1
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2024:10.1038/s41380-024-02743-x. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Aljabali AAA, Alkaraki AK, Gammoh O, Tambuwala MM, Mishra V, Mishra Y, Hassan SS, El-Tanani M. Deciphering Depression: Epigenetic Mechanisms and Treatment Strategies. BIOLOGY 2024; 13:638. [PMID: 39194576 DOI: 10.3390/biology13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Depression, a significant mental health disorder, is under intense research scrutiny to uncover its molecular foundations. Epigenetics, which focuses on controlling gene expression without altering DNA sequences, offers promising avenues for innovative treatment. This review explores the pivotal role of epigenetics in depression, emphasizing two key aspects: (I) identifying epigenetic targets for new antidepressants and (II) using personalized medicine based on distinct epigenetic profiles, highlighting potential epigenetic focal points such as DNA methylation, histone structure alterations, and non-coding RNA molecules such as miRNAs. Variations in DNA methylation in individuals with depression provide opportunities to target genes that are associated with neuroplasticity and synaptic activity. Aberrant histone acetylation may indicate that antidepressant strategies involve enzyme modifications. Modulating miRNA levels can reshape depression-linked gene expression. The second section discusses personalized medicine based on epigenetic profiles. Analyzing these patterns could identify biomarkers associated with treatment response and susceptibility to depression, facilitating tailored treatments and proactive mental health care. Addressing ethical concerns regarding epigenetic information, such as privacy and stigmatization, is crucial in understanding the biological basis of depression. Therefore, researchers must consider these issues when examining the role of epigenetics in mental health disorders. The importance of epigenetics in depression is a critical aspect of modern medical research. These findings hold great potential for novel antidepressant medications and personalized treatments, which would significantly improve patient outcomes, and transform psychiatry. As research progresses, it is expected to uncover more complex aspects of epigenetic processes associated with depression, enhance our comprehension, and increase the effectiveness of therapies.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Almuthanna K Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| |
Collapse
|
3
|
Hilal FF, Jeanblanc J, Deschamps C, Naassila M, Pierrefiche O, Ben Hamida S. Epigenetic drugs and psychedelics as emerging therapies for alcohol use disorder: insights from preclinical studies. J Neural Transm (Vienna) 2024; 131:525-561. [PMID: 38554193 DOI: 10.1007/s00702-024-02757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024]
Abstract
Alcohol use disorder (AUD) is a public health issue that affects millions of people worldwide leading to physical, mental and socio-economic consequences. While current treatments for AUD have provided relief to individuals, their effectiveness on the long term is often limited, leaving a number of affected individuals without sustainable solutions. In this review, we aim to explore two emerging approaches for AUD: psychedelics and epigenetic drugs (i.e., epidrugs). By examining preclinical studies, different animal species and procedures, we delve into the potential benefits of each of these treatments in terms of addictive behaviors (alcohol drinking and seeking, motivation to drink alcohol and prevention of relapse). Because psychedelics and epidrugs may share common and complementary mechanisms of action, there is an exciting opportunity for exploring synergies between these approaches and their parallel effectiveness in treating AUD and the diverse associated psychiatric conditions.
Collapse
Affiliation(s)
- Fahd François Hilal
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Chloé Deschamps
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Mickael Naassila
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| | - Olivier Pierrefiche
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France
| | - Sami Ben Hamida
- INSERM UMR 1247-Research Group on Alcohol and Pharmacodependences (GRAP), Université de Picardie Jules Verne, Chemin du Thil - Centre Universitaire de Recherche en Santé, 80025, Amiens, France.
| |
Collapse
|
4
|
Delphin N, Aust C, Griffiths L, Fernandez F. Epigenetic Regulation in Schizophrenia: Focus on Methylation and Histone Modifications in Human Studies. Genes (Basel) 2024; 15:272. [PMID: 38540331 PMCID: PMC10970389 DOI: 10.3390/genes15030272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Despite extensive research over the last few decades, the etiology of schizophrenia (SZ) remains unclear. SZ is a pathological disorder that is highly debilitating and deeply affects the lifestyle and minds of those affected. Several factors (one or in combination) have been reported as contributors to SZ pathogenesis, including neurodevelopmental, environmental, genetic and epigenetic factors. Deoxyribonucleic acid (DNA) methylation and post-translational modification (PTM) of histone proteins are potentially contributing epigenetic processes involved in transcriptional activity, chromatin folding, cell division and apoptotic processes, and DNA damage and repair. After establishing a summary of epigenetic processes in the context of schizophrenia, this review aims to highlight the current understanding of the role of DNA methylation and histone PTMs in this disorder and their potential roles in schizophrenia pathophysiology and pathogenesis.
Collapse
Affiliation(s)
- Natasha Delphin
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
| | - Caitlin Aust
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
| | - Lyn Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia;
| | - Francesca Fernandez
- School of Health and Behavioural Sciences, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD 4014, Australia; (N.D.)
