1
|
Lam YY, Tan A, Kempe K, Boyd BJ. Metabolic glycan labelling with bio-orthogonal targeting and its potential in drug delivery. J Control Release 2024; 378:880-898. [PMID: 39694071 DOI: 10.1016/j.jconrel.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
New modes of targeted drug delivery are emerging with promise of enhancing therapeutic efficacy while reducing side effects. This review examines the landscape of metabolic glycan labelling-a technique gaining traction for its potential in specific drug targeting. By exploiting the natural glycan synthetic pathway of monosaccharides, unnatural sugar analogues are incorporated into glycoproteins, allowing for the presentation of unique functional groups on cells. This enables specific targeting using 'clickable' probes with complementary click chemistry functional groups. The selection of sugar analogues and chemical tags are crucial components explored in this review, alongside considerations for cell lines, tissues, and cargo selection. The review discusses non-therapeutic and therapeutic applications of metabolic glycan labelling, as well as its potential beyond labelling of cell surfaces. The review also highlights underexplored areas of metabolic glycan labelling by assessing the limited literature addressing labelling efficiency, turnover rates, the impact of sugar supplements in cell culture, and the critical cell to functionalised sugar ratio. Furthermore, this review delves into the future landscape and goals of metabolic glycan labelling, envisioning its potential in targeted drug delivery.
Collapse
Affiliation(s)
- Yuen Yi Lam
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Pharmacy, University of Copenhagen Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Kondengadan SM, Bansal S, Yang X, Wang B. Folate-conjugated organic CO prodrugs: Synthesis and CO release kinetic studies. RESEARCH SQUARE 2024:rs.3.rs-4213303. [PMID: 38659849 PMCID: PMC11042441 DOI: 10.21203/rs.3.rs-4213303/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Carbon monoxide (CO) is an endogenous produced molecule and has shown efficacy in animal models of inflammation, organ injury, colitis and cancer metastasis. Because of its gaseous nature, there is a need for developing efficient CO delivery approaches, especially those capable of targeted delivery. In this study, we aim to take advantage of a previously reported approach of enrichment-triggered prodrug activation to achieve targeted delivery by targeting the folate receptor. The general idea is to exploit folate receptor-mediated enrichment as a way to accelerate a biomolecular Diels-Alder reaction for prodrug activation. In doing so, we first need to find ways to tune the reaction kinetics in order to ensure minimal rection without enrichment and optimal activation upon enrichment. In this feasibility study, we synthesized two diene-dienophile pairs and studied their reaction kinetics and ability to target the folate receptor. We found that folate conjugation significantly affects the reaction kinetics of the original diene-dienophile pairs. Such information will be very useful in future designs of similar targeted approaches of CO delivery.
Collapse
|
3
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
4
|
Tripathi R, Guglani A, Ghorpade R, Wang B. Biotin conjugates in targeted drug delivery: is it mediated by a biotin transporter, a yet to be identified receptor, or (an)other unknown mechanism(s)? J Enzyme Inhib Med Chem 2023; 38:2276663. [PMID: 37955285 PMCID: PMC10653662 DOI: 10.1080/14756366.2023.2276663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Conjugation of drugs with biotin is a widely studied strategy for targeted drug delivery. The structure-activity relationship (SAR) studies through H3-biotin competition experiments conclude with the presence of a free carboxylic acid being essential for its uptake via the sodium-dependent multivitamin transporter (SMVT, the major biotin transporter). However, biotin conjugation with a payload requires modification of the carboxylic acid to an amide or ester group. Then, there is the question as to how/whether the uptake of biotin conjugates goes through the SMVT. If not, then what is the mechanism? Herein, we present known uptake mechanisms of biotin and its applications reported in the literature. We also critically analyse possible uptake mechanism(s) of biotin conjugates to address the disconnect between the results from SMVT-based SAR and "biotin-facilitated" targeted drug delivery. We believe understanding the uptake mechanism of biotin conjugates is critical for their future applications and further development.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Anchala Guglani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rujuta Ghorpade
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
5
|
Wang M, Kejian S, Ye L, Chen J, Ma L. Transforms of Cell Surface Glycoproteins Charge Influences Tumor Cell Metastasis via Atypically Inhibiting Epithelial-Mesenchymal Transition Including Matrix Metalloproteinases and Cell Junctions. Bioconjug Chem 2023; 34:1498-1507. [PMID: 37498932 DOI: 10.1021/acs.bioconjchem.3c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cell communication and signal transduction rely heavily on the charge on the cell surface. The cell surface is negatively charged, with glycoproteins on the cell membrane providing a large percentage of the charge. Sialic acid is found on the outermost side of glycan chains and contributes to glycoprotein's negative charge. Sialic acid is highly expressed in tumor cells and plays an important role in tumor metastasis and immune escape by interacting with extracellular ligands. However, the specific effect of negative charge changes on glycoproteins is still poorly understood. In this study, we used 9-azido sialic acid (9Az-Sia) to create artificial epitopes on glycoproteins via metabolic glycan labeling, and we attached charged groups such as amino and carboxyl to 9Az-Sia via a click reaction with dibenzocyclooctyne (DBCO). The charge of glycoproteins was changed by metabolic glycan labeling and click modification. The results showed that the migration and invasion ability of the MDA-MB-231 cell labeled with 9Az-Sia was significantly reduced after the modification with amino groups rather than carboxyl groups. Epithelial-mesenchymal transition (EMT) is the biological process of metastatic tumor cells, with an increasing ability of tumor cells to migrate and invade. In particular, the expression of adhesion molecules increased in the amine-linked group, whereas the expression of matrix metalloproteinases (MMPs) increased significantly, which is not identical to EMT characteristics. In vivo experiments have demonstrated that the loss of negative charge on glycoproteins has an inhibitory effect on tumors. In conclusion, modifying the positive charge on the surface of glycoproteins can inhibit tumor cell metastasis and has great potential for tumor therapy.
Collapse
Affiliation(s)
- Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shi Kejian
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Ye
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu 610000, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518055, China
| |
Collapse
|
6
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
7
|
Milawati H, Manabe Y, Matsumoto T, Tsutsui M, Ueda Y, Miura A, Kabayama K, Fukase K. Practical Antibody Recruiting by Metabolic Labeling with Caged Glycans. Angew Chem Int Ed Engl 2023; 62:e202303750. [PMID: 37042088 DOI: 10.1002/anie.202303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/13/2023]
Abstract
We propose a de novo glycan display approach that combines metabolic labeling and a glycan-caging strategy as a facile editing method for cell-surface glycans. This method enables the introduction of antigen glycans onto cancer cells to induce immune responses through antibody recruiting. The caging strategy prevents the capture of α-rhamnose (an antigen glycan) by endogenous antibodies during the introduction of the glycan to the targeted cell surface, and subsequent uncaging successfully induces immune responses. Therefore, this study proposes a practical method for editing the cell-surface glycocalyx under promiscuous conditions, such as those in vivo, which paves the way for the development of glycan function analysis and regulation.
Collapse
Affiliation(s)
- Hersa Milawati
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuya Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Masato Tsutsui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
8
|
Kapcan E, Rullo AF. A covalent opsonization approach to enhance synthetic immunity against viral escape variants. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101258. [PMID: 36741337 PMCID: PMC9885534 DOI: 10.1016/j.xcrp.2023.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
The sensitivity of therapeutic antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral "escape" mutations has inspired efforts to develop treatment strategies that are still effective in the face of rapidly mutating viral surface proteins. Here, we demonstrate a chemical strategy that enforces viral opsonization by natural serum antibodies. This strategy uses chimeric molecules that we call covalent viral opsonizers, which covalently label viral surface proteins, with synthetic antibody-binding ligands. As a proof of concept, we develop covalent viral opsonizers that covalently label the spike protein on SARS-CoV-2 using a "mutation-proof" small-molecule-binding ligand for anti-dinitrophenyl serum antibodies. In model assays, we observe that covalent viral opsonizers can rapidly and selectively covalently label the receptor-binding domain of both native and mutant spike proteins, leading to antibody opsonization. Opsonization mediated by this strategy is able to efficiently block the key binding domain interactions, in contrast to non-covalent analogs. We also show that covalent viral opsonizers enact targeted anti-viral phagocytotic immune function. This strategy has potential general utility for the rapid deployment of anti-viral synthetic immunotherapeutics at the onset of a new pandemic to reinforce vaccination and antibody engineering efforts.
Collapse
Affiliation(s)
- Eden Kapcan
- McMaster Immunology Research Centre (MIRC), McMaster University, 1280 Main Street West, Hamilton, ON, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Anthony F Rullo
- McMaster Immunology Research Centre (MIRC), McMaster University, 1280 Main Street West, Hamilton, ON, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| |
Collapse
|
9
|
Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7:386. [PMID: 36460660 PMCID: PMC9716178 DOI: 10.1038/s41392-022-01250-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery. On the one hand, bioorthogonal reactions improve therapeutic agent delivery to target sites, overcoming off-target distribution. On the other hand, nanoparticles and biomolecules can be linked to cell membranes by bioorthogonal reactions, providing approaches to developing multi-functional drug delivery systems (DDSs). In this review, we first describe the principle of labeling cells or pathogenic microorganisms with bioorthogonal groups. We then highlight recent breakthroughs in developing active targeting DDSs to tumors, immune systems, or bacteria by bioorthogonal chemistry, as well as applications of bioorthogonal chemistry in developing functional bio-inspired DDSs (biomimetic DDSs, cell-based DDSs, bacteria-based and phage-based DDSs) and hydrogels. Finally, we discuss the difficulties and prospective direction of bioorthogonal chemistry in drug delivery. We expect this review will help us understand the latest advances in the development of active targeting and multi-functional DDSs using bioorthogonal chemistry and inspire innovative applications of bioorthogonal chemistry in developing smart DDSs for disease treatment.
Collapse
Affiliation(s)
- Wenzhe Yi
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ping Xiao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaochen Liu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zitong Zhao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiangshi Sun
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jue Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Lei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Guanru Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiqiang Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dangge Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Yaping Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000 China
| |
Collapse
|
10
|
Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B 2022; 13:1990-2016. [DOI: 10.1016/j.apsb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
|
11
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
12
|
Szponarski M, Gademann K. Antibody Recognition of Cancer Cells via Glycan Surface Engineering. Chembiochem 2022; 23:e202200125. [PMID: 35638149 PMCID: PMC9400979 DOI: 10.1002/cbic.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/25/2022] [Indexed: 11/21/2022]
Abstract
Stimulation of the body's immune system toward tumor cells is now well recognized as a promising strategy in cancer therapy. Just behind cell therapy and monoclonal antibodies, small molecule-based strategies are receiving growing attention as alternatives to direct immune response against tumor cells. However, the development of small-molecule approaches to modulate the balance between stimulatory immune factors and suppressive factors in a targeted way remains a challenge. Here, we report the cell surface functionalization of LS174T cancer cells with an abiotic hapten to recruit antibodies to the cell surface. Metabolic glycoengineering followed by covalent reaction with the hapten results in antibody recognition of the target cells. Microscopy and flow cytometry studies provide compelling evidence that metabolic glycoengineering and small molecule stimulators can be combined to direct antibody recognition.
Collapse
Affiliation(s)
| | - Karl Gademann
- Department of ChemistryUniversity of Zurich8057ZurichSwitzerland
| |
Collapse
|
13
|
Rösner L, Konken CP, Depke DA, Rentmeister A, Schäfers M. Covalent labeling of immune cells. Curr Opin Chem Biol 2022; 68:102144. [DOI: 10.1016/j.cbpa.2022.102144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
14
|
Li Y, Gong L, Hong H, Lin H, Li D, Shi J, Zhou Z, Wu Z. β-Galactosidase-dependent metabolic glycoengineering of tumor cells for imaging and immunotherapy. Chem Commun (Camb) 2022; 58:2568-2571. [PMID: 35107093 DOI: 10.1039/d1cc06575k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A β-Gal-dependent metabolic glycoengineering strategy was developed for tumor cell-selective surface glycan imaging with high efficacy. Combined with an antibody-recruiting strategy, targeted immunotherapy was achieved successfully based on this strategy.
Collapse
Affiliation(s)
- Yanchun Li
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Liang Gong
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Haofei Hong
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Han Lin
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Dan Li
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jie Shi
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhifang Zhou
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Ying L, Xu J, Han D, Zhang Q, Hong Z. The Applications of Metabolic Glycoengineering. Front Cell Dev Biol 2022; 10:840831. [PMID: 35252203 PMCID: PMC8892211 DOI: 10.3389/fcell.2022.840831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian cell membranes are decorated by the glycocalyx, which offer versatile means of generating biochemical signals. By manipulating the set of glycans displayed on cell surface, it is vital for gaining insight into the cellular behavior modulation and medical and biotechnological adhibition. Although genetic engineering is proven to be an effective approach for cell surface modification, the technique is only suitable for natural and genetically encoded molecules. To circumvent these limitations, non-genetic approaches are developed for modifying cell surfaces with unnatural but functional groups. Here, we review latest development of metabolic glycoengineering (MGE), which enriches the chemical functions of the cell surface and is becoming an intriguing new tool for regenerative medicine and tissue engineering. Particular emphasis of this review is placed on discussing current applications and perspectives of MGE.
Collapse
Affiliation(s)
- Liwei Ying
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Junxi Xu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Han
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Qingguo Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
- *Correspondence: Qingguo Zhang, ; Zhenghua Hong,
| | - Zhenghua Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Linhai, China
- *Correspondence: Qingguo Zhang, ; Zhenghua Hong,
| |
Collapse
|
16
|
Goyard D, Diriwari PI, Berthet N. Metabolic labelling of cancer cells with glycodendrimers stimulate immune-mediated cytotoxicity. RSC Med Chem 2022; 13:72-78. [PMID: 35211675 PMCID: PMC8792828 DOI: 10.1039/d1md00262g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The recruitment of antibody naturally present in human blood stream at the surface of cancer cells have been proved a promising immunotherapeutic strategy to fight cancer. Antibody recruiting molecules (ARMs) combining tumor and antibody binding modules have been developed for this purpose, however the formation of the interacting complex with both antibody and cell is difficult to optimize to stimulate immune-mediated cytotoxicity. To circumvent this limitation, we report herein a more direct approach combining cell metabolism of azido-sugar and bio-orthogonal click chemistry to conjugate at the cell glycocalyx structurally well-defined glycodendrimers as antibody binding module (ABM). We demonstrate that this strategy allows not only the recruitment of natural antibody at the surface of isolated cells or solid tumor models but also activate a cytotoxic response with human serum as unique source of immune effectors.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS DCM UMR 5250 F-38000 Grenoble France
| | | | | |
Collapse
|
17
|
Parashar S, Gupta V, Bhatnagar R, Kausar A. A clickable folic acid-rhamnose conjugate for selective binding to cancer cells. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Zhao T, Masuda T, Takai M. pH-Responsive Water-Soluble Polymer Carriers for Cell-Selective Metabolic Sialylation Labeling. Anal Chem 2021; 93:15420-15429. [PMID: 34727692 DOI: 10.1021/acs.analchem.1c03261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell-surface sialic acids can be metabolically labeled and subsequently modified using bioorthogonal chemistry. The method has great potential for targeted therapy and imaging; however, distinguishing the sialylation of specific cells remains a major challenge. Here, we described a cell-selective metabolic sialylation labeling strategy based on water-soluble polymer carriers presented with pH-responsive N-azidoacetylmannosamine (ManNAz) release. 2-Methacryloyloxyethyl phosphorylcholine contributed to increased water solubility and reduced nonspecific attachment to cells. Lactobionic acid residues, used for cell selectivity, recognized overexpressed receptors on target hepatoma cells and mediated cellular internalization. ManNAz caged by acidic pH-responsive carbonated ester linkage on the polymer was released inside target cells and expressed as azido sialic acid. Additionally, longer copolymer carriers enhanced the metabolic labeling efficiency of sialylation. This approach provides a platform for cell-selective labeling of sialylation and can be applied to high-resolution bioimaging and targeted therapy.
Collapse
Affiliation(s)
- Tingbi Zhao
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Zhang X, Chen Y, He X, Zhang Y, Zhou M, Peng C, He Z, Gui S, Li Z. Smart Nanogatekeepers for Tumor Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103712. [PMID: 34677898 DOI: 10.1002/smll.202103712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticulate drug delivery systems (nano-DDSs) are required to reliably arrive and persistently reside at the tumor site with minimal off-target side effects for clinical theranostics. However, due to the complicated environment and high interstitial pressure in tumor tissue, they can return to the bloodstream and cause secondary side effects in normal organs. Recently, a number of nanogatekeepers have been engineered via structure-transformable/stable strategies to overcome this undesirable dilemma. The emerging structure-transformable nanogatekeepers for tumor imaging and therapy are first overviewed here, particularly for nanogatekeepers undergoing structural transformation in tumor microenvironments, cell membranes, and organelles. Thereafter, intelligent structure-stable nanogatekeepers through reversible activation and artificial individualization receptors are overviewed. Finally, the ongoing challenges and prospects of nanogatekeepers for clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xunfa Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xian He
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Yachao Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Mei Zhou
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chengjun Peng
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| | - Zhenbao Li
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, 230012, China
| |
Collapse
|
20
|
Dai S, Hong H, Zhou K, Zhao K, Xie Y, Li C, Shi J, Zhou Z, Nie L, Wu Z. Exendin 4-Hapten Conjugate Capable of Binding with Endogenous Antibodies for Peptide Half-life Extension and Exerting Long-Acting Hypoglycemic Activity. J Med Chem 2021; 64:4947-4959. [PMID: 33825469 DOI: 10.1021/acs.jmedchem.1c00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hapten-specific endogenous antibodies are naturally occurring antibodies present in human blood. Herein, we investigated a new strategy in which small-molecule haptens were utilized as naturally occurring antibody binders for peptide half-life extension. The glucagon-like peptide 1 receptor agonist exendin 4 was site-specifically functionalized with the dinitrophenyl (DNP) hapten at the C-terminus via sortase A-mediated ligation. The resulting Ex4-DNP conjugates retained GLP-1 receptor activation potency in vitro and had a similar in vivo acute glucose-lowering effect comparable to that of native Ex4. Pharmacokinetic studies and hypoglycemic duration tests demonstrated that the Ex4-DNP conjugates displayed significantly elongated half-lives and improved long-acting antidiabetic activity in the presence of endogenous anti-DNP antibodies. In chronic treatment studies, once-daily administration of optimal conjugate 7 demonstrated more beneficial effects without prominent toxicity compared with Ex4. This strategy provides a new approach and represents an alternative to the well-established peptide-Fc fusion strategy to improve the peptide half-life and the therapeutic efficacy.
Collapse
Affiliation(s)
- Shijie Dai
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Kai Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Yuntian Xie
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| | - Lei Nie
- Hisun Biopharmaceutical Co., Limited, 8 Hisun Road, Xialian Village, Xukou Town, Fuyang District, 311404 Hangzhou, Zhejiang, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
21
|
Saka K, Kakuzaki T, Metsugi S, Kashiwagi D, Yoshida K, Wada M, Tsunoda H, Teramoto R. Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci Rep 2021; 11:5852. [PMID: 33712669 PMCID: PMC7955064 DOI: 10.1038/s41598-021-85274-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/26/2021] [Indexed: 01/25/2023] Open
Abstract
Molecular evolution is an important step in the development of therapeutic antibodies. However, the current method of affinity maturation is overly costly and labor-intensive because of the repetitive mutation experiments needed to adequately explore sequence space. Here, we employed a long short term memory network (LSTM)-a widely used deep generative model-based sequence generation and prioritization procedure to efficiently discover antibody sequences with higher affinity. We applied our method to the affinity maturation of antibodies against kynurenine, which is a metabolite related to the niacin synthesis pathway. Kynurenine binding sequences were enriched through phage display panning using a kynurenine-binding oriented human synthetic Fab library. We defined binding antibodies using a sequence repertoire from the NGS data to train the LSTM model. We confirmed that likelihood of generated sequences from a trained LSTM correlated well with binding affinity. The affinity of generated sequences are over 1800-fold higher than that of the parental clone. Moreover, compared to frequency based screening using the same dataset, our machine learning approach generated sequences with greater affinity.
Collapse
Affiliation(s)
- Koichiro Saka
- Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan
| | - Taro Kakuzaki
- Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan
| | - Shoichi Metsugi
- Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan
| | - Daiki Kashiwagi
- Research Division, Chugai Pharmaceutical Co., Ltd, Gotemba, Shizuoka, Japan
| | - Kenji Yoshida
- Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan
| | - Manabu Wada
- Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan
| | - Hiroyuki Tsunoda
- Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan
| | - Reiji Teramoto
- Research Division, Chugai Pharmaceutical Co., Ltd, Kamakura, Kanagawa, Japan.
| |
Collapse
|
22
|
Achilli S, Berthet N, Renaudet O. Antibody recruiting molecules (ARMs): synthetic immunotherapeutics to fight cancer. RSC Chem Biol 2021; 2:713-724. [PMID: 34212148 PMCID: PMC8190906 DOI: 10.1039/d1cb00007a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells. In this review, we aim to highlight the recent advances in the field. We will illustrate the advantages of different ARM approaches and emphasize the importance of a multivalent presentation of the binding units. Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells.![]()
Collapse
Affiliation(s)
- Silvia Achilli
- Univ. Grenoble Alpes, CNRS DCM UMR 5250 F-38000 Grenoble France
| | | | | |
Collapse
|
23
|
Hong H, Li C, Gong L, Wang J, Li D, Shi J, Zhou Z, Huang Z, Wu Z. Universal endogenous antibody recruiting nanobodies capable of triggering immune effectors for targeted cancer immunotherapy. Chem Sci 2021; 12:4623-4630. [PMID: 34163726 PMCID: PMC8179521 DOI: 10.1039/d0sc05332e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/07/2021] [Indexed: 01/21/2023] Open
Abstract
Developing monoclonal antibodies (mAbs) for cancer immunotherapy is expensive and complicated. Nanobodies are small antibodies possessing favorable pharmacological properties compared with mAbs, but have limited anticancer efficacy due to the lack of an Fc region and poor pharmacokinetics. In this context, engineered universal endogenous antibody-recruiting nanobodies (UEAR Nbs), as a general and cost-effective approach, were developed to generate functional antibody-like nanobodies that could recapitulate the Fc biological functions for cancer immunotherapy. The UEAR Nbs, composed of the IgG binding domain and nanobody, were recombinantly expressed in E. coli and could recruit endogenous IgGs onto the cancer cell surface and trigger potent immune responses to kill cancer cells in vitro. Moreover, it was proved that UEAR Nbs displayed significantly improved half-lives in vivo. The in vivo antitumor efficacy of UEAR Nbs was demonstrated in a murine model using EGFR positive triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Liang Gong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Jinfeng Wang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University Wuxi 214062 China
- Laboratory of Cancer Epigenetics, School of Medicine, Jiangnan University Wuxi 214122 China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| |
Collapse
|
24
|
Metabolic glycan labelling for cancer-targeted therapy. Nat Chem 2020; 12:1102-1114. [PMID: 33219365 DOI: 10.1038/s41557-020-00587-w] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.
Collapse
|
25
|
Yang X, Pan Z, Choudhury MR, Yuan Z, Anifowose A, Yu B, Wang W, Wang B. Making smart drugs smarter: The importance of linker chemistry in targeted drug delivery. Med Res Rev 2020; 40:2682-2713. [PMID: 32803765 PMCID: PMC7817242 DOI: 10.1002/med.21720] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
Smart drugs, such as antibody-drug conjugates, for targeted therapy rely on the ability to deliver a warhead to the desired location and to achieve activation at the same site. Thus, designing a smart drug often requires proper linker chemistry for tethering the warhead with a vehicle in such a way that either allows the active drug to retain its potency while being tethered or ensures release and thus activation at the desired location. Recent years have seen much progress in the design of new linker activation strategies. Herein, we review the recent development of chemical strategies used to link the warhead with a delivery vehicle for preferential cleavage at the desired sites.
Collapse
Affiliation(s)
| | | | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Abiodun Anifowose
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Wenyi Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| |
Collapse
|
26
|
Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF. Advanced Bottom-Up Engineering of Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903975. [PMID: 31823448 DOI: 10.1002/adma.201903975] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/30/2019] [Indexed: 05/08/2023]
Abstract
Bottom-up tissue engineering is a promising approach for designing modular biomimetic structures that aim to recapitulate the intricate hierarchy and biofunctionality of native human tissues. In recent years, this field has seen exciting progress driven by an increasing knowledge of biological systems and their rational deconstruction into key core components. Relevant advances in the bottom-up assembly of unitary living blocks toward the creation of higher order bioarchitectures based on multicellular-rich structures or multicomponent cell-biomaterial synergies are described. An up-to-date critical overview of long-term existing and rapidly emerging technologies for integrative bottom-up tissue engineering is provided, including discussion of their practical challenges and required advances. It is envisioned that a combination of cell-biomaterial constructs with bioadaptable features and biospecific 3D designs will contribute to the development of more robust and functional humanized tissues for therapies and disease models, as well as tools for fundamental biological studies.
Collapse
Affiliation(s)
- Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João Borges
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
27
|
Sharma S, Shekhar S, Sharma B, Jain P. Decoding glycans: deciphering the sugary secrets to be coherent on the implication. RSC Adv 2020; 10:34099-34113. [PMID: 35519023 PMCID: PMC9056758 DOI: 10.1039/d0ra04471g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/23/2020] [Indexed: 12/28/2022] Open
Abstract
Neoteric techniques, skills, and methodological advances in glycobiology and glycochemistry have been instrumental in pertinent discoveries to pave way for a new era in biomedical sciences. Glycans are sugar-based polymers that coat cells and decorate majority of proteins, forming glycoproteins. They are also found deposited in extracellular spaces between cells, attached to soluble signaling molecules, and are key players in several biological processes including regulation of immune responses and cell–cell interactions. Laboratory manipulations of protein, DNA and other macromolecules celebrate the accelerated research in respective fields, but the same seems unlikely for the complex sugar polymers. The structural complex polymers are neither synthesized using a known template nor are dynamically stable with respect to a cell's metabolic rate. What is more, sugar isomers—structurally distinct molecules with the same chemical formula—can be employed to construct varied glycans, but are almost impossible to tell apart based on molecular weight alone. The apparent lack of a glycan alphabet further reflects on an enduring question: how little do we know about the sugars? Evidently, glycan-based therapeutic potentials and glycomimetics are propitious advances for the future that have not been well exploited, and with a few conspicuous anomalies. Here, we contour the most notable contributions to enhance our ability to utilize the complex glycans as therapeutics. Diagnostic strategies concerning recurrent diseases and headways to address the challenges are also discussed. A glycan toolbox for pathogenic and cancerous interventions. The review article sheds light on the sweet secrets of this complex structure.![]()
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Shashank Shekhar
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Bhasha Sharma
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| | - Purnima Jain
- Department of Chemistry
- Netaji Subhas University of Technology
- India
| |
Collapse
|
28
|
Hong H, Zhou Z, Zhou K, Liu S, Guo Z, Wu Z. Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies. Chem Sci 2019; 10:9331-9338. [PMID: 32110296 PMCID: PMC7006623 DOI: 10.1039/c9sc03840j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Nanobodies are a class of camelid-derived single-domain antibodies that have many potential advantages over conventional antibodies and have been utilized to develop new therapeutic strategies for cancer and other diseases. However, nanobodies lack the Fc region of a conventional antibody, which possesses many functions, e.g., eliciting antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), essential for effective immunotherapy. The small molecular size of nanobodies also leads to poor pharmacokinetics, such as short in vivo half-life. To address these deficiencies, an endogenous antibody-based strategy to reconstitute the Fc functions for nanobodies was developed. As a proof-of-principle, an anti-human EGFR nanobody, 7D12, was selected to conduct C-terminal modification with the dinitrophenyl (DNP) hapten through Sortase A-mediated site-specific ligation. It was expected that the DNP motif would recruit endogenous human anti-DNP antibodies to indirectly reinstate the Fc functions. The resultant nanobody-DNP conjugates were shown to exhibit specific and high affinity binding to human EGFR expressed on target cancer cells. It was further proved that in the presence of anti-DNP antibody, these conjugates could mediate potent ADCC and CDC in vitro and exhibit significantly elongated half-life in vivo. Ultimately, it was proven in severe combined immunodeficiency (SCID) mice that treatment with the nanobody 7D12-DNP conjugate and anti-DNP mouse serum could inhibit xenograft tumor growth efficiently. In view of the abundance of anti-DNP and other endogenous antibodies in the human blood system, this could be a generally applicable approach employed to reconstitute the Fc functions for nanobodies and develop nanobody-based cancer immunotherapy and other therapies.
Collapse
Affiliation(s)
- Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Shaozhong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhongwu Guo
- Department of Chemistry , University of Florida , 214 Leigh Hall , Gainesville , Florida 32611 , USA .
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| |
Collapse
|
29
|
Uvyn A, De Coen R, De Wever O, Deswarte K, Lambrecht BN, De Geest BG. Cell surface clicking of antibody-recruiting polymers to metabolically azide-labeled cancer cells. Chem Commun (Camb) 2019; 55:10952-10955. [PMID: 31441915 DOI: 10.1039/c9cc03379c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Triggering antibody-mediated innate immune mechanisms to kill cancer cells is an attractive therapeutic avenue. In this context, recruitment of endogenous antibodies to the cancer cell surface could be a viable alternative to the use of monoclonal antibodies. We report on antibody-recruiting polymers containing multiple antibody-binding hapten motifs and cyclooctynes that can covalently conjugate to azides introduced onto the glycocalyx of cancer cells by metabolic labeling with azido sugars.
Collapse
Affiliation(s)
- Annemiek Uvyn
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
30
|
Uvyn A, De Coen R, Gruijs M, Tuk CW, De Vrieze J, van Egmond M, De Geest BG. Efficient Innate Immune Killing of Cancer Cells Triggered by Cell‐Surface Anchoring of Multivalent Antibody‐Recruiting Polymers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annemiek Uvyn
- Department of Pharmaceutics Ghent University Belgium
| | - Ruben De Coen
- Department of Pharmaceutics Ghent University Belgium
| | - Mandy Gruijs
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | - Cees W. Tuk
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | |
Collapse
|
31
|
Agatemor C, Buettner MJ, Ariss R, Muthiah K, Saeui CT, Yarema KJ. Exploiting metabolic glycoengineering to advance healthcare. Nat Rev Chem 2019; 3:605-620. [PMID: 31777760 DOI: 10.1038/s41570-019-0126-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic glycoengineering (MGE) is a technique for manipulating cellular metabolism to modulate glycosylation. MGE is used to increase the levels of natural glycans and, more importantly, to install non-natural monosaccharides into glycoconjugates. In this Review, we summarize the chemistry underlying MGE that has been developed over the past three decades and highlight several recent advances that have set the stage for clinical translation. In anticipation of near-term application to human healthcare, we describe emerging efforts to deploy MGE in diverse applications, ranging from the glycoengineering of biotherapeutic proteins and the diagnosis and treatment of complex diseases such as cancer to the development of new immunotherapies.
Collapse
Affiliation(s)
- Christian Agatemor
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Keerthana Muthiah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
32
|
Uvyn A, De Coen R, Gruijs M, Tuk CW, De Vrieze J, van Egmond M, De Geest BG. Efficient Innate Immune Killing of Cancer Cells Triggered by Cell‐Surface Anchoring of Multivalent Antibody‐Recruiting Polymers. Angew Chem Int Ed Engl 2019; 58:12988-12993. [DOI: 10.1002/anie.201905093] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Annemiek Uvyn
- Department of Pharmaceutics Ghent University Belgium
| | - Ruben De Coen
- Department of Pharmaceutics Ghent University Belgium
| | - Mandy Gruijs
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | - Cees W. Tuk
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology Amsterdam UMC Amsterdam The Netherlands
| | | |
Collapse
|