1
|
Yan X, Zhang X, Li H, Zou Y, Lu W, Zhan M, Liang Z, Zhuang H, Ran X, Ma G, Lin X, Yang H, Huang Y, Wang H, Shen L. Application of Proteomics and Machine Learning Methods to Study the Pathogenesis of Diabetic Nephropathy and Screen Urinary Biomarkers. J Proteome Res 2024; 23:3612-3625. [PMID: 38949094 DOI: 10.1021/acs.jproteome.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide, causing significant health problems. Early diagnosis of the disease is quite inadequate. To screen urine biomarkers of DN and explore its potential mechanism, this study collected urine from 87 patients with type 2 diabetes mellitus (which will be classified into normal albuminuria, microalbuminuria, and macroalbuminuria groups) and 38 healthy subjects. Twelve individuals from each group were then randomly selected as the screening cohort for proteomics analysis and the rest as the validation cohort. The results showed that humoral immune response, complement activation, complement and coagulation cascades, renin-angiotensin system, and cell adhesion molecules were closely related to the progression of DN. Five overlapping proteins (KLK1, CSPG4, PLAU, SERPINA3, and ALB) were identified as potential biomarkers by machine learning methods. Among them, KLK1 and CSPG4 were positively correlated with the urinary albumin to creatinine ratio (UACR), and SERPINA3 was negatively correlated with the UACR, which were validated by enzyme-linked immunosorbent assay (ELISA). This study provides new insights into disease mechanisms and biomarkers for early diagnosis of DN.
Collapse
Affiliation(s)
- Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinglai Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Haiying Li
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, Guizhou 550002, China
| | - Yongdong Zou
- Center for Instrumental Analysis, Shenzhen University, Shenzhen 518071, China
| | - Wei Lu
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, Guizhou 550002, China
| | - Man Zhan
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xixiao Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hongbo Yang
- Center for Instrumental Analysis, Shenzhen University, Shenzhen 518071, China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hanghang Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
2
|
Pyka P, Garbo S, Fioravanti R, Jacob C, Hittinger M, Handzlik J, Zwergel C, Battistelli C. Selenium-containing compounds: a new hope for innovative treatments in Alzheimer's disease and Parkinson's disease. Drug Discov Today 2024; 29:104062. [PMID: 38871111 DOI: 10.1016/j.drudis.2024.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530 Krakow, Poland; Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany; Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
3
|
Skalny AV, Aschner M, Santamaria A, Filippini T, Gritsenko VA, Tizabi Y, Zhang F, Guo X, Rocha JBT, Tinkov AA. The Role of Gut Microbiota in the Neuroprotective Effects of Selenium in Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04343-w. [PMID: 39012446 DOI: 10.1007/s12035-024-04343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
The objective of the present review was to provide a timely update on the molecular mechanisms underlying the beneficial role of Se in Alzheimer's disease pathogenesis, and discuss the potential role of gut microbiota modulation in this neuroprotective effect. The existing data demonstrate that selenoproteins P, M, S, R, as well as glutathione peroxidases and thioredoxin reductases are involved in regulation of Aβ formation and aggregation, tau phosphorylation and neurofibrillary tangles formation, as well as mitigate the neurotoxic effects of Aβ and phospho-tau. Correspondingly, supplementation with various forms of Se in cellular and animal models of AD was shown to reduce Aβ formation, tau phosphorylation, reverse the decline in brain antioxidant levels, inhibit neuronal oxidative stress and proinflammatory cytokine production, improve synaptic plasticity and neurogenesis, altogether resulting in improved cognitive functions. In addition, most recent findings demonstrate that these neuroprotective effects are associated with Se-induced modulation of gut microbiota. In animal models of AD, Se supplementation was shown to improve gut microbiota biodiversity with a trend to increased relative abundance of Lactobacillus, Bifidobacterium, and Desulfivibrio, while reducing that of Lachnospiracea_NK4A136, Rikenella, and Helicobacter. Moreover, the relative abundance of Se-affected taxa was significantly associated with Aβ accumulation, tau phosphorylation, neuronal oxidative stress, and neuroinflammation, indicative of the potential role of gut microbiota to mediate the neuroprotective effects of Se in AD. Hypothetically, modulation of gut microbiota along with Se supplementation may improve the efficiency of the latter in AD, although further detailed laboratory and clinical studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
4
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
5
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