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia;
- Healthy Brain and Mind Research Centre, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Ávila-González D, Romero-Morales I, Caro L, Martínez-Juárez A, Young LJ, Camacho-Barrios F, Martínez-Alarcón O, Castro AE, Paredes RG, Díaz NF, Portillo W. Increased proliferation and neuronal fate in prairie vole brain progenitor cells cultured in vitro: effects by social exposure and sexual dimorphism. Biol Sex Differ 2023; 14:77. [PMID: 37919790 PMCID: PMC10623709 DOI: 10.1186/s13293-023-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The prairie vole (Microtus ochrogaster) is a socially monogamous rodent that establishes an enduring pair bond after cohabitation, with (6 h) or without (24 h) mating. Previously, we reported that social interaction and mating increased cell proliferation and differentiation to neuronal fate in neurogenic niches in male voles. We hypothesized that neurogenesis may be a neural plasticity mechanism involved in mating-induced pair bond formation. Here, we evaluated the differentiation potential of neural progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of both female and male adult voles as a function of sociosexual experience. Animals were assigned to one of the following groups: (1) control (Co), sexually naive female and male voles that had no contact with another vole of the opposite sex; (2) social exposure (SE), males and females exposed to olfactory, auditory, and visual stimuli from a vole of the opposite sex, but without physical contact; and (3) social cohabitation with mating (SCM), male and female voles copulating to induce pair bonding formation. Subsequently, the NPCs were isolated from the SVZ, maintained, and supplemented with growth factors to form neurospheres in vitro. RESULTS Notably, we detected in SE and SCM voles, a higher proliferation of neurosphere-derived Nestin + cells, as well as an increase in mature neurons (MAP2 +) and a decrease in glial (GFAP +) differentiated cells with some sex differences. These data suggest that when voles are exposed to sociosexual experiences that induce pair bonding, undifferentiated cells of the SVZ acquire a commitment to a neuronal lineage, and the determined potential of the neurosphere is conserved despite adaptations under in vitro conditions. Finally, we repeated the culture to obtain neurospheres under treatments with different hormones and factors (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone); the ability of SVZ-isolated cells to generate neurospheres and differentiate in vitro into neurons or glial lineages in response to hormones or factors is also dependent on sex and sociosexual context. CONCLUSION Social interactions that promote pair bonding in voles change the properties of cells isolated from the SVZ. Thus, SE or SCM induces a bias in the differentiation potential in both sexes, while SE is sufficient to promote proliferation in SVZ-isolated cells from male brains. In females, proliferation increases when mating is performed. The next question is whether the rise in proliferation and neurogenesis of cells from the SVZ are plastic processes essential for establishing, enhancing, maintaining, or accelerating pair bond formation. Highlights 1. Sociosexual experiences that promote pair bonding (social exposure and social cohabitation with mating) induce changes in the properties of neural stem/progenitor cells isolated from the SVZ in adult prairie voles. 2. Social interactions lead to increased proliferation and induce a bias in the differentiation potential of SVZ-isolated cells in both male and female voles. 3. The differentiation potential of SVZ-isolated cells is conserved under in vitro conditions, suggesting a commitment to a neuronal lineage under a sociosexual context. 4. Hormonal and growth factors treatments (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone) affect the generation and differentiation of neurospheres, with dependencies on sex and sociosexual context. 5. Proliferation and neurogenesis in the SVZ may play a crucial role in establishing, enhancing, maintaining, or accelerating pair bond formation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Italo Romero-Morales
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lizette Caro
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Emory National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, USA
| | - Francisco Camacho-Barrios
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Analía E Castro
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Raúl G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
6
|
Wu T, Cai W, Chen X. Epigenetic regulation of neurotransmitter signaling in neurological disorders. Neurobiol Dis 2023; 184:106232. [PMID: 37479091 DOI: 10.1016/j.nbd.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
Neurotransmission signaling is a highly conserved system attributed to various regulatory events. The excitatory and inhibitory neurotransmitter systems have been extensively studied, and their role in neuronal cell proliferation, synaptogenesis and dendrite formation in the adult brain is well established. Recent research has shown that epigenetic regulation plays a crucial role in mediating the expression of key genes associated with neurotransmitter pathways, including neurotransmitter receptor and transporter genes. The dysregulation of these genes has been linked to a range of neurological disorders such as attention-deficit/hyperactivity disorder, Parkinson's disease and schizophrenia. This article focuses on epigenetic regulatory mechanisms that control the expression of genes associated with four major chemical carriers in the brain: dopamine (DA), Gamma-aminobutyric acid (GABA), glutamate and serotonin. Additionally, we explore how aberrant epigenetic regulation of these genes can contribute to the pathogenesis of relevant neurological disorders. By targeting the epigenetic mechanisms that control neurotransmitter gene expression, there is a promising opportunity to advance the development of more effective treatments for neurological disorders with the potential to significantly improve the quality of life of individuals impacted by these conditions.
Collapse
Affiliation(s)
- Tingyan Wu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Weili Cai
- School of Medical Technology, Jiangsu College of Nursing, Huai'an 22305, China.
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
7
|
Lin R, Kos A, Lopez JP, Dine J, Fiori LM, Yang J, Ben-Efraim Y, Aouabed Z, Ibrahim P, Mitsuhashi H, Wong TP, Ibrahim EC, Belzung C, Blier P, Farzan F, Frey BN, Lam RW, Milev R, Muller DJ, Parikh SV, Soares C, Uher R, Nagy C, Mechawar N, Foster JA, Kennedy SH, Chen A, Turecki G. SNORD90 induces glutamatergic signaling following treatment with monoaminergic antidepressants. eLife 2023; 12:e85316. [PMID: 37432876 PMCID: PMC10335830 DOI: 10.7554/elife.85316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Pharmacotherapies for the treatment of major depressive disorder were serendipitously discovered almost seven decades ago. From this discovery, scientists pinpointed the monoaminergic system as the primary target associated with symptom alleviation. As a result, most antidepressants have been engineered to act on the monoaminergic system more selectively, primarily on serotonin, in an effort to increase treatment response and reduce unfavorable side effects. However, slow and inconsistent clinical responses continue to be observed with these available treatments. Recent findings point to the glutamatergic system as a target for rapid acting antidepressants. Investigating different cohorts of depressed individuals treated with serotonergic and other monoaminergic antidepressants, we found that the expression of a small nucleolar RNA, SNORD90, was elevated following treatment response. When we increased Snord90 levels in the mouse anterior cingulate cortex (ACC), a brain region regulating mood responses, we observed antidepressive-like behaviors. We identified neuregulin 3 (NRG3) as one of the targets of SNORD90, which we show is regulated through the accumulation of N6-methyladenosine modifications leading to YTHDF2-mediated RNA decay. We further demonstrate that a decrease in NRG3 expression resulted in increased glutamatergic release in the mouse ACC. These findings support a molecular link between monoaminergic antidepressant treatment and glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Rixing Lin
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Julien Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Yair Ben-Efraim
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Pascal Ibrahim
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research CentreMontrealCanada
- Department of Psychiatry, McGill UniversityMontrealCanada
| | - El Cherif Ibrahim
- Aix-Marseille Université, CNRS, INT, Institute Neuroscience TimoneMarseilleFrance
| | - Catherine Belzung
- UMR 1253, iBrain, UFR Sciences et Techniques; Parc GrandmontToursFrance
| | - Pierre Blier
- Mood Disorders Research Unit, University of Ottawa Institute of Mental Health ResearchOntarioCanada
| | | | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster UniversityHamiltonCanada
- Mood Disorders Program, St. Joseph’s Healthcare HamiltonHamiltonCanada
| | - Raymond W Lam
- Department of Psychiatry, University of British ColumbiaColumbiaCanada
| | - Roumen Milev
- Departments of Psychiatry and Psychology, Queens UniversityOntarioCanada
| | - Daniel J Muller
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
- Centre for Addiction and Mental HealthTorontoCanada
| | - Sagar V Parikh
- Department of Psychiatry, University of MichiganAnn ArborUnited States
| | - Claudio Soares
- Departments of Psychiatry and Psychology, Queens UniversityOntarioCanada
| | - Rudolf Uher
- Nova Scotia Health AuthorityHalifaxCanada
- Department of Psychiatry, Dalhousie UniversityHalifaxCanada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster UniversityHamiltonCanada
- Mood Disorders Program, St. Joseph’s Healthcare HamiltonHamiltonCanada
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
- St Michael’s Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide StudiesTorontoCanada
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| |
Collapse
|
8
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
9
|
Staes N, Guevara EE, Hopkins WD, Schapiro SJ, Eens M, Sherwood CC, Bradley BJ. The Role of Serotonergic Gene Methylation in Regulating Anxiety-Related Personality Traits in Chimpanzees. BIOLOGY 2022; 11:1673. [PMID: 36421387 PMCID: PMC9687614 DOI: 10.3390/biology11111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
While low serotonergic activity is often associated with psychological disorders such as depression, anxiety, mood, and personality disorders, variations in serotonin also contribute to normal personality differences. In this study, we investigated the role of blood DNA methylation levels at individual CpG sites of two key serotonergic genes (serotonin receptor gene 1A, HTR1A; serotonin transporter gene, SLC6A4) in predicting the personalities of captive chimpanzees. We found associations between methylation at 9/48 CpG sites with four personality dimensions: Dominance, Reactivity/Dependability, Agreeableness, and Openness. Directionality of effects were CpG location-dependent and confirmed a role of serotonergic methylation in reducing anxiety (Dominance) and aggression-related personality (Reactivity/Undependability) while simultaneously promoting prosocial (Agreeableness) and exploratory personalities (Openness). Although early-life adversity has been shown to impact serotonergic methylation patterns in other species, here, atypical early social rearing experiences only had a modest impact on CpG methylation levels in this chimpanzee sample. The precise environmental factors impacting serotonergic methylation in chimpanzees remain to be identified. Nevertheless, our study suggests a role in shaping natural variation in animal personalities. The results of this study offer a basis for future hypothesis-driven testing in additional populations and species to better understand the impact of ecology and evolution on complex behavioral traits.
Collapse
Affiliation(s)
- Nicky Staes
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, 2018 Antwerp, Belgium
| | - Elaine E. Guevara
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - William D. Hopkins
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Steven J. Schapiro
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Chet C. Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - Brenda J. Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Zuzina AB, Balaban PM. Contribution of histone acetylation to the serotonin-mediated long-term synaptic plasticity in terrestrial snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:521-535. [PMID: 35943582 DOI: 10.1007/s00359-022-01562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 12/14/2022]
Abstract
Serotonin plays a decisive role in long-term synaptic plasticity and long-term memory in mollusks. Previously, we demonstrated that histone acetylation is a regulatory mechanism of long-term memory in terrestrial snail. At the behavioral level, many studies were done in Helix to elucidate the role of histone acetylation and serotonin. However, the impact of histone acetylation on long-term potentiation of synaptic efficiency in electrophysiological studies in Helix has been studied only in one paper. Here we investigated effects of serotonin, histone deacetylases inhibitors sodium butyrate and trichostatin A, and a serotonergic receptor inhibitor methiothepin on long-term potentiation of synaptic responses in vitro. We demonstrated that methiothepin drastically declined the EPSPs amplitudes when long-term potentiation was induced, while co-application either of histone deacetylase inhibitors sodium butyrate or trichostatin A with methiothepin prevented the weakening of potentiation. We showed that single serotonin application in combination with histone deacetylase blockade could mimic the effect of repeated serotonin applications and be enough for sustained long-lasting synaptic changes. The data obtained demonstrated that histone deacetylases blockade ameliorated deficits in synaptic plasticity induced by different paradigms (methiothepin treatment, the weak training protocol with single application of serotonin), suggesting that histone acetylation contributes to the serotonin-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Alena B Zuzina
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
11
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
12
|
James E, Keppler J, L Robertshaw T, Sessa B. N,N-dimethyltryptamine and Amazonian ayahuasca plant medicine. Hum Psychopharmacol 2022; 37:e2835. [PMID: 35175662 PMCID: PMC9286861 DOI: 10.1002/hup.2835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Reports have indicated possible uses of ayahuasca for the treatment of conditions including depression, addictions, post-traumatic stress disorder, anxiety and specific psychoneuroendocrine immune system pathologies. The article assesses potential ayahuasca and N,N-dimethyltryptamine (DMT) integration with contemporary healthcare. The review also seeks to provide a summary of selected literature regarding the mechanisms of action of DMT and ayahuasca; and assess to what extent the state of research can explain reports of unusual phenomenology. DESIGN A narrative review. RESULTS Compounds in ayahuasca have been found to bind to serotonergic receptors, glutaminergic receptors, sigma-1 receptors, trace amine-associated receptors, and modulate BDNF expression and the dopaminergic system. Subjective effects are associated with increased delta and theta oscillations in amygdala and hippocampal regions, decreased alpha wave activity in the default mode network, and stimulations of vision-related brain regions particularly in the visual association cortex. Both biological processes and field of consciousness models have been proposed to explain subjective effects of DMT and ayahuasca, however, the evidence supporting the proposed models is not sufficient to make confident conclusions. Ayahuasca plant medicine and DMT represent potentially novel treatment modalities. CONCLUSIONS Further research is required to clarify the mechanisms of action and develop treatments which can be made available to the general public. Integration between healthcare research institutions and reputable practitioners in the Amazon is recommended.
Collapse
Affiliation(s)
- Edward James
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| | | | | | - Ben Sessa
- Centre for NeuropsychopharmacologyDivision of Brain SciencesFaculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
13
|
Psychological mechanisms and functions of 5-HT and SSRIs in potential therapeutic change: Lessons from the serotonergic modulation of action selection, learning, affect, and social cognition. Neurosci Biobehav Rev 2020; 119:138-167. [PMID: 32931805 DOI: 10.1016/j.neubiorev.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Uncertainty regarding which psychological mechanisms are fundamental in mediating SSRI treatment outcomes and wide-ranging variability in their efficacy has raised more questions than it has solved. Since subjective mood states are an abstract scientific construct, only available through self-report in humans, and likely involving input from multiple top-down and bottom-up signals, it has been difficult to model at what level SSRIs interact with this process. Converging translational evidence indicates a role for serotonin in modulating context-dependent parameters of action selection, affect, and social cognition; and concurrently supporting learning mechanisms, which promote adaptability and behavioural flexibility. We examine the theoretical basis, ecological validity, and interaction of these constructs and how they may or may not exert a clinical benefit. Specifically, we bridge crucial gaps between disparate lines of research, particularly findings from animal models and human clinical trials, which often seem to present irreconcilable differences. In determining how SSRIs exert their effects, our approach examines the endogenous functions of 5-HT neurons, how 5-HT manipulations affect behaviour in different contexts, and how their therapeutic effects may be exerted in humans - which may illuminate issues of translational models, hierarchical mechanisms, idiographic variables, and social cognition.
Collapse
|
14
|
Hrovatin K, Kunej T, Dolžan V. Genetic variability of serotonin pathway associated with schizophrenia onset, progression, and treatment. Am J Med Genet B Neuropsychiatr Genet 2020; 183:113-127. [PMID: 31674148 DOI: 10.1002/ajmg.b.32766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SZ) onset and treatment outcome have important genetic components, however individual genes do not have strong effects on SZ phenotype. Therefore, it is important to use the pathway-based approach and study metabolic and signaling pathways, such as dopaminergic and serotonergic. Serotonin pathway has an important role in brain signaling, nevertheless, its role in SZ is not as thoroughly examined as that of dopamine pathway. In this study, we reviewed serotonin pathway genes and genetic variations associated with SZ, including variations at DNA, RNA, and epigenetic level. We obtained 30 serotonin pathway genes from Kyoto encyclopedia of genes and genomes and used these genes for the literature review. We extracted 20 protein coding serotonin pathway genes with genetic variations associated with SZ onset, development, and treatment from 31 research papers. Genes associated with SZ are present on all levels of serotonin pathway: serotonin synthesis, transport, receptor binding, intracellular signaling, and reuptake; however, regulatory genes are poorly researched. We summarized common challenges of genetic association studies and presented some solutions. The analysis of reported serotonin pathway-SZ associations revealed lack of information about certain serotonin pathway genes potentially associated with SZ. Furthermore, it is becoming clear that interactions among serotonin pathway genes and their regulators may bring further knowledge about their involvement in SZ.
Collapse
Affiliation(s)
- Karin Hrovatin
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Tanja Kunej
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Ljubljana, Slovenia
| | - Vita Dolžan
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Pharmacogenetics Laboratory, Ljubljana, Slovenia
| |
Collapse
|
15
|
Fuchs C, Gennaccaro L, Ren E, Galvani G, Trazzi S, Medici G, Loi M, Conway E, Devinsky O, Rimondini R, Ciani E. Pharmacotherapy with sertraline rescues brain development and behavior in a mouse model of CDKL5 deficiency disorder. Neuropharmacology 2019; 167:107746. [PMID: 31469994 DOI: 10.1016/j.neuropharm.2019.107746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/27/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a severe neurodevelopmental disorder, CDKL5 deficiency disorder (CDD). CDKL5 is fundamental for correct brain development and function, but the molecular mechanisms underlying aberrant neurologic dysfunction in CDD are incompletely understood. Here we show a dysregulation of hippocampal and cortical serotonergic (5-HT) receptor expression in heterozygous Cdkl5 knockout (KO) female mice, suggesting that impaired 5-HT neurotransmission contributes to CDD. We demonstrate that targeting impaired 5-HT signaling via the selective serotonin reuptake inhibitor (SSRI) sertraline rescues CDD-related neurodevelopmental and behavioral defects in heterozygous Cdkl5 KO female mice. In particular, chronic treatment with sertraline normalized locomotion, stereotypic and autistic-like features, and spatial memory in Cdkl5 KO mice. These positive behavioral effects were accompanied by restored neuronal survival, dendritic development and synaptic connectivity. At a molecular level, sertraline increased brain-derived neurotrophic factor (BDNF) expression and restored abnormal phosphorylation levels of tyrosine kinase B (TrkB) and its downstream target the extracellular signal-regulated kinase (ERK1/2). Since sertraline is an FDA-approved drug with an extensive safety and tolerability data package, even for children, our findings suggest that sertraline may improve neurodevelopment in children with CDD. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Erin Conway
- Department of Neurology, NYU Langone Health, New York, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Health, New York, USA
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
16
|
Császár-Nagy N, Kapócs G, Bókkon I. Classic psychedelics: the special role of the visual system. Rev Neurosci 2019; 30:651-669. [PMID: 30939118 DOI: 10.1515/revneuro-2018-0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
Here, we briefly overview the various aspects of classic serotonergic hallucinogens reported by a number of studies. One of the key hypotheses of our paper is that the visual effects of psychedelics might play a key role in resetting fears. Namely, we especially focus on visual processes because they are among the most prominent features of hallucinogen-induced hallucinations. We hypothesize that our brain has an ancient visual-based (preverbal) intrinsic cognitive process that, during the transient inhibition of top-down convergent and abstract thinking (mediated by the prefrontal cortex) by psychedelics, can neutralize emotional fears of unconscious and conscious life experiences from the past. In these processes, the decreased functional integrity of the self-referencing processes of the default mode network, the modified multisensory integration (linked to bodily self-consciousness and self-awareness), and the modified amygdala activity may also play key roles. Moreover, the emotional reset (elimination of stress-related emotions) by psychedelics may induce psychological changes and overwrite the stress-related neuroepigenetic information of past unconscious and conscious emotional fears.
Collapse
Affiliation(s)
- Noemi Császár-Nagy
- National University of Public Services, Budapest, Hungary.,Psychosomatic Outpatient Clinics, Budapest, Hungary
| | - Gábor Kapócs
- Saint John Hospital, Budapest, Hungary.,Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - István Bókkon
- Psychosomatic Outpatient Clinics, Budapest, Hungary.,Vision Research Institute, Neuroscience and Consciousness Research Department, Lowell, MA, USA
| |
Collapse
|
17
|
Murillo-Rodríguez E, Arankowsky-Sandoval G, Barros JA, Rocha NB, Yamamoto T, Machado S, Budde H, Telles-Correia D, Monteiro D, Cid L, Veras AB. Sleep and Neurochemical Modulation by DZNep and GSK-J1: Potential Link With Histone Methylation Status. Front Neurosci 2019; 13:237. [PMID: 30930741 PMCID: PMC6428769 DOI: 10.3389/fnins.2019.00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022] Open
Abstract
Histone methylation/demethylation plays an important modulatory role in chromatin restructuring, RNA transcription and is essential for controlling a plethora of biological processes. Due to many human diseases have been related to histone methylation/demethylation, several compounds such as 3-deazaneplanocin A (DZNep) or 3-((6-(4,5-Dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoic acid; N-[2-(2-pyridinyl)-6-(1,2,4,5-tetrahydro-3H-3-benzazepin-3-yl)-4-pyrimidinyl]-β-Alanine (GSK-J1), have been designed to inhibit histone methylase or suppress histone demethylase, respectively. In the present study, we investigated the effects on the sleep-wake cycle and sleep-related neurochemical levels after systemic injections of DZNep or GSK-J1 given during the light or dark phase in rats. DZNep dose-dependently (0.1, 1.0, or 10 mg/kg, i.p.) prolonged wakefulness (W) duration while decreased slow wave sleep (SWS) and rapid eye movement sleep (REMS) time spent during the lights-on period with no changes observed in dark phase. In opposite direction, GSK-J1 (0.1, 1.0, or 10 mg/kg, i.p.) injected at the beginning of the lights-on period induced no statistical changes in W, SWS, or REMS whereas if administered at darkness, we found a diminution in W and an enhancement in SWS and REMS. Finally, brain microdialysis experiments in freely moving animals were used to evaluate the effects of DZNep or GSK-J1 treatments on contents of sleep-related neurochemicals. The results showed that DZNep boosted extracellular levels of dopamine, norepinephrine, epinephrine, serotonin, adenosine, and acetylcholine if injected at the beginning of the lights-on period whereas GSK-J1 exerted similar outcomes but when administered at darkness. In summary, DZNep and GSK-J1 may control the sleep-wake cycle and sleep-related neurochemicals through histone methylation/demethylation activity.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Mexico
| | - Gloria Arankowsky-Sandoval
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi" Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jorge Aparecido Barros
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Diogo Telles-Correia
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Diogo Monteiro
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - Luis Cid
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Sport Science School of Rio Maior- Polytechnic Institute of Santarém, Rio Maior, Portugal.,Research Center in Sport, Health and Human Development-CIDESD, Vila Real, Portugal
| | - André Barciela Veras
- Intercontinental Neuroscience Research Group, Mérida, Mexico.,Post-graduation Program of Psychology of Health, NACNeuro, Dom Bosco Catholic University, Campo Grande, Mato Grosso del Sur, Brazil
| |
Collapse
|
18
|
Cervantes M, Sassone-Corsi P. Modification of histone proteins by serotonin in the nucleus. Nature 2019; 567:464-465. [DOI: 10.1038/d41586-019-00532-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
de la Fuente Revenga M, Ibi D, Cuddy T, Toneatti R, Kurita M, Ijaz MK, Miles MF, Wolstenholme JT, González-Maeso J. Chronic clozapine treatment restrains via HDAC2 the performance of mGlu2 receptor agonism in a rodent model of antipsychotic activity. Neuropsychopharmacology 2019; 44:443-454. [PMID: 30038413 PMCID: PMC6300555 DOI: 10.1038/s41386-018-0143-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 01/25/2023]
Abstract
Preclinical findings in rodent models pointed toward activation of metabotropic glutamate 2/3 (mGlu2/3) receptors as a new pharmacological approach to treat psychosis. However, more recent studies failed to show clinical efficacy of mGlu2/3 receptor agonism in schizophrenia patients. We previously proposed that long-term antipsychotic medication restricted the therapeutic effects of these glutamatergic agents. However, little is known about the molecular mechanism underlying the potential repercussion of previous antipsychotic exposure on the therapeutic performance of mGlu2/3 receptor agonists. Here we show that this maladaptive effect of antipsychotic treatment is mediated mostly via histone deacetylase 2 (HDAC2). Chronic treatment with the antipsychotic clozapine led to a decrease in mouse frontal cortex mGlu2 mRNA, an effect that required expression of both HDAC2 and the serotonin 5-HT2A receptor. This transcriptional alteration occurred in association with HDAC2-dependent repressive histone modifications at the mGlu2 promoter. We found that chronic clozapine treatment decreased via HDAC2 the capabilities of the mGlu2/3 receptor agonist LY379268 to activate G-proteins in the frontal cortex of mice. Chronic clozapine treatment blunted the antipsychotic-related behavioral effects of LY379268, an effect that was not observed in HDAC2 knockout mice. More importantly, co-administration of the class I and II HDAC inhibitor SAHA (vorinostat) preserved the antipsychotic profile of LY379268 and frontal cortex mGlu2/3 receptor density in wild-type mice. These findings raise concerns on the design of previous clinical studies with mGlu2/3 agonists, providing the rationale for the development of HDAC2 inhibitors as a new epigenetic-based approach to improve the currently limited response to treatment with glutamatergic antipsychotics.
Collapse
Affiliation(s)
- Mario de la Fuente Revenga
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Daisuke Ibi
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA ,0000 0001 0670 2351grid.59734.3cDepartment Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.259879.8Department of Chemical Pharmacology, Meijo University, Nagoya, 468-8503 Japan
| | - Travis Cuddy
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Rudy Toneatti
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Mitsumasa Kurita
- 0000 0001 0670 2351grid.59734.3cDepartment Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,0000 0004 1797 168Xgrid.417741.0Present Address: Dainippon Sumitomo Pharma Co., Ltd., Osaka, 564-0053 Japan
| | - Maryum K. Ijaz
- 0000 0004 0458 8737grid.224260.0Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Michael F. Miles
- 0000 0004 0458 8737grid.224260.0Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA ,0000 0004 0458 8737grid.224260.0VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Jennifer T. Wolstenholme
- 0000 0004 0458 8737grid.224260.0Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA ,0000 0004 0458 8737grid.224260.0VCU Alcohol Research Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA. .,Department Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
20
|
Abstract
Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising new treatment options for a variety of disorders. The recent success of these agonists, also known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these compounds are perceived in the medical community and populace at large. One emerging therapeutic area that holds significant promise is their use as anti-inflammatory agents. Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of human inflammatory disorders at sub-behavioural levels. This review discusses the role of the 5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms, and may represent a new and exciting treatment strategy for several inflammatory disorders.
Collapse
Affiliation(s)
- Thomas W Flanagan
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Charles D Nichols
- a Department of Pharmacology and Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
21
|
Hernandez L. ADSA Foundation Scholar Award: A role for serotonin in lactation physiology—Where do we go from here? J Dairy Sci 2018; 101:5671-5678. [DOI: 10.3168/jds.2018-14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
|
22
|
Stress exposure and psychopathology alter methylation of the serotonin receptor 2A (HTR2A) gene in preschoolers. Dev Psychopathol 2018; 29:1619-1626. [PMID: 29162169 DOI: 10.1017/s0954579417001274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Serotonin signaling pathways play a key role in brain development, stress reactivity, and mental health. Epigenetic alterations in the serotonin system may underlie the effect of early life stress on psychopathology. The current study examined methylation of the serotonin receptor 2A (HTR2A) gene in a sample of 228 children including 119 with child welfare documentation of moderate to severe maltreatment within the last 6 months. Child protection records, semistructured interviews in the home, and parent reports were used to assess child stress exposure, psychiatric symptoms, and behavior. The HTR2A genotype and methylation of HTR2A were measured at two CpG sites (-1420 and -1224) from saliva DNA. HTR2A genotype was associated with HTR2A methylation at both CpG sites. HTR2A genotype also moderated associations of contextual stress exposure and HTR2A methylation at site -1420. Contextual stress was positively associated with -1420 methylation among A homozygotes, but negatively associated with -1420 methylation among G homozygotes. Posttraumatic stress disorder and major depressive disorder symptoms were negatively associated with methylation at -1420, but positively associated with methylation at -1224. Results support the view that the serotonin system is sensitive to stress exposure and psychopathology, and HTR2A methylation may be a mechanism by which early adversity is biologically encoded.
Collapse
|
23
|
Weaver SR, Hernandez LL. Could use of Selective Serotonin Reuptake Inhibitors During Lactation Cause Persistent Effects on Maternal Bone? J Mammary Gland Biol Neoplasia 2018; 23:5-25. [PMID: 29603039 DOI: 10.1007/s10911-018-9390-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
The lactating mammary gland elegantly coordinates maternal homeostasis to provide calcium for milk. During lactation, the monoamine serotonin regulates the synthesis and release of various mammary gland-derived factors, such as parathyroid hormone-related protein (PTHrP), to stimulate bone resorption. Recent evidence suggests that bone mineral lost during prolonged lactation is not fully recovered following weaning, possibly putting women at increased risk of fracture or osteoporosis. Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants have also been associated with reduced bone mineral density and increased fracture risk. Therefore, SSRI exposure while breastfeeding may exacerbate lactational bone loss, compromising long-term bone health. Through an examination of serotonin and calcium homeostasis during lactation, lactational bone turnover and post-weaning recovery of bone mineral, and the effect of peripartum depression and SSRI on the mammary gland and bone, this review will discuss the hypothesis that peripartum SSRI exposure causes persistent reductions in bone mineral density through mammary-derived PTHrP signaling with bone.
Collapse
Affiliation(s)
- Samantha R Weaver
- Endocrine and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
24
|
H3K9 Acetylation of Tph2 Involved in Depression-like Behavior in Male, but not Female, Juvenile Offspring Rat Induced by Prenatal Stress. Neuroscience 2018; 381:138-148. [PMID: 29625215 DOI: 10.1016/j.neuroscience.2018.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence has shown that prenatal stress (PS) could cause depression-like behavior in the offspring, which is sex-specific. However, the underlying mechanisms remain to be elucidated. This study is to investigate the involvement of tryptophan hydroxylase 2 (Tph2) H3K9 acetylation (H3K9ac) modification on PS-induced depression-like behavior in juvenile offspring rats (JOR). PS models were established, with or without trichostatin A (TSA) treatment. Animal behavior was assessed by the sucrose preference test (SPT) and forced swimming test (FST). The mRNA and protein expression levels of TPH2 in the dorsal raphenucleus (DRN), hippocampus, and prefrontal cortex were detected with quantitative real-time PCR and Western blot analysis, respectively. The Tph2 H3K9ac levels in the hippocampus were also analyzed. SPT and FST showed significantly reduced sucrose preference and significantly prolonged immobility in PS-induced male juvenile offspring rats (MJOR). Moreover, the mRNA and protein expression levels of TPH2 in the DRN and hippocampus were significantly declined, while the hippocampal Tph2 H3K9ac levels were significantly declined in the PS-induced MJOR. Furthermore, the PS-induced effects in MJOR could be reversed by the microinjection of TSA. However, no significant effects were observed for the female juvenile offspring rats (FJORs). In conclusion, our results showed that the Tph2 H3K9ac modification is only involved in PS-induced depression-like behavior in MJOR, in a sex-specific manner. These findings might contribute to the understanding of the disease pathogenesis and clinical treatment in future.
Collapse
|
25
|
Schindler EAD, Wallace RM, Sloshower JA, D'Souza DC. Neuroendocrine Associations Underlying the Persistent Therapeutic Effects of Classic Serotonergic Psychedelics. Front Pharmacol 2018; 9:177. [PMID: 29545753 PMCID: PMC5838010 DOI: 10.3389/fphar.2018.00177] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Recent reports on the effects of psychedelic-assisted therapies for mood disorders and addiction, as well as the effects of psychedelics in the treatment of cluster headache, have demonstrated promising therapeutic results. In addition, the beneficial effects appear to persist well after limited exposure to the drugs, making them particularly appealing as treatments for chronic neuropsychiatric and headache disorders. Understanding the basis of the long-lasting effects, however, will be critical for the continued use and development of this drug class. Several mechanisms, including biological and psychological ones, have been suggested to explain the long-lasting effects of psychedelics. Actions on the neuroendocrine system are some such mechanisms that warrant further investigation in the study of persisting psychedelic effects. In this report, we review certain structural and functional neuroendocrinological pathologies associated with neuropsychiatric disorders and cluster headache. We then review the effects that psychedelic drugs have on those systems and provide preliminary support for potential long-term effects. The circadian biology of cluster headache is of particular relevance in this area. We also discuss methodologic considerations for future investigations of neuroendocrine system involvement in the therapeutic benefits of psychedelic drugs.
Collapse
Affiliation(s)
- Emmanuelle A D Schindler
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States.,Department of Neurology, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Ryan M Wallace
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Jordan A Sloshower
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
| | - Deepak C D'Souza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
26
|
Bioactive Molecules in Edible and Medicinal Mushrooms for Human Wellness. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54528-8_83-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Special Issue Introduction: Role of Epigenetic Gene Regulation in Brain Function. Genes (Basel) 2017; 8:genes8070181. [PMID: 28703737 PMCID: PMC5541314 DOI: 10.3390/genes8070181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/02/2022] Open
|
28
|
|
29
|
Differences in 5-HT2A and mGlu2 Receptor Expression Levels and Repressive Epigenetic Modifications at the 5-HT2A Promoter Region in the Roman Low- (RLA-I) and High- (RHA-I) Avoidance Rat Strains. Mol Neurobiol 2017; 55:1998-2012. [PMID: 28265857 DOI: 10.1007/s12035-017-0457-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/13/2017] [Indexed: 01/12/2023]
Abstract
The serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors regulate each other and are associated with schizophrenia. The Roman high- (RHA-I) and the Roman low- (RLA-I) avoidance rat strains present well-differentiated behavioral profiles, with the RHA-I strain emerging as a putative genetic rat model of schizophrenia-related features. The RHA-I strain shows increased 5-HT2A and decreased mGlu2 receptor binding levels in prefrontal cortex (PFC). Here, we looked for differences in gene expression and transcriptional regulation of these receptors. The striatum (STR) was included in the analysis. 5-HT2A, 5-HT1A, and mGlu2 mRNA and [3H]ketanserin binding levels were measured in brain homogenates. As expected, 5-HT2A binding was significantly increased in PFC in the RHA-I rats, while no difference in binding was observed in STR. Surprisingly, 5-HT2A gene expression was unchanged in PFC but significantly decreased in STR. mGlu2 receptor gene expression was significantly decreased in both PFC and STR. No differences were observed for the 5-HT1A receptor. Chromatin immunoprecipitation assay revealed increased trimethylation of histone 3 at lysine 27 (H3K27me3) at the promoter region of the HTR2A gene in the STR. We further looked at the Akt/GSK3 signaling pathway, a downstream point of convergence of the serotonin and glutamate system, and found increased phosphorylation levels of GSK3β at tyrosine 216 and increased β-catenin levels in the PFC of the RHA-I rats. These results reveal region-specific regulation of the 5-HT2A receptor in the RHA-I rats probably due to absence of mGlu2 receptor that may result in differential regulation of downstream pathways.
Collapse
|
30
|
Forest J, Sunada H, Dodd S, Lukowiak K. Training Lymnaea in the presence of a predator scent results in a long-lasting ability to form enhanced long-term memory. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:399-409. [PMID: 27138222 DOI: 10.1007/s00359-016-1086-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
Lymnaea exposed to crayfish effluent (CE) gain an enhanced ability to form long-term memory (LTM). We test the hypothesis that a single CE exposure and operant conditioning training leads to long lasting changes in the capability of snails to form LTM when tested in pond water four weeks later. We trained both juvenile and adult snails with a single 0.5 h training session in CE and show that LTM was present 24 h later. Snails trained in a similar manner in just pond water show no LTM. We then asked if such training in CE conferred enhanced memory forming capabilities on these snails four weeks later. That is, would LTM be formed in these snails four weeks later following a single 0.5 h training session in pond water? We found that both adult and juvenile snails previously trained in CE one month previously had enhanced LTM formation abilities. The injection of a DNA methylation blocker, 5-AZA, prior to training in adult snails blocked enhanced LTM formation four weeks later. Finally, this enhanced LTM forming ability was not passed on to the next generation of snails.
Collapse
Affiliation(s)
- Jeremy Forest
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,University Claude Bernard, Lyon, France
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shawn Dodd
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
31
|
Brummelte S, Mc Glanaghy E, Bonnin A, Oberlander TF. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience 2016; 342:212-231. [PMID: 26905950 DOI: 10.1016/j.neuroscience.2016.02.037] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as 'plasticity' rather than 'risk' factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk.
Collapse
Affiliation(s)
- S Brummelte
- Department of Psychology, Wayne State University, 5057 Woodward Avenue, Detroit, MI 48202, USA.
| | - E Mc Glanaghy
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - A Bonnin
- Zilkha Neurogenetic Institute and Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - T F Oberlander
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|