1
|
Yamada T, Funamoto M, Takada R, Morita Y, Komatsu T. Transport of Zinc-Phthalocyanine to Cancer Cells Using Myoglobin-Albumin Fusion Protein for Photodynamic Therapy. Chembiochem 2024; 25:e202400329. [PMID: 38926093 DOI: 10.1002/cbic.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Photodynamic therapy (PDT) is a noninvasive approach to cancer treatment, wherein cell death is initiated by singlet oxygen (1O2) production via energy transfer from excited photosensitizers to ground-state O2. Effective clinical photosensitizers necessitate water solubility for in vivo administration. Hydrophobic dyes, such as phthalocyanines, cannot be used directly as photosensitizers. Herein, we synthesized a myoglobin-(human serum albumin) fusion protein reconstituted with zinc-phthalocyanine (ZnPc), termed ZnPcMb-HSA. The photophysical properties of ZnPcMb-HSA closely resemble those of ZnPc-substituted Mb. Notably, ZnPc dissociates from ZnPcMb-HSA and selectively accumulates within cancer cells, while the protein components remain extracellular. Treatment of four distinct cell lines with ZnPcMb-HSA, followed by red-light irradiation, effectively induced apoptosis. The half-maximal inhibitory concentrations (IC50) against these cancer cell lines ranged between 0.1-0.5 μM. Reconstituted Mb-HSA emerges as a promising carrier for transporting various water-insoluble porphyrinoid photosensitizer to target cancer cells in PDT applications.
Collapse
Affiliation(s)
- Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mizuki Funamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryoya Takada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
2
|
Inaba H, Shisaka Y, Ariyasu S, Sakakibara E, Ueda G, Aiba Y, Shimizu N, Sugimoto H, Shoji O. Heme-substituted protein assembly bridged by synthetic porphyrin: achieving controlled configuration while maintaining rotational freedom. RSC Adv 2024; 14:8829-8836. [PMID: 38495978 PMCID: PMC10941265 DOI: 10.1039/d4ra01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The use of biological host-guest interactions, specifically the binding of hemoprotein to heme, has attracted significant research interest in the design of artificial protein assemblies. However, because of the inherent flexibility of the propionic acid group of heme, it is difficult to control the positioning and orientation of the protein unit and to construct well-ordered structures. Herein, we report a heme-substituted protein dimer composed of the native hemoprotein HasA, which accommodates a tetraphenylporphyrin bearing an additional metal coordination site. The specific binding of the tetraphenylporphyrin with an additional metal coordination site that protrudes in a fixed direction confines the configuration of the dimer structure to a defined bent form. The small-angle X-ray scattering profile shows the dimer structure with a bent form and suggests dynamic rotational behavior while keeping its bent-core structure, resembling a bevel gear. This unique dimer structure demonstrates that the design of heme-substituted protein assemblies can be expanded to protein assemblies while maintaining the rotational freedom of the individual protein units.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Yuma Shisaka
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Shinya Ariyasu
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Erika Sakakibara
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Garyo Ueda
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Yuichiro Aiba
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto Sayo Hyogo 679-5148 Japan
| | | | - Osami Shoji
- Department of Chemistry, School of Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-0802 Japan
| |
Collapse
|
3
|
Yamada T, Komatsu T. Protein-Porphyrin Complex Photosensitizers for Anticancer and Antimicrobial Photodynamic Therapies. ChemMedChem 2023; 18:e202300373. [PMID: 37821798 DOI: 10.1002/cmdc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Photodynamic therapy (PDT) efficiently induces apoptosis through visible-light irradiation of photosensitizers (PSs) within tumors and microbial cells. Porphyrin analogues serve as widely utilized photosensitizing agents with their therapeutic abilities being governed by molecular structures and central metal ions. However, these macrocyclic compounds tend to agglutinate and form stacks in aqueous environments, resulting in a loss of photochemical activity. To overcome this limitation, encapsulation within liposomes and polymer micelles enables the dispersion of porphyrins as monomolecular entities in aqueous solutions, preventing undesirable deactivation. Recently, the use of reconstituted hemoproteins containing various metal-porphyrins and protein cages incorporating porphyrins has garnered significant interest as a new generation of biocompatible PSs. In this concept paper, we provide a comprehensive review of recent developments and trends of protein-porphyrin complex PSs for applications in anticancer and antimicrobial PDTs.
Collapse
Affiliation(s)
- Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
4
|
Lemon CM. Diversifying the functions of heme proteins with non-porphyrin cofactors. J Inorg Biochem 2023; 246:112282. [PMID: 37320889 DOI: 10.1016/j.jinorgbio.2023.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Heme proteins perform diverse biochemical functions using a single iron porphyrin cofactor. This versatility makes them attractive platforms for the development of new functional proteins. While directed evolution and metal substitution have expanded the properties, reactivity, and applications of heme proteins, the incorporation of porphyrin analogs remains an underexplored approach. This review discusses the replacement of heme with non-porphyrin cofactors, such as porphycene, corrole, tetradehydrocorrin, phthalocyanine, and salophen, and the attendant properties of these conjugates. While structurally similar, each ligand exhibits distinct optical and redox properties, as well as unique chemical reactivity. These hybrids serve as model systems to elucidate the effects of the protein environment on the electronic structure, redox potentials, optical properties, or other features of the porphyrin analog. Protein encapsulation can confer distinct chemical reactivity or selectivity of artificial metalloenzymes that cannot be achieved with the small molecule catalyst alone. Additionally, these conjugates can interfere with heme acquisition and uptake in pathogenic bacteria, providing an inroad to innovative antibiotic strategies. Together, these examples illustrate the diverse functionality that can be achieved by cofactor substitution. The further expansion of this approach will access unexplored chemical space, enabling the development of superior catalysts and the creation of heme proteins with emergent properties.
Collapse
Affiliation(s)
- Christopher M Lemon
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, MT 59717, United States.
| |
Collapse
|
5
|
Antimicrobial Effect of the Amniotic Membrane Isolated and Associated with Photodynamic Therapy. J Funct Biomater 2023; 14:jfb14030151. [PMID: 36976075 PMCID: PMC10051966 DOI: 10.3390/jfb14030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microbial control through alternative therapies, such as the amniotic membrane (AM) and antimicrobial photodynamic therapy (aPDT), has been gaining prominence with the advancement of bacterial resistance to conventional treatments. This study aimed to evaluate the antimicrobial effect of AM isolated and associated with aPDT using the PHTALOX® as a photosensitizer (PS) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The groups studied were: C+; L; AM; AM+L; AM+PHTX; and AM+aPDT. The irradiation parameters were 660 nm, 50 J.cm−2, and 30 mW.cm−2. Two independent microbiological experiments were carried out in triplicate, and the results were analyzed by CFU/mL counting and a metabolic activity test, both statistically analyzed (p < 0.05). The integrity of the AM was verified after the treatments by a scanning electron microscope (SEM). The groups AM, AM+PHTX, and, mainly, AM+aPDT showed a statistical difference when compared to C+ regarding the decrease in CFU/mL and metabolic activity. SEM analysis showed significant morphological alterations in the AM+PHTX and AM+aPDT groups. The treatments with AM isolated or associated with PHTALOX® were adequate. The association had potentiated the biofilm effect, and the morphological differences presented by AM after treatment did not hinder its antimicrobial effect, encouraging its use in biofilm formation locals.
Collapse
|
6
|
Zhu Y, Lechardeur D, Bernardet JF, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, Rochat T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum. Virulence 2022; 13:1221-1241. [PMID: 35880611 PMCID: PMC9331221 DOI: 10.1080/21505594.2022.2101197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial pathogens have a critical impact on aquaculture, a sector that accounts for half of the human fish consumption. Flavobacterium psychrophilum (phylum Bacteroidetes) is responsible for bacterial cold-water disease in salmonids worldwide. The molecular factors involved in host invasion, colonization and haemorrhagic septicaemia are mostly unknown. In this study, we identified two new TonB-dependent receptors, HfpR and BfpR, that are required for adaptation to iron conditions encountered during infection and for virulence in rainbow trout. Transcriptional analyses revealed that their expression is tightly controlled and upregulated under specific iron sources and concentrations. Characterization of deletion mutants showed that they act without redundancy: BfpR is required for optimal growth in the presence of high haemoglobin level, while HfpR confers the capacity to acquire nutrient iron from haem or haemoglobin under iron scarcity. The gene hfpY, co-transcribed with hfpR, encodes a protein related to the HmuY family. We demonstrated that HfpY binds haem and contributes significantly to host colonization and disease severity. Overall, these results are consistent with a model in which both BfpR and Hfp systems promote haem uptake and respond to distinct signals to adapt iron acquisition to the different stages of pathogenesis. Our findings give insight into the molecular basis of pathogenicity of a serious pathogen belonging to the understudied family Flavobacteriaceae and point to the newly identified haem receptors as promising targets for antibacterial development.
Collapse
Affiliation(s)
- Yueying Zhu
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lechardeur
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Cyprien Guérin
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Pierre Nicolas
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Duchaud
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
7
|
Bongaerts GPA, Williams RM, van der Wielen MWJ, Feiters MC. (Photo-)chemical roadmap to strategic antimicrobial photodynamic and photothermal therapies. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Qu CC, Liang YT, Wang XQ, Gao S, He ZZ, Sun XY. Gallium-Based Liquid Metal Materials for Antimicrobial Applications. Bioengineering (Basel) 2022; 9:416. [PMID: 36134962 PMCID: PMC9495447 DOI: 10.3390/bioengineering9090416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
- Hainan Institute of China Agricultural University, China Agricultural University, Sanya 572000, China
| | - Yu-Tong Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xi-Qing Wang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
| | - Shang Gao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xu-Yang Sun
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
Opdam LV, Polanco EA, de Regt B, Lambertina N, Bakker C, Bonnet S, Pandit A. A screening method for binding synthetic metallo-complexes to haem proteins. Anal Biochem 2022; 653:114788. [PMID: 35732212 DOI: 10.1016/j.ab.2022.114788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
The introduction of a second coordination sphere, in the form of a protein scaffold, to synthetic catalysts can be beneficial for their reactivity and substrate selectivity. Here we present semi-native polyacrylamide gel electrophoresis (semi-native PAGE) as a rapid screening method for studying metal complex-protein interactions. Such a screening is generally performed using electron spray ionization mass spectrometry (ESI-MS) and/or UV-Vis spectroscopy. Semi-native PAGE analysis has the advantage that it does not rely on spectral changes of the metal complex upon protein interaction and can be applied for high-throughput screening and optimization of complex binding. In semi-native PAGE non-denatured protein samples are loaded on a gel containing sodium dodecyl sulphate (SDS), leading to separation based on differences in structural stability. Semi-native PAGE gel runs of catalyst-protein mixtures were compared to gel runs obtained with native and denaturing PAGE. ESI-MS was additionally realised to confirm protein-complex binding. The general applicability of semi-native PAGE was investigated by screening the binding of various cobalt- and ruthenium-based compounds to three types of haem proteins.
Collapse
Affiliation(s)
- Laura V Opdam
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Ehider A Polanco
- MCBIM Departments, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Boyd de Regt
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | | | - Cas Bakker
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Sylvestre Bonnet
- MCBIM Departments, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Anjali Pandit
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
10
|
Shisaka Y, Sakakibara E, Suzuki K, Stanfield JK, Onoda H, Ueda G, Hatano M, Sugimoto H, Shoji O. Tetraphenylporphyrin Enters the Ring: First Example of a Complex Between Highly Bulky Porphyrins and a Protein. Chembiochem 2022; 23:e202200095. [PMID: 35352458 DOI: 10.1002/cbic.202200095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Indexed: 11/08/2022]
Abstract
Tetraphenylporphyrin (TPP) is a symmetrically substituted synthetic porphyrin whose properties can be readily modified, providing it with significant advantages over naturally occurring porphyrins. Herein, we report the first example of a stable complex between a native biomolecule, the haemoprotein HasA, and TPP as well as its derivatives. The X-ray crystal structures of nine different HasA-TPP complexes were solved at high resolutions. HasA capturing TPP derivatives was also demonstrated to inhibit growth of the opportunistic pathogen Pseudomonas aeruginosa . Mutant variants of HasA binding FeTPP were shown to possess a different mode of coordination, permitting the cyclopropanation of styrene.
Collapse
Affiliation(s)
- Yuma Shisaka
- Nagoya University, Chemistry, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN
| | - Erika Sakakibara
- Nagoya University, Chemistry, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN
| | - Kazuto Suzuki
- Nagoya University, Chemistry, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN
| | | | - Hiroki Onoda
- Nagoya University, Chemistry, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN
| | - Garyo Ueda
- Nagoya University, Chemistry, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN
| | - Miu Hatano
- Nagoya University, Chemistry, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN
| | - Hiroshi Sugimoto
- RIKEN: Rikagaku Kenkyujo, SPring-8 Centre, 1-1-1 Kouto, 679-5148, Sayo, JAPAN
| | - Osami Shoji
- Nagoya University, Graduate School of Science, Furo, Chikusa,, 464-8602, Nagoya, JAPAN
| |
Collapse
|
11
|
Kosno J, Siemińska K, Olczak T. Unique Properties of Heme Binding of the Porphyromonas gingivalis HmuY Hemophore-like Protein Result from the Evolutionary Adaptation of the Protein Structure. Molecules 2022; 27:molecules27051703. [PMID: 35268804 PMCID: PMC8911585 DOI: 10.3390/molecules27051703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
To acquire heme, Porphyromonas gingivalis uses a hemophore-like protein (HmuY). HmuY sequesters heme from host hemoproteins or heme-binding proteins produced by cohabiting bacteria, and delivers it to the TonB-dependent outer-membrane receptor (HmuR). Although three-dimensional protein structures of members of the novel HmuY family are overall similar, significant differences exist in their heme-binding pockets. Histidines (H134 and H166) coordinating the heme iron in P. gingivalis HmuY are unique and poorly conserved in the majority of its homologs, which utilize methionines. To examine whether changes observed in the evolution of these proteins in the Bacteroidetes phylum might result in improved heme binding ability of HmuY over its homologs, we substituted histidine residues with methionine residues. Compared to the native HmuY, site-directed mutagenesis variants bound Fe(III)heme with lower ability in a similar manner to Bacteroides vulgatus Bvu and Tannerella forsythia Tfo. However, a mixed histidine-methionine couple in the HmuY was sufficient to bind Fe(II)heme, similarly to T. forsythia Tfo, Prevotella intermedia PinO and PinA. Double substitution resulted in abolished heme binding. The structure of HmuY heme-binding pocket may have been subjected to evolution, allowing for P. gingivalis to gain an advantage in heme acquisition regardless of environmental redox conditions.
Collapse
|
12
|
Li F, Liu F, Huang K, Yang S. Advancement of Gallium and Gallium-Based Compounds as Antimicrobial Agents. Front Bioeng Biotechnol 2022; 10:827960. [PMID: 35186906 PMCID: PMC8855063 DOI: 10.3389/fbioe.2022.827960] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
With the abuse and misuse of antibiotics, antimicrobial resistance has become a challenging issue in the medical system. Iatrogenic and non-iatrogenic infections caused by multidrug-resistant (MDR) pathogens pose serious threats to global human life and health because the efficacy of traditional antibiotics has been greatly reduced and the resulting socio-economic burden has increased. It is important to find and develop non-antibiotic-dependent antibacterial strategies because the development of new antibiotics can hardly keep pace with the emergence of resistant bacteria. Gallium (III) is a multi-target antibacterial agent that has an excellent antibacterial activity, especially against MDR pathogens; thus, a gallium (III)-based treatment is expected to become a new antibacterial strategy. However, some limitations of gallium ions as antimicrobials still exist, including low bioavailability and explosive release. In recent years, with the development of nanomaterials and clathrates, the progress of manufacturing technology, and the emergence of synergistic antibacterial strategies, the antibacterial activities of gallium have greatly improved, and the scope of application in medical systems has expanded. This review summarizes the advancement of current optimization for these key factors. This review will enrich the knowledge about the efficiency and mechanism of various gallium-based antibacterial agents and provide strategies for the improvement of the antibacterial activity of gallium-based compounds.
Collapse
Affiliation(s)
| | - Fengxiang Liu
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Kai Huang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Shengbing Yang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| |
Collapse
|
13
|
Takiguchi A, Sakakibara E, Sugimoto H, Shoji O, Shinokubo H. A Heme‐Acquisition Protein Reconstructed with a Cobalt 5‐Oxaporphyrinium Cation and Its Growth‐Inhibition Activity Toward Multidrug‐Resistant
Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asahi Takiguchi
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Erika Sakakibara
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | | | - Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
14
|
Farajzadeh N, Çelik Ç, Özdemir S, Gonca S, Koçak MB. Biological properties of novel mono and double-decker hexadeca-substituted metal phthalocyanines. NEW J CHEM 2022. [DOI: 10.1039/d1nj05721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports chemical agents that exhibit efficient antibacterial photodynamic, antimicrobial, antioxidant, biofilm inhibition, and DNA cleavage activities.
Collapse
Affiliation(s)
- Nazli Farajzadeh
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Çetin Çelik
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Turkey, TR-33343 Yenisehir, Mersin, Turkey
| | - Makbule Burkut Koçak
- Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
15
|
Lemon CM, Nissley AJ, Latorraca NR, Wittenborn EC, Marletta MA. Corrole–protein interactions in H-NOX and HasA. RSC Chem Biol 2022; 3:571-581. [PMID: 35656484 PMCID: PMC9092467 DOI: 10.1039/d2cb00004k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Mutagenesis was utilised to reveal corrole–protein interactions in H-NOX and HasA. The key interaction is a hydrogen bond between the PO unit of the corrole and a protonated histidine residue.
Collapse
Affiliation(s)
- Christopher M. Lemon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA
| | - Amos J. Nissley
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Naomi R. Latorraca
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA
| | - Elizabeth C. Wittenborn
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Michael A. Marletta
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Lemon CM, Marletta MA. Designer Heme Proteins: Achieving Novel Function with Abiological Heme Analogues. Acc Chem Res 2021; 54:4565-4575. [PMID: 34890183 PMCID: PMC8754152 DOI: 10.1021/acs.accounts.1c00588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme proteins have proven to be a convenient platform for the development of designer proteins with novel functionalities. This is achieved by substituting the native iron porphyrin cofactor with a heme analogue that possesses the desired properties. Replacing the iron center of the porphyrin with another metal provides one inroad to novel protein function. A less explored approach is substitution of the porphyrin cofactor with an alternative tetrapyrrole macrocycle or a related ligand. In general, these ligands exhibit chemical properties and reactivity that are distinct from those of porphyrins. While these techniques have most prominently been utilized to develop artificial metalloenzymes, there are many other applications of this methodology to problems in biochemistry, health, and medicine. Incorporation of synthetic cofactors into protein environments represents a facile way to impart water solubility and biocompatibility. It circumvents the laborious synthesis of water-soluble cofactors, which often introduces substantial charge that leads to undesired bioaccumulation. To this end, the incorporation of unnatural cofactors in heme proteins has enabled the development of designer proteins as optical oxygen sensors, MRI contrast agents, spectroscopic probes, tools to interrogate protein function, antibiotics, and fluorescent proteins.Incorporation of an artificial cofactor is frequently accomplished by denaturing the holoprotein with removal of the heme; the refolded apoprotein is then reconstituted with the artificial cofactor. This process often results in substantial protein loss and does not necessarily guarantee that the refolded protein adopts the native structure. To circumvent these issues, our laboratory has pioneered the use of the RP523 strain of E. coli to incorporate artificial cofactors into heme proteins using expression-based methods. This strain lacks the ability to biosynthesize heme, and the bacterial cell wall is permeable to heme and related molecules. In this way, heme analogues supplemented in the growth medium are incorporated into heme proteins. This approach can also be leveraged for the direct expression of the apoprotein for subsequent reconstitution.These methodologies have been exploited to incorporate non-native cofactors into heme proteins that are resistant to harsh environmental conditions: the heme nitric oxide/oxygen binding protein (H-NOX) from Caldanaerobacter subterraneus (Cs) and the heme acquisition system protein A (HasA) from Pseudomonas aeruginosa (Pa). The exceptional stability of these proteins makes them ideal scaffolds for biomedical applications. Optical oxygen sensing has been accomplished using a phosphorescent ruthenium porphyrin as the artificial heme cofactor. Paramagnetic manganese and gadolinium porphyrins yield high-relaxivity, protein-based MRI contrast agents. A fluorescent phosphorus corrole serves as a heme analogue to produce fluorescent proteins. Iron complexes of nonporphyrin cofactors bound to HasA inhibit the growth of pathogenic bacteria. Moreover, HasA can deliver a gallium phthalocyanine into the bacterial cytosol to serve as a sensitizer for photochemical sterilization. Together, these examples illustrate the potential for designer heme proteins to address burgeoning problems in the areas of health and medicine. The concepts and methodologies presented in this Account can be extended to the development of next-generation biomedical sensing and imaging agents to identify and quantify clinically relevant metabolites and other key disease biomarkers.
Collapse
|
17
|
Takiguchi A, Sakakibara E, Sugimoto H, Shoji O, Shinokubo H. A Heme-Acquisition Protein Reconstructed with a Cobalt 5-Oxaporphyrinium Cation and Its Growth-Inhibition Activity Toward Multidrug-Resistant Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2021; 61:e202112456. [PMID: 34913238 DOI: 10.1002/anie.202112456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/05/2022]
Abstract
Using artificial hemes for the reconstruction of natural heme proteins represents a fascinating approach to enhance the bioactivity of the latter. Here, we report the synthesis of various metal 5-oxaporphyrinium cations as cofactors, and a cobalt 5-oxaporphyrinium cation was successfully incorporated into the heme-acquisition protein (HasA) secreted by Pseudomonas aeruginosa. We hypothesize that the oxaporphyrinium cation strongly bound to the HasA-specific outer membrane receptor (HasR) due to its cationic charge, which prevents the subsequent acquisition of heme. In fact, the reconstructed HasA inhibited the growth of Pseudomonas aeruginosa and even of multidrug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Asahi Takiguchi
- Nagoya University Graduate School of Engineering School of Engineering: Nagoya Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Department of Molecular and Macromolecular Chemistry, 464-8603, Nagoya, JAPAN
| | - Erika Sakakibara
- Nagoya University School of Science Graduate School of Science: Nagoya Daigaku Rigakubu Daigakuin Rigaku Kenkyuka, Department of Chemistry, 464-8602, Nagoya, JAPAN
| | | | - Osami Shoji
- Nagoya University School of Science Graduate School of Science: Nagoya Daigaku Rigakubu Daigakuin Rigaku Kenkyuka, Department of Chemistry, 464-8602, Nagoya, JAPAN
| | - Hiroshi Shinokubo
- Graduate School of Engineering, Nagoya University, Department of Molecular and Macromolecular Chemistry, Furo-cho, Chikusa-ku, 464-8603, Nagoya, JAPAN
| |
Collapse
|
18
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
19
|
Abstract
Although fluorescent proteins have been utilized for a variety of biological applications, they have several optical limitations, namely weak red and near-infrared emission and exceptionally broad (>200 nm) emission profiles. The photophysical properties of fluorescent proteins can be enhanced through the incorporation of novel cofactors with the desired properties into a stable protein scaffold. To this end, a fluorescent phosphorus corrole that is structurally similar to the native heme cofactor is incorporated into two exceptionally stable heme proteins: H-NOX from Caldanaerobacter subterraneus and heme acquisition system protein A (HasA) from Pseudomonas aeruginosa. These yellow-orange emitting protein conjugates are examined by steady-state and time-resolved optical spectroscopy. The HasA conjugate exhibits enhanced fluorescence, whereas emission from the H-NOX conjugate is quenched relative to the free corrole. Despite the low fluorescence quantum yields, these corrole-substituted proteins exhibit more intense fluorescence in a narrower spectral profile than traditional fluorescent proteins that emit in the same spectral window. This study demonstrates that fluorescent corrole complexes are readily incorporated into heme proteins and provides an inroad for the development of novel fluorescent proteins.
Collapse
Affiliation(s)
- Christopher M Lemon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States.,Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michael A Marletta
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Galstyan A. Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials. Chemistry 2021; 27:1903-1920. [PMID: 32677718 PMCID: PMC7894475 DOI: 10.1002/chem.202002703] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Indexed: 12/31/2022]
Abstract
One of the most promising alternatives for treating bacterial infections is antimicrobial photodynamic therapy (aPDT), making the synthesis and application of new photoactive compounds called photosensitizers (PS) a dynamic research field. In this regard, phthalocyanine (Pc) derivatives offer great opportunities due to their extraordinary light-harvesting and tunable electronic properties, structural versatility, and stability. This Review, rather than focusing on synthetic strategies, intends to overview current progress in the structural design strategies for Pcs that could achieve effective photoinactivation of microorganisms. In addition, the Review provides a concise look into the recent developments and applications of nanocarrier-based Pc delivery systems.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterBusso-Peus-Straße 1048149MünsterGermany
| |
Collapse
|
21
|
Abstract
Drug-resistant infections pose a significant risk to global health as pathogenic bacteria become increasingly difficult to treat. The rapid selection of resistant strains through poor antibiotic stewardship has reduced the number of viable treatments and increased morbidity of infections, especially among the immunocompromised. To circumvent such challenges, new strategies are required to stay ahead of emerging resistance trends, yet research and funding for antibiotic development lags other classes of therapeutics. Though the use of metals in therapeutics has been around for centuries, recent strategies have devoted a great deal of effort into the pathways through which bacteria acquire and utilize iron, which is critical for the establishment of infection. To target iron uptake systems, siderophore-drug conjugates have been developed that hijack siderophore-based iron uptake for delivery of antibiotics. While this strategy has produced several potential leads, the use of siderophores in infection is diminished over time when bacteria adapt to utilize heme as an iron source, leading to a need for the development of porphyrin mimetics as therapeutics. The use of such strategies as well as the inclusion of gallium, a redox-inert iron mimic, are herein reviewed.
Collapse
Affiliation(s)
- Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
22
|
Centola G, Deredge DJ, Hom K, Ai Y, Dent AT, Xue F, Wilks A. Gallium(III)-Salophen as a Dual Inhibitor of Pseudomonas aeruginosa Heme Sensing and Iron Acquisition. ACS Infect Dis 2020; 6:2073-2085. [PMID: 32551497 DOI: 10.1021/acsinfecdis.0c00138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a primary iron source and senses the availability of exogenous heme through the heme assimilation system (Has), an extra cytoplasmic function σ-factor system. A secreted hemophore HasAp scavenges heme and, upon interaction with the outer-membrane receptor HasR, activates a signaling cascade, which in turn creates a positive feedback loop critical for sensing and adaptation within the host. The ability to sense and respond to heme as an iron source contributes to virulence. Consequently, the inhibition of this system will lead to a disruption in iron homeostasis, decreasing virulence. We have identified a salophen scaffold that successfully inhibits the activation of the Has signaling system while simultaneously targeting iron uptake via xenosiderophore receptors. We propose this dual mechanism wherein free Ga3+-salophen reduces growth through uptake and iron mimicry. A dual mechanism targeting extracellular heme signaling and uptake together with Ga3+-induced toxicity following active Ga3+salophen uptake provides a significant therapeutic advantage while reducing the propensity to develop resistance.
Collapse
Affiliation(s)
- Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Alecia T. Dent
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
23
|
Del Valle CA, Pérez-Laguna V, Resta IM, Gavara R, Felip-León C, Miravet JF, Rezusta A, Galindo F. A cost-effective combination of Rose Bengal and off-the-shelf cationic polystyrene for the photodynamic inactivation of Pseudomonas aeruginosa. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111302. [PMID: 32919663 DOI: 10.1016/j.msec.2020.111302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
Abstract
Two new photoactive materials have been prepared, characterized and tested against Pseudomonas aeruginosa bacteria (planktonic suspension). The synthesis of the polymeric photosensitizers can be made at a multigram scale, in few minutes, starting from inexpensive and readily available materials, such as Rose Bengal (photosensitizer) and ion exchange resins Amberlite® IRA 900 (macroporous) or IRA 400 (gel-type) as cationic polystyrene supports. The most notable feature of these systems is their notable bactericidal activity in the dark (4-5 log10 CFU/mL reduction of the population of P. aeruginosa) which becomes enhanced upon irradiation with visible light (to reach a total reduction of 8 log10 CFU/mL for the macroporous polymer at a fluence of 120 J/cm2 using green light of 515 nm).
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Vanesa Pérez-Laguna
- Departamento de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Ignacio Muñoz Resta
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Raquel Gavara
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Carles Felip-León
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F Miravet
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Antonio Rezusta
- Departamento de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain.
| | - Francisco Galindo
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
24
|
Tang WZ, Cui ZJ. Permanent Photodynamic Activation of the Cholecystokinin 2 Receptor. Biomolecules 2020; 10:biom10020236. [PMID: 32033232 PMCID: PMC7072308 DOI: 10.3390/biom10020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The cholecystokinin 2 receptor (CCK2R) is expressed in the central nervous system and peripheral tissues, playing an important role in higher nervous and gastrointestinal functions, pain sensation, and cancer growth. CCK2R is reversibly activated by cholecystokinin or gastrin, but whether it can be activated permanently is not known. In this work, we found that CCK2R expressed ectopically in CHO-K1 cells was permanently activated in the dark by sulfonated aluminum phthalocyanine (SALPC / AlPcS4, 10-1,000 nM), as monitored by Fura-2 fluorescent calcium imaging. Permanent CCK2R activation was also observed with AlPcS2, but not PcS4. CCK2R previously exposed to SALPC (3 and 10 nM) was sensitized by subsequent light irradiation (> 580 nm, 31.5 mW·cm-2). After the genetically encoded protein photosensitizer mini singlet oxygen generator (miniSOG) was fused to the N-terminus of CCK2R and expressed in CHO-K1 cells, light irradiation (450 nm, 85 mW·cm-2) activated in-frame CCK2R (miniSOG-CCK2R), permanently triggering persistent calcium oscillations blocked by the CCK2R antagonist YM 022 (30 nM). From these data, it is concluded that SALPC is a long-lasting CCK2R agonist in the dark, and CCK2R is photogenetically activated permanently with miniSOG as photosensitizer. These properties of SALPC and CCK2R could be used to study CCK2R physiology and possibly for pain and cancer therapies.
Collapse
|