6
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
He Z, Zhang H, Li X, Tu S, Wang Z, Han S, Du X, Shen L, Li N, Liu Q. The protective effects of Esculentoside A through AMPK in the triple transgenic mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154555. [PMID: 36610160 DOI: 10.1016/j.phymed.2022.154555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3β activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3β, and blocked autophagy. CONCLUSIONS To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
8
|
Quach TT, Stratton HJ, Khanna R, Mackey-Alfonso S, Deems N, Honnorat J, Meyer K, Duchemin AM. Neurodegenerative Diseases: From Dysproteostasis, Altered Calcium Signalosome to Selective Neuronal Vulnerability to AAV-Mediated Gene Therapy. Int J Mol Sci 2022; 23:ijms232214188. [PMID: 36430666 PMCID: PMC9694178 DOI: 10.3390/ijms232214188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Despite intense research into the multifaceted etiology of neurodegenerative diseases (ND), they remain incurable. Here we provide a brief overview of several major ND and explore novel therapeutic approaches. Although the cause (s) of ND are not fully understood, the accumulation of misfolded/aggregated proteins in the brain is a common pathological feature. This aggregation may initiate disruption of Ca++ signaling, which is an early pathological event leading to altered dendritic structure, neuronal dysfunction, and cell death. Presently, ND gene therapies remain unidimensional, elusive, and limited to modifying one pathological feature while ignoring others. Considering the complexity of signaling cascades in ND, we discuss emerging therapeutic concepts and suggest that deciphering the molecular mechanisms involved in dendritic pathology may broaden the phenotypic spectrum of ND treatment. An innovative multiplexed gene transfer strategy that employs silencing and/or over-expressing multiple effectors could preserve vulnerable neurons before they are lost. Such therapeutic approaches may extend brain health span and ameliorate burdensome chronic disease states.
Collapse
Affiliation(s)
- Tam T. Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
| | | | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Sabrina Mackey-Alfonso
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nicolas Deems
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jérome Honnorat
- INSERM U1217/CNRS UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, 69677 Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, 69677 Lyon, France
- SynatAc Team, Institut NeuroMyoGène, 69677 Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-293-5517; Fax: +1-614-293-7599
| |
Collapse
|
9
|
Sun F, Zhao J, Zhang H, Shi Q, Liu Y, Robert A, Liu Q, Meunier B. Proteomics Evidence of the Role of TDMQ20 in the Cholinergic System and Synaptic Transmission in a Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3093-3107. [PMID: 36221993 DOI: 10.1021/acschemneuro.2c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The interaction between copper ions and amyloid peptide Aβ has been reported to be involved in Alzheimer's disease (AD) pathology. Based on copper coordination biochemistry, we designed specific copper chelators [tetradentate monoquinolines (TDMQs)] in order to regulate copper homeostasis in the AD brain and inhibit the deleterious oxidative stress catalyzed by copper-Aβ complexes. We previously reported that TDMQ20, a highly selective copper chelator selected as a drug candidate, was able to extract copper from the Cu-Aβ1-16 complex and restore cognitive and behavioral deficits in AD mouse models. For a better understanding of the mechanism of action of TDMQ20, we decided to investigate the change of profile of proteins expressed in 5xFAD mice after an oral treatment of TDMQ20 (dose = 10 mg/kg, once every two days for 3 months, in total 45 times). Clioquinol (CQ), a non-specific chelator, has been used as a comparator. Here, we report the proteomic alterations in the cortex of 5xFAD mice using iTRAQ (isobaric tags for relative and absolute quantification) proteomics technology. The results indicated that 178 differentially expressed proteins (DEPs) have been identified in the AD mouse group with respect to wild type (WT) animals (AD/WT). After treatment by TDMQ20, 35 DEPs were found common in AD/WT and TDMQ20/AD groups in an opposite change manner (up- or down-regulated, respectively). In addition, among the 35 DEPs mentioned above, 10 common target proteins have been identified in AD/WT, TDMQ20/AD, and CQ/AD groups, among which 3 target proteins were successfully validated by western blot analysis. In particular, the expression levels of ChAT and CHRM4 are significantly increased upon TDMQ20 treatment with respect to 5xFAD mice, while CQ did not significantly change the expression of these proteins. Our study suggests the involvement of the copper chelator TDMQ20 on the cholinergic system, a feature that may explain the improved cognitive and behavioral performance in AD mice upon oral treatment of TDMQ20.
Collapse
Affiliation(s)
- Fanfan Sun
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Qihui Shi
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS) and Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 cedex 4, France
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518033, China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS) and Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 cedex 4, France
| |
Collapse
|
10
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
11
|
Lin J, Zhang K, Cao X, Zhao Y, Ullah Khan N, Liu X, Tang X, Chen M, Zhang H, Shen L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 2022; 13:648-663. [PMID: 35138800 DOI: 10.1021/acschemneuro.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social and communication difficulties. Valproic acid (VPA) injection during pregnancy elicits autism-like behavior in the offspring, making it a classic animal model of ASD. However, the mechanisms involved have not yet been determined. In this study, we used iTRAQ (isobaric tags for relative and absolute quantification) proteomics analysis of the cerebral cortex of a VPA rat model (VPA group) and controls (CON group). The results showed that 79 differentially expressed proteins (DEPs) were identified between the VPA group and the CON group. Based on bioinformatics analysis, the DEPs were mainly enriched at synapses, especially glutamatergic synapses and GABAergic synapses. Some DEPs were involved in energy metabolism, thyroid hormone synthesis pathway, and Na+-K+-ATPase. Cytoskeleton and endoplasmic reticulum (ER) stress-related proteins were also involved. Some DEPs matched either the ASD gene database or previous reports on cerebral cortical transcriptome studies in VPA rat models. Dysregulation of these DEPs in the cerebral cortex of VPA rats may be responsible for autism-like behavior in rats. We also found that some DEPs were associated with neuropsychiatric disorders, implying that these diseases share common signaling pathways and mechanisms. Moreover, increased expression of DEPs was associated with energy metabolism in the cerebral cortex of VPA rats, implying that ASD may be a distinct type of mitochondrial dysfunction that requires further investigation.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen 518071, P. R. China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, Georgia 30322, United States
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518071, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
12
|
Hu T, Shen L, Huang Q, Wu C, Zhang H, Zeng Q, Wang G, Wei S, Zhang S, Zhang J, Khan NU, Shen X, Luo P. Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Front Pharmacol 2021; 12:749035. [PMID: 34899304 PMCID: PMC8660860 DOI: 10.3389/fphar.2021.749035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to understand the mechanism of sodium arsenite (NaAsO2)-induced apoptosis of L-02 human hepatic cells, and how Dictyophora polysaccharide (DIP) protects L-02 cells from arsenic-induced apoptosis. The results revealed that DIP pretreatment inhibited NaAsO2 induced L-02 cells apoptosis by increasing anti-apoptotic Bcl-2 expression and decreasing pro-apoptotic Bax expression. Proteomic analysis showed that arsenic treatment disrupted the expression of metabolism and apoptosis associated proteins, including ribosomal proteins (RPs). After pretreatment with DIP, the expression levels of these proteins were reversed or restored. For the first time, it was observed that the significant decrease of cytoplasmic RPs and the increase of mitochondrial RPs were related to human normal cell apoptosis induced by arsenic. This is also the first report that the protective effect of DIP on cells was related to RPs. The results highlight the relationship between RPs and apoptosis, as well as the relationship between RPs and DIP attenuating arsenic-induced apoptosis.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Changyan Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shuling Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiangchun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
13
|
Du X, Shi Q, Zhao Y, Xie Y, Li X, Liu Q, Iqbal J, Zhang H, Liu X, Shen L. Se-Methylselenocysteine (SMC) Improves Cognitive Deficits by Attenuating Synaptic and Metabolic Abnormalities in Alzheimer's Mice Model: A Proteomic Study. ACS Chem Neurosci 2021; 12:1112-1132. [PMID: 33689275 DOI: 10.1021/acschemneuro.0c00549] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Se-methylselenocysteine (SMC) is a major selenocompound in selenium (Se) enriched plants and has been found to ameliorate neuropathology and cognitive deficits in triple-transgenic mice model of Alzheimer's disease (3 × Tg-AD mice). To explore the underlying molecular mechanisms, the present study is designed to elucidate the protein changes in the cortex of SMC-treated 3 × Tg-AD mice. After SMC supplementation, proteomic analysis revealed that 181, 271, and 41 proteins were identified as differentially expressed proteins (DEPs) between 3 × Tg-AD mice vs wild type (AD/WT group), SMC-treated AD mice vs AD (AD + SMC/AD), and AD + SMC/WT group, respectively. Among these, 138 proteins in the diseased group were reversed by SMC treatment. The DEPs in AD/WT group and AD + SMC/AD group were mainly related to metabolism, synapses, and antioxidant proteins, while their levels were decreased in AD mice but up-regulated after treating with SMC. In addition, we found reduced ATP levels and destroyed synaptic structures in the AD mice brains, which were significantly ameliorated upon SMC treatment. Our study suggests that energy metabolism disorders, abnormal amino acid metabolism, synaptic dysfunction, and oxidative stress may be the key pathogenic phenomena of AD. SMC reversed the expression of proteins associated with them, which might be the main mechanism of its intervention in AD.
Collapse
Affiliation(s)
- Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingqing Shi
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuxi Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yongli Xie
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Javed Iqbal
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518055, P.R. China
| | - Xukun Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
14
|
Yu Y, Wang H, Rao X, Liu L, Zheng P, Li W, Zhou W, Chai T, Ji P, Song J, Wei H, Xie P. Proteomic Profiling of Lysine Acetylation Indicates Mitochondrial Dysfunction in the Hippocampus of Gut Microbiota-Absent Mice. Front Mol Neurosci 2021; 14:594332. [PMID: 33776647 PMCID: PMC7991600 DOI: 10.3389/fnmol.2021.594332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability around the world and contributes greatly to the global burden of disease. Mounting evidence suggests that gut microbiota dysbiosis may be involved in the pathophysiology of MDD through the microbiota–gut–brain axis. Recent research suggests that epigenetic modifications might relate to depression. However, our knowledge of the role of epigenetics in host–microbe interactions remains limited. In the present study, we used a combination of affinity enrichment and high-resolution liquid chromatography tandem mass spectrometry analysis to identify hippocampal acetylated proteins in germ-free and specific pathogen-free mice. In total, 986 lysine acetylation sites in 543 proteins were identified, of which 747 sites in 427 proteins were quantified. Motif analysis identified several conserved sequences surrounding the acetylation sites, including D∗Kac, DKac, KacY, KacD, and D∗∗Kac. Gene ontology annotations revealed that these differentially expressed acetylated proteins were involved in multiple biological functions and were mainly located in mitochondria. In addition, pathway enrichment analysis demonstrated that oxidative phosphorylation and the tricarboxylic acid cycle II (eukaryotic), both of which are exclusively localized to the mitochondria, were the primarily disturbed functions. Taken together, this study indicates that lysine acetylation alterations may play a pivotal role in mitochondrial dysfunction and may be a mechanism by which gut microbiota regulate brain function and behavioral phenotypes.
Collapse
Affiliation(s)
- Ying Yu
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechen Rao
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Li
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingjia Chai
- National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Peng Xie
- The Ministry of Education, Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,National Health Commission, Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Rao X, Liu L, Wang H, Yu Y, Li W, Chai T, Zhou W, Ji P, Song J, Wei H, Xie P. Regulation of Gut Microbiota Disrupts the Glucocorticoid Receptor Pathway and Inflammation-related Pathways in the Mouse Hippocampus. Exp Neurobiol 2021; 30:59-72. [PMID: 33462159 PMCID: PMC7926043 DOI: 10.5607/en20055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
An increasing number of studies have recently indicated the important effects of gut microbes on various functions of the central nervous system. However, the underlying mechanisms by which gut microbiota regulate brain functions and behavioral phenotypes remain largely unknown. We therefore used isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to obtain proteomic profiles of the hippocampus in germ-free (GF), colonized GF, and specific pathogen-free (SPF) mice. We then integrated the resulting proteomic data with previously reported mRNA microarray data, to further explore the effects of gut microbes on host brain functions. We identified that 61 proteins were upregulated and 242 proteins were downregulated in GF mice compared with SPF mice. Of these, 124 proteins were significantly restored following gut microbiota colonization. Bioinformatic analysis of these significant proteins indicated that the glucocorticoid receptor signaling pathway and inflammation-related pathways were the most enriched disrupted pathways. This study provides new insights into the pathological mechanisms of gut microbiota-regulated diseases.
Collapse
Affiliation(s)
- Xuechen Rao
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxia Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingjia Chai
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ping Ji
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Proteomic Profiling of Cerebrum Mitochondria, Myelin Sheath, and Synaptosome Revealed Mitochondrial Damage and Synaptic Impairments in Association with 3 × Tg-AD Mice Model. Cell Mol Neurobiol 2021; 42:1745-1763. [PMID: 33560469 DOI: 10.1007/s10571-021-01052-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common age-associated dementia with complex pathological hallmarks. Mitochondrion, synaptosome, and myelin sheath appear to be vulnerable and play a key role in the pathogenesis of AD. To clarify the early mechanism associated with AD, followed by subcellular components separation, we performed iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics analysis to simultaneously investigate the differentially expressed proteins (DEPs) within the mitochondria, synaptosome, and myelin sheath in the cerebrum of the 6-month-old triple transgenic AD (3 × Tg-AD) and 6-month-old wild-type (WT) mice. A large number of DEPs between the AD and WT mice were identified. Most of them are related to mitochondria and synaptic dysfunction and cytoskeletal protein change. Differential expressions of Lrpprc, Nefl, and Sirpa were verified by Western blot analysis. The results suggest that decreased energy metabolism, impaired amino acid metabolism and neurotransmitter synthesis, increase compensatory fatty acid metabolism, up-regulated cytoskeletal protein expression, and oxidative stress are the early events of AD. Among these, mitochondrial damage, synaptic dysfunction, decreased energy metabolism, and abnormal amino acid metabolism are the most significant events. The results indicate that it is feasible to separate and simultaneously perform proteomics analysis on the three subcellular components.
Collapse
|
17
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
18
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Chen P, Wang LX, Sui XJ, Li SM, Wang Y, Liu Q, Ni JZ. Comparative Serum Proteomic Analysis of the Effects of Sodium Selenate on a Mouse Model of Alzheimer's Disease. Biol Trace Elem Res 2019; 192:263-276. [PMID: 30790121 DOI: 10.1007/s12011-019-01676-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/12/2019] [Indexed: 11/25/2022]
Abstract
Selenium (Se), as a nutritionally essential trace element, has been shown to decrease with age and is closely related to Alzheimer's disease (AD). To probe the effects of Se on AD pathology, two-dimensional fluorescence difference gel electrophoresis was applied to the serum samples collected from the wild-type (WT) mice and the triple transgenic (PS1M146V/AβPPSwe/TauP301L) AD mice (3xTg-AD), treated with or without sodium selenate in drinking water for 4 months beginning at 2 months of age. Proteomics results revealed 17 differentially expressed proteins between WT and 3xTg-AD mice. It was found that the administration of selenate reversed the alterations of the differentially expressed serum proteins by up-regulating 13 proteins and down-regulating 2 proteins which were reported to be involved in the key pathogenesis of AD, including regulation of Aβ production, lipid metabolism regulation, and anti-inflammation. These results suggested that a dietary supplement with selenate is effective for prevention and treatment of AD, and the mechanism was maybe related to its role in Aβ regulation, lipid metabolism, and anti-inflammation. Moreover, we also presented that α-2 macroglobulin, transthyretin, haptoglobin, alpha-2-HS-glycoprotein, and alpha-1-antitrypsin in the serum can be used to evaluate the effect of selenate on AD pathology.
Collapse
Affiliation(s)
- Ping Chen
- Department of Biochemical Engineering, Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, China.
| | - Li-Xiang Wang
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Xiao-Jing Sui
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Shui-Ming Li
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Yong Wang
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Liu
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China.
| | - Jia-Zuan Ni
- Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
20
|
Iqbal J, Zhang K, Jin N, Zhao Y, Liu X, Liu Q, Ni J, Shen L. Alzheimer's Disease Is Responsible for Progressive Age-Dependent Differential Expression of Various Protein Cascades in Retina of Mice. ACS Chem Neurosci 2019; 10:2418-2433. [PMID: 30695639 DOI: 10.1021/acschemneuro.8b00710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease associated with cognitive impