric Homogeneous Glycans and Their Functional Evaluation. J Am Chem Soc 2024; 146:23426-23436. [PMID: 39106493 PMCID: PMC11345770 DOI: 10.1021/jacs.4c06558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Immunoglobulin G (IgG) antibodies possess a conserved N-glycosylation site in the Fc domain. In FcγRIIIa affinity column chromatography, unglycosylated, hemiglycosylated, and fully glycosylated IgG retention times differ considerably. Using retention-time differences, 66 different trastuzumab antibodies with symmetric and asymmetric homogeneous glycans were prepared systematically, substantially expanding the scope of IgGs with homogeneous glycans. Using the prepared trastuzumab with homogeneous glycans, thermal stability and antibody-dependent cellular cytotoxicity were investigated. In some glycan series, a directly proportional relationship was observed between the thermal unfolding temperature (Tm) and the calorimetric unfolding heat (ΔHcal). Antibody function could be deduced from the combination of a pair of glycans in an intact form. Controlling glycan structure through the combination of a pair of glycans permits the precise tuning of stability and effector functions of IgG. Overall, our technology can be used to investigate the effects of glycans on antibody functions.
Collapse
Affiliation(s)
- Shino Manabe
- School
of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal
Chemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Research
Center for Pharmaceutical Development, Graduate School of Pharmaceutical
Sciences & Faculty of Pharmaceutical Sciences, Tohoku University, Aoba,
Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shogo Iwamoto
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Satoru Nagatoishi
- Medical
Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Bioengineering, School of Engineering,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asako Hoshinoo
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Ai Mitani
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Wataru Sumiyoshi
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Takashi Kinoshita
- Fushimi
Pharmaceutical Co., Ltd., Nakazu, Marugame, Kagawa 763-8605, Japan
| | - Yoshiki Yamaguchi
- Institute
of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Komatsushima, Aoba-ku, Sendai, Miyagi 980-8558, Japan
| | - Kouhei Tsumoto
- Medical
Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Bioengineering, School of Engineering,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Liu Z, Zou X, Tang F, Huang W. Recent advances in antibody glycoengineering for the gain of functions. Curr Opin Chem Biol 2024; 78:102420. [PMID: 38168590 DOI: 10.1016/j.cbpa.2023.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Glycans play important roles in antibody functions, and antibody glycoengineering has long been an important research field. Here, we summarize the significant strategies of antibody glycoengineering, including expressed antibody glycoengineering in mammalian cell expression systems, chemo-enzymatic antibody glycoengineering, and yeast expression system-based antibody engineering, as well as the applications of glycoengineering in antibody-drug conjugates. These advances in antibody glycoengineering will provide a comprehensive understanding and inspire us to develop more advanced techniques to achieve glycoengineered antibodies.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; Lingang Laboratory, Shanghai, 200031, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangman Zou
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China.
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China; Lingang Laboratory, Shanghai, 200031, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
3
|
Baumeister J, Meudt M, Ebert S, Rosenau F, Mizaikoff B, Blech M, Aertker KMJ, Higel F. Decoding the mannose receptor-mAb interaction: the importance of high-mannose N-glycans and glycan-pairing. MAbs 2024; 16:2400414. [PMID: 39245969 PMCID: PMC11385167 DOI: 10.1080/19420862.2024.2400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media. Furthermore, mAbs have either one high mannose N-glycan (asymmetrical high-mannose glyco-pair) or two high mannose N-glycans (symmetrical high-mannose glyco-pair). The hypothesis that the mannose receptor (MR, CD206) accelerates clearance by facilitating their internalization and subsequent lysosomal degradation is widespread. However, the interaction between MR and mAbs has not been explicitly demonstrated. This study aimed to investigate this interaction, providing the first systematic demonstration of MR binding to the Fc region of mAbs with high-mannose N-glycans. Two novel analytical methods, MR surface plasmon resonance and MR affinity chromatography, were developed and applied to investigate the MR-mAb interaction. The interaction is found to be dependent on high-mannose content, but is independent of the mAb format or sequence. However, different glyco-pairs exhibited varying binding affinities to the MR, with the symmetrical high-mannose glyco-pair showing the strongest binding properties. These findings strengthen the hypothesis for the MR-mediated mAb interaction and contribute to a deeper understanding of the MR-mAb interaction, which could affect the criticality of high-mannose containing mAbs development strategies of IgG-based molecules and improve their PK profiles.
Collapse
Affiliation(s)
- Julia Baumeister
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Maximilian Meudt
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Sybille Ebert
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Biberach an der Riss, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Michaela Blech
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kristina M J Aertker
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Fabian Higel
- Global CMC Experts NBE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
4
|
You M, Chen F, Yu C, Chen Y, Wang Y, Liu X, Guo X, Zhou B, Wang X, Zhang B, Fang M, Zhang T, Yue P, Wang Y, Yuan Q, Luo W. A glycoengineered therapeutic anti-HBV antibody that allows increased HBsAg immunoclearance improves HBV suppression in vivo. Front Pharmacol 2023; 14:1213726. [PMID: 38205373 PMCID: PMC10777313 DOI: 10.3389/fphar.2023.1213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction: The effective and persistent suppression of hepatitis B surface antigen (HBsAg) in patients with chronic HBV infection (CHB) is considered to be a promising approach to achieve a functional cure of hepatitis B. In our previous study, we found that the antibody E6F6 can clear HBsAg through FcγR-mediated phagocytosis, and its humanized form (huE6F6 antibody) is expected to be a new tool for the treatment of CHB. Previous studies have shown that the glycosylation of Fc segments affects the binding of antibodies to FcγR and thus affects the biological activity of antibodies in vivo. Methods: To further improve the therapeutic potential of huE6F6, in this study, we defucosylated huE6F6 (huE6F6-fuc-), preliminarily explored the developability of this molecule, and studied the therapeutic potential of this molecule and its underlying mechanism in vitro and in vivo models. Results: huE6F6-fuc- has desirable physicochemical properties. Compared with huE6F6-wt, huE6F6-fuc- administration resulted in a stronger viral clearance in vivo. Meanwhile, huE6F6-fuc- keep a similar neutralization activity and binding activity to huE6F6-wt in vitro. Immunological analyses suggested that huE6F6-fuc- exhibited enhanced binding to hCD32b and hCD16b, which mainly contributed to its enhanced therapeutic activity in vivo. Conclusions: In summary, the huE6F6-fuc- molecule that was developed in this study, which has desirable developability, can clear HBsAg more efficiently in vivo, providing a promising treatment for CHB patients. Our study provides new guidance for antibody engineering in other disease fields.
Collapse
Affiliation(s)
- Min You
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Fentian Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Chao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Yue Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Xueran Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Bing Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- The 2nd Affiliated Hospital, South University of Science and Technology, Shenzhen, China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- The 2nd Affiliated Hospital, South University of Science and Technology, Shenzhen, China
| | - Boya Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Ping Yue
- School of Biology and Engineering (School of Health Medicine Modern Industry), Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang An Biomedicine Laboratory, Xiamen, China
| |
Collapse
|
5
|
Trzos S, Link-Lenczowski P, Pocheć E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front Immunol 2023; 14:1188838. [PMID: 37575234 PMCID: PMC10415207 DOI: 10.3389/fimmu.2023.1188838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
The immune system is strictly regulated by glycosylation through the addition of highly diverse and dynamically changing sugar structures (glycans) to the majority of immune cell receptors. Although knowledge in the field of glycoimmunology is still limited, numerous studies point to the key role of glycosylation in maintaining homeostasis, but also in reflecting its disruption. Changes in oligosaccharide patterns can lead to impairment of both innate and acquired immune responses, with important implications in the pathogenesis of diseases, including autoimmunity. B cells appear to be unique within the immune system, since they exhibit both innate and adaptive immune activity. B cell surface is rich in glycosylated proteins and lectins which recognise glycosylated ligands on other cells. Glycans are important in the development, selection, and maturation of B cells. Changes in sialylation and fucosylation of cell surface proteins affect B cell signal transduction through BCRs, CD22 inhibitory coreceptor and Siglec-G. Plasmocytes, as the final stage of B cell differentiation, produce and secrete immunoglobulins (Igs), of which IgGs are the most abundant N-glycosylated proteins in human serum with the conserved N-glycosylation site at Asn297. N-oligosaccharide composition of the IgG Fc region affects its secretion, structure, half-life and effector functions (ADCC, CDC). IgG N-glycosylation undergoes little change during homeostasis, and may gradually be modified with age and during ongoing inflammatory processes. Hyperactivated B lymphocytes secrete autoreactive antibodies responsible for the development of autoimmunity. The altered profile of IgG N-glycans contributes to disease progression and remission and is sensitive to the application of therapeutic substances and immunosuppressive agents. In this review, we focus on the role of N-glycans in B-cell biology and IgG activity, the rearrangement of IgG oligosaccharides in aging, autoimmunity and immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Trzos
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Dialpuri JS, Bagdonas H, Atanasova M, Schofield LC, Hekkelman ML, Joosten RP, Agirre J. Analysis and validation of overall N-glycan conformation in Privateer. Acta Crystallogr D Struct Biol 2023; 79:462-472. [PMID: 37219590 PMCID: PMC10233620 DOI: 10.1107/s2059798323003510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The oligosaccharides in N-glycosylation provide key structural and functional contributions to a glycoprotein. These contributions are dependent on the composition and overall conformation of the glycans. The Privateer software allows structural biologists to evaluate and improve the atomic structures of carbohydrates, including N-glycans; this software has recently been extended to check glycan composition through the use of glycomics data. Here, a broadening of the scope of the software to analyse and validate the overall conformation of N-glycans is presented, focusing on a newly compiled set of glycosidic linkage torsional preferences harvested from a curated set of glycoprotein models.
Collapse
Affiliation(s)
- Jordan S. Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Mihaela Atanasova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Lucy C. Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Maarten L. Hekkelman
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Robbie P. Joosten
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Shivatare VS, Chuang PK, Tseng TH, Zeng YF, Huang HW, Veeranjaneyulu G, Wu HC, Wong CH. Study on antibody Fc-glycosylation for optimal effector functions. Chem Commun (Camb) 2023; 59:5555-5558. [PMID: 37071468 PMCID: PMC10259620 DOI: 10.1039/d3cc00672g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
A comprehensive structure-activity relationship study on antibody Fc-glycosylation has been performed using the chimeric anti-SSEA4 antibody chMC813-70 as a model. The α-2,6 sialylated biantennary complex type glycan was identified as the optimal Fc-glycan with significant enhancement in antibody effector functions, including binding to different Fc receptors and ADCC.
Collapse
Affiliation(s)
- Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Po-Kai Chuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Tzu-Hao Tseng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Yi-Fang Zeng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Han-Wen Huang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Gannedi Veeranjaneyulu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:35. [PMID: 36418786 PMCID: PMC9684400 DOI: 10.1186/s43556-022-00100-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
Since the first monoclonal antibody drug, muromonab-CD3, was approved for marketing in 1986, 165 antibody drugs have been approved or are under regulatory review worldwide. With the approval of new drugs for treating a wide range of diseases, including cancer and autoimmune and metabolic disorders, the therapeutic antibody drug market has experienced explosive growth. Monoclonal antibodies have been sought after by many biopharmaceutical companies and scientific research institutes due to their high specificity, strong targeting abilities, low toxicity, side effects, and high development success rate. The related industries and markets are growing rapidly, and therapeutic antibodies are one of the most important research and development areas in the field of biology and medicine. In recent years, great progress has been made in the key technologies and theoretical innovations provided by therapeutic antibodies, including antibody-drug conjugates, antibody-conjugated nuclides, bispecific antibodies, nanobodies, and other antibody analogs. Additionally, therapeutic antibodies can be combined with technologies used in other fields to create new cross-fields, such as chimeric antigen receptor T cells (CAR-T), CAR-natural killer cells (CAR-NK), and other cell therapy. This review summarizes the latest approved or in regulatory review therapeutic antibodies that have been approved or that are under regulatory review worldwide, as well as clinical research on these approaches and their development, and outlines antibody discovery strategies that have emerged during the development of therapeutic antibodies, such as hybridoma technology, phage display, preparation of fully human antibody from transgenic mice, single B-cell antibody technology, and artificial intelligence-assisted antibody discovery.
Collapse
Affiliation(s)
- Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Huaqing Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjian Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Zou X, Liu Z, Liu L, Shi W, Li W, Guo Z, Tang F, Huang W. Enhanced transglycosylation activity of an Endo-F3 mutant by ligand-directed localization. Org Biomol Chem 2022; 20:3086-3095. [PMID: 35166761 DOI: 10.1039/d2ob00030j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At present, numerous studies have been reported to remodel the N-glycans of therapeutic antibodies for the gain of functions. Among the ways of remodeling antibody N-glycans, the chemoenzymatic glycoengineering approach by endoglycosidase (ENGase) has been deeply investigated and provided a significant tool for IgG glycoengineering. Among these cases, the transglycosylation activity of Endo-F3, compared to Endo-S and S2, is insufficient and limits its power in remodeling IgG glycosylation. Herein, we chemically conjugated the Endo-F3 mutant D165A with an Fc binding peptide (FcBP), aiming to improve the affinity of Endo-F3 D165A to IgGs, and therefore enhance the transglycosylation activity of D165A. In this report, we investigated the conjugation site of FcBP to D165A and the linkers between them and found that the conjugation indeed significantly increases the transglycosylation activity of D165A. Meanwhile, we optimized the FcBP-D165A catalyzed transglycosylation process, including the enzyme quantity, oxazoline concentration, and so on. Finally, by this method, we remodeled the N-glycans of rituximab and trastuzumab into homogeneous S2G2F, G2F, GN2M3, and M3 types with decreased enzyme quantity, oxazoline ratio, and catalyzing time. This method not only provides an enhanced ENGase for IgG glycoengineering but also suggests that ligand-directed localization of enzymes is a potential strategy to enhance the activity of enzymes towards the targeted substrate.
Collapse
Affiliation(s)
- Xiangman Zou
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China. .,CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, P. R. China.
| | - Zhi Liu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, P. R. China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Liya Liu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, P. R. China.
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, P. R. China.
| | - Wanzhen Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, P. R. China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, P. R. China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai 201203, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou, Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China.
| |
Collapse
|
10
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
11
|
Mimura Y, Mimura-Kimura Y, Saldova R, Rudd PM, Jefferis R. Enhanced Immunomodulatory Effect of Intravenous Immunoglobulin by Fc Galactosylation and Nonfucosylation. Front Immunol 2022; 13:818382. [PMID: 35154135 PMCID: PMC8831331 DOI: 10.3389/fimmu.2022.818382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is used as an immunomodulatory agent in the treatment of various autoimmune/inflammatory diseases although its mechanism of action remains elusive. Recently, nonfucosylated IgG has been shown to be preferentially bound to Fcγ receptor IIIa (FcγRIIIa) on circulating natural killer cells; therefore, we hypothesized that nonfucosylated IVIG may modulate immune responses through FcγRIIIa blockade. Here, homogeneous fucosylated or nonfucosylated glycoforms of normal polyclonal IgG bearing sialylated, galactosylated or nongalactosylated Fc oligosaccharides were generated by chemoenzymatic glycoengineering to investigate whether the IgG glycoforms can inhibit antibody-dependent cellular cytotoxicity (ADCC). Among the six IgG glycoforms, galactosylated, nonfucosylated IgG [(G2)2] had the highest affinity to FcγRIIIa and 20 times higher potency to inhibit ADCC than native IgG. A pilot study of IVIG treatment in mice with collagen antibody-induced arthritis highlighted the low-dose (G2)2 glycoform of IVIG (0.1 g/kg) as an effective immunomodulatory agent as the 10-fold higher dose of native IVIG. These preliminary results suggest that the anti-inflammatory activity of IVIG is in part mediated via activating FcγR blockade by galactosylated, nonfucosylated IgG and that such nonfucosylated IgG glycoforms bound to FcγRs on immune cells play immunomodulatory roles in health and disease. This study provides insights into improved therapeutic strategies for autoimmune/inflammatory diseases using glycoengineered IVIG and recombinant Fc.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
- *Correspondence: Yusuke Mimura,
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| | - Pauline M. Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Dublin, Ireland
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Centros, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Importance and Monitoring of Therapeutic Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:481-517. [PMID: 34687020 DOI: 10.1007/978-3-030-76912-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex diantennary-type oligosaccharides at Asn297 residues of the IgG heavy chains have a profound impact on the safety and efficacy of therapeutic IgG monoclonal antibodies (mAbs). Fc glycosylation of a mAb is an established critical quality attribute (CQA), and its oligosaccharide profile is required to be thoroughly characterized by state-of-the-art analytical methods. The Fc oligosaccharides are highly heterogeneous, and the differentially glycosylated species (glycoforms) of IgG express unique biological activities. Glycoengineering is a promising approach for the production of selected mAb glycoforms with improved effector functions, and non- and low-fucosylated mAbs exhibiting enhanced antibody-dependent cellular cytotoxicity activity have been approved or are under clinical evaluation for treatment of cancers, autoimmune/chronic inflammatory diseases, and infection. Recently, the chemoenzymatic glycoengineering method that allows for the transfer of structurally defined oligosaccharides to Asn-linked GlcNAc residues with glycosynthase has been developed for remodeling of IgG-Fc oligosaccharides with high efficiency and flexibility. Additionally, various glycoengineering methods have been developed that utilize the Fc oligosaccharides of IgG as reaction handles to conjugate cytotoxic agents by "click chemistry", providing new routes to the design of antibody-drug conjugates (ADCs) with tightly controlled drug-antibody ratios (DARs) and homogeneity. This review focuses on current understanding of the biological relevance of individual IgG glycoforms and advances in the development of next-generation antibody therapeutics with improved efficacy and safety through glycoengineering.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin, Ireland
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Centros, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 2020; 30:214-225. [PMID: 31822882 DOI: 10.1093/glycob/cwz068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are the fastest growing group of drugs with 11 new antibodies or antibody-drug conjugates approved by the Food and Drug Administration in 2018. Many mAbs require effector function for efficacy, including antibody-dependent cell-mediated cytotoxicity triggered following contact of an immunoglobulin G (IgG)-coated particle with activating crystallizable fragment (Fc) γ receptors (FcγRs) expressed by leukocytes. Interactions between IgG1 and the FcγRs require post-translational modification of the Fc with an asparagine-linked carbohydrate (N-glycan). Though the structure of IgG1 Fc and the role of Fc N-glycan composition on disease were known for decades, the underlying mechanism of how the N-glycan affected FcγR binding was not defined until recently. This review will describe the current understanding of how N-glycosylation impacts the structure and function of the IgG1 Fc and describe new techniques that are poised to provide the next critical breakthroughs.
Collapse
Affiliation(s)
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
14
|
Murali R. Perspective on Crystallographic Studies of Antibody Structures. Monoclon Antib Immunodiagn Immunother 2020; 39:195-198. [PMID: 33156727 DOI: 10.1089/mab.2020.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the past 50 years, there has been a great progress made in understanding and deploying antibodies in biology, medicine, and therapy. In this study, a brief overview is presented on how the crystal structures of antibody fragments guided therapeutic strategies emanating from our laboratories along with some historical perspective.
Collapse
Affiliation(s)
- Ramachandran Murali
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
15
|
Zhou X, Yang G, Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells 2020; 9:E273. [PMID: 31979120 PMCID: PMC7072699 DOI: 10.3390/cells9020273] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Sialic acids, a subset of nine carbon acidic sugars, often exist as the terminal sugars of glycans on either glycoproteins or glycolipids on the cell surface. Sialic acids play important roles in many physiological and pathological processes via carbohydrate-protein interactions, including cell-cell communication, bacterial and viral infections. In particular, hypersialylation in tumors, as well as their roles in tumor growth and metastasis, have been widely described. Recent studies have indicated that the aberrant sialylation is a vital way for tumor cells to escape immune surveillance and keep malignance. In this article, we outline the present state of knowledge on the metabolic pathway of human sialic acids, the function of hypersialylation in tumors, as well as the recent labeling and analytical techniques for sialic acids. It is expected to offer a brief introduction of sialic acid metabolism and provide advanced analytical strategies in sialic acid studies.
Collapse
Affiliation(s)
- Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
16
|
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27:1. [PMID: 31894001 PMCID: PMC6939334 DOI: 10.1186/s12929-019-0592-z] [Citation(s) in RCA: 1159] [Impact Index Per Article: 231.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Zen Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Hsin-Jung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan. .,, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
17
|
Hajduk J, Brunner C, Malik S, Bangerter J, Schneider G, Thomann M, Reusch D, Zenobi R. Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach. MAbs 2020; 12:1736975. [PMID: 32167012 PMCID: PMC7153833 DOI: 10.1080/19420862.2020.1736975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022] Open
Abstract
Minor changes in the quality of biologically manufactured monoclonal antibodies (mAbs) can affect their bioactivity and efficacy. One of the most important variations concerns the N-glycosylation pattern, which directly affects an anti-tumor mechanism called antibody-dependent cell-meditated cytotoxicity (ADCC). Thus, careful engineering of mAbs is expected to enhance both protein-receptor binding and ADCC. The specific aim of this study is to evaluate the influence of terminal carbohydrates within the Fc region on the interaction with the FcγRIIIa/CD16a receptor in native and label-free conditions. The single mAb molecule comprises variants with minimal and maximal galactosylation, as well as α2,3 and α2,6-sialic acid isomers. Here, we apply native electrospray ionization mass spectrometry to determine the solution-phase antibody-receptor equilibria and by using temperature-controlled nanoelectrospray, a thermal stability of the complex is examined. Based on these, we prove that the galactosylation of a fucosylated Fc region increases the binding to CD16a 1.5-fold when compared with the non-galactosylated variant. The α2,6-sialylation has no significant effect on the binding, whereas the α2,3-sialylation decreases it 1.72-fold. In line with expectation, the galactoslylated and α2,6-sialylated mAb:CD16a complex exhibit higher thermal stability when measured in the temperature gradient from 20 to 50°C. The similar binding pattern is observed based on surface plasmon resonance analysis and immunofluorescence staining using natural killer cells. The results of our study provide new insight into N-glycosylation-based interaction of the mAb:CD16a complex.
Collapse
Affiliation(s)
- Joanna Hajduk
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Cyrill Brunner
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Sebastian Malik
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jana Bangerter
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marco Thomann
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Qin K, Shi W, Zhao L, Li M, Tang Y, Faridoon, Jiang B, Tang F, Huang W. Thermostability detection and optimization of glycoengineered antibodies and antibody-drug conjugates based on differential scanning flouremitry analysis. Bioorg Chem 2020; 94:103391. [DOI: 10.1016/j.bioorg.2019.103391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
|
19
|
Mastrangeli R, Palinsky W, Bierau H. Glycoengineered antibodies: towards the next-generation of immunotherapeutics. Glycobiology 2019; 29:199-210. [PMID: 30289453 DOI: 10.1093/glycob/cwy092] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies (mAbs) are currently the largest and fastest growing class of biopharmaceuticals, and they address unmet medical needs, e.g., in oncology and in auto-immune diseases. Their clinical efficacy and safety is significantly affected by the structure and composition of their glycosylation profile which is commonly heterogeneous, heavily dependent on the manufacturing process, and thus susceptible to variations in the cell culture conditions. Glycosylation is therefore considered a critical quality attribute for mAbs. Commonly, in currently marketed therapeutic mAbs, the glycosylation profile is suboptimal in terms of biological properties such as antibody-dependent cell-mediated cytotoxicity or may give rise to safety concerns due to the presence of non-human glycans. This article will review recent innovative developments in chemo-enzymatic glycoengineering, which allow generating mAbs carrying single, well-defined, uniform Fc glycoforms, which confers the desired biological properties for the target application. This approach offers significant benefits such as enhanced Fc effector functions, improved safety profiles, higher batch-to-batch consistency, decreased risks related to immunogenicity and manufacturing process changes, and the possibility to manufacture mAbs, in an economical manner, in non-mammalian expression systems. Overall, this approach could facilitate and reduce mAb manufacturing costs which in turn would translate into tangible benefits for both patients and manufacturers. The first glycoengineered mAbs are about to enter clinical trials and it is expected that, once glycoengineering reagents are available at affordable costs, and in-line with regulatory requirements, that targeted remodeling of antibody Fc glycosylation will become an integral part in manufacturing the next-generation of immunotherapeutics.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma, an affiliate of Merck KgaA, Darmstadt, Germany. Zone Industrielle de l'Ouriettaz, Aubonne, Switzerland
| | - Horst Bierau
- Biotech Development Programme, CMC Science & Intelligence, Merck Serono SpA, an affiliate of Merck KgaA, Darmstadt, Germany. Via Luigi Einaudi, 11. Guidonia Montecelio (Roma), Italy
| |
Collapse
|
20
|
Yageta S, Imamura H, Shibuya R, Honda S. C H2 domain orientation of human immunoglobulin G in solution: Structural comparison of glycosylated and aglycosylated Fc regions using small-angle X-ray scattering. MAbs 2019; 11:453-462. [PMID: 30513259 PMCID: PMC6512918 DOI: 10.1080/19420862.2018.1546086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 01/27/2023] Open
Abstract
The N-linked glycan in immunoglobulin G is critical for the stability and function of the crystallizable fragment (Fc) region. Alteration of these protein properties upon the removal of the N-linked glycan has often been explained by the alteration of the CH2 domain orientation in the Fc region. To confirm this hypothesis, we examined the small-angle X-ray scattering (SAXS) profile of the glycosylated Fc region (gFc) and aglycosylated Fc region (aFc) in solution. Conformational characteristics of the CH2 domain orientation were validated by comparison with SAXS profiles theoretically calculated from multiple crystal structures of the Fc region with different CH2 domain orientations. The reduced chi-square values from the fitting analyses of gFc and aFc associated with the degree of openness or closure of each crystal structure, as determined from the first principal component that partially governed the variation of the CH2 domain orientation extracted by a singular value decomposition analysis. For both gFc and aFc, the best-fitted SAXS profiles corresponded to ones calculated based on the crystal structure of gFc that formed a "semi-closed" CH2 domain orientation. Collectively, the data indicated that the removal of the N-linked glycan only negligibly affected the CH2 domain orientation in solution. These findings will guide the development of methodology for the production of highly refined functional Fc variants.
Collapse
Affiliation(s)
- Seiki Yageta
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- Manufacturing Technology Association of Biologics, Tsukuba, Ibaraki, Japan
| | - Hiroshi Imamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Risa Shibuya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- Manufacturing Technology Association of Biologics, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
22
|
Zhao J, Nussinov R, Ma B. Antigen binding allosterically promotes Fc receptor recognition. MAbs 2019; 11:58-74. [PMID: 30212263 PMCID: PMC6343797 DOI: 10.1080/19420862.2018.1522178] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
A key question in immunology is whether antigen recognition and Fc receptor (FcR) binding are allosterically linked. This question is also relevant for therapeutic antibody design. Antibody Fab and Fc domains are connected by flexible unstructured hinge region. Fc chains have conserved glycosylation sites at Asn297, with each conjugated to a core heptasaccharide and forming biantennary Fc glycan. The glycans modulate the Fc conformations and functions. It is well known that the antibody Fab and Fc domains and glycan affect antibody activity, but whether these elements act independently or synergistically is still uncertain. We simulated four antibody complexes: free antibody, antigen-bound antibody, FcR-bound antibody, and an antigen-antibody-FcR complex. We found that, in the antibody's "T/Y" conformation, the glycans, and the Fc domain all respond to antigen binding, with the antibody population shifting to two dominant clusters, both with the Fc-receptor binding site open. The simulations reveal that the Fc-glycan-receptor complexes also segregate into two conformational clusters, one corresponding to the antigen-free antibody-FcR baseline binding, and the other with an antigen-enhanced antibody-FcR interaction. Our study confirmed allosteric communications in antibody-antigen recognition and following FcR activation. Even though we observed allosteric communications through the IgG domains, the most important mechanism that we observed is the communication via population shift, stimulated by antigen binding and propagating to influence FcR recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
23
|
Sialic acid as a target for the development of novel antiangiogenic strategies. Future Med Chem 2018; 10:2835-2854. [PMID: 30539670 DOI: 10.4155/fmc-2018-0298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sialic acid is associated with glycoproteins and gangliosides of eukaryotic cells. It regulates various molecular interactions, being implicated in inflammation and cancer, where its expression is regulated by sialyltransferases and sialidases. Angiogenesis, the formation of new capillaries, takes place during inflammation and cancer, and represents the outcome of several interactions occurring at the endothelial surface among angiogenic growth factors, inhibitors, receptors, gangliosides and cell-adhesion molecules. Here, we elaborate on the evidences that many structures involved in angiogenesis are sialylated and that their interactions depend on sialic acid with implications in angiogenesis itself, inflammation and cancer. We also discuss the possibility to exploit sialic acid as a target for the development of novel antiangiogenic drugs.
Collapse
|
24
|
Wada R, Matsui M, Kawasaki N. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. MAbs 2018; 11:350-372. [PMID: 30466347 PMCID: PMC6380427 DOI: 10.1080/19420862.2018.1551044] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.
Collapse
Affiliation(s)
- Ryuta Wada
- a Pharmaceutical Science and Technology Labs ., Pharmaceutical Technology, Astellas Pharma, Inc ., Tsukuba , Ibaraki , Japan.,b Department of Medical Life Science, Graduate School of Medical Life Science , Yokohama City University , Tsurumi , Yokohama , Japan
| | - Makoto Matsui
- a Pharmaceutical Science and Technology Labs ., Pharmaceutical Technology, Astellas Pharma, Inc ., Tsukuba , Ibaraki , Japan
| | - Nana Kawasaki
- b Department of Medical Life Science, Graduate School of Medical Life Science , Yokohama City University , Tsurumi , Yokohama , Japan
| |
Collapse
|
25
|
Sequence-to-structure dependence of isolated IgG Fc complex biantennaryN-glycans: a molecular dynamics study. Glycobiology 2018; 29:94-103. [DOI: 10.1093/glycob/cwy097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
|
26
|
Dalziel M, Beers SA, Cragg MS, Crispin M. Through the barricades: overcoming the barriers to effective antibody-based cancer therapeutics. Glycobiology 2018; 28:697-712. [PMID: 29800150 DOI: 10.1093/glycob/cwy043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
Since the turn of the century, cancer therapy has undergone a transformation in terms of new treatment modalities and renewed optimism in achieving long-lived tumor control and even cure. This is, in large part, thanks to the widespread incorporation of monoclonal antibodies (mAbs) into standard treatment regimens. These new therapies have, across many settings, significantly contributed to improved clinical responses, patient quality of life and survival. Moreover, the flexibility of the antibody platform has led to the development of a wide range of innovative and combinatorial therapies that continue to augment the clinician's armory. Despite these successes, there is a growing awareness that in many cases mAb therapy remains suboptimal, primarily due to inherent limitations imposed by the immune system's own homeostatic controls and the immunosuppressive tumor microenvironment. Here, we discuss the principal barriers that act to constrain the tumor-killing activity of antibody-based therapeutics, particularly those involving antibody glycans, using illustrative examples from both pre-clinical and market approved mAbs. We also discuss strategies that have been, or are in development to overcome these obstacles. Finally, we outline how the growing understanding of the biological terrain in which mAbs function is shaping innovation and regulation in cancer therapeutics.
Collapse
Affiliation(s)
- Martin Dalziel
- Oxford Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford, UK
| | - Stephen A Beers
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Max Crispin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, UK
| |
Collapse
|
27
|
Global conformational changes in IgG-Fc upon mutation of the FcRn-binding site are not associated with altered antibody-dependent effector functions. Biochem J 2018; 475:2179-2190. [PMID: 29794155 DOI: 10.1042/bcj20180139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022]
Abstract
Antibody engineering is important for many diagnostic and clinical applications of monoclonal antibodies. We recently reported a series of fragment crystallizable (Fc) mutations targeting the neonatal Fc receptor (FcRn) site on a Lewis Y (Ley) binding IgG1, hu3S193. The hu3S193 variants displayed shortened in vivo half-lives and may have potential for radioimaging or radiotherapy of Ley-positive tumors. Here, we report Fc crystal structures of wild-type hu3S193, seven FcRn-binding site variants, and a variant lacking C1q binding or complement-dependent cytotoxicity (CDC) activity. The Fc conformation of the FcRn-binding sites was similar for wild-type and all mutants of hu3S193 Fc, which suggests that FcRn interactions were directly affected by the amino acid substitutions. The C1q-binding site mutant Fc was nearly identical with the wild-type Fc. Surprisingly, several hu3S193 Fc variants showed large changes in global structure compared with wild-type Fc. All hu3S193 Fc mutants had similar antibody-dependent cellular cytotoxicity, despite some with conformations expected to diminish Fc gamma receptor binding. Several hu3S193 variants displayed altered CDC, but there was no correlation with the different Fc conformations. All versions of hu3S193, except the C1q-binding site mutant, bound C1q, suggesting that the altered CDC of some variants could result from different propensities to form IgG hexamers after engaging Ley on target cells. Overall, our findings support the concept that the antibody Fc is both flexible and mobile in solution. Structure-based design approaches should take into account the conformational plasticity of the Fc when engineering antibodies with optimal effector properties.
Collapse
|
28
|
Kelly RM, Kowle RL, Lian Z, Strifler BA, Witcher DR, Parekh BS, Wang T, Frye CC. Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway. Biotechnol Bioeng 2017; 115:705-718. [PMID: 29150961 DOI: 10.1002/bit.26496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Cross-linking of the Fcγ receptors expressed on the surface of hematopoietic cells by IgG immune complexes triggers the activation of key immune effector mechanisms, including antibody-dependent cell mediated cytotoxicity (ADCC). A conserved N-glycan positioned at the N-terminal region of the IgG CH 2 domain is critical in maintaining the quaternary structure of the molecule for Fcγ receptor engagement. The removal of a single core fucose residue from the N-glycan results in a considerable increase in affinity for FcγRIIIa leading to an enhanced receptor-mediated immunoeffector function. The enhanced potency of the molecule translates into a number of distinct advantages in the development of IgG antibodies for cancer therapy. In an effort to significantly increase the potency of an anti-CD20, IgG1 molecule, we selectively targeted the de novo GDP-fucose biosynthesis pathway of the host CHO cell line to generate >80% afucosylated IgG1 resulting in enhanced FcγRIIIa binding (13-fold) and in vitro ADCC cell-based activity (11-fold). In addition, this effective glycoengineering strategy also allowed for the utilization of the alternate GDP-fucose salvage pathway to provide a fast and efficient mechanism to manipulate the N-glycan fucosylation level to modulate IgG immune effector function.
Collapse
Affiliation(s)
- Ronan M Kelly
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| | - Ronald L Kowle
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| | - Zhirui Lian
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| | - Beth A Strifler
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Derrick R Witcher
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Bhavin S Parekh
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| | - Tongtong Wang
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| | - Christopher C Frye
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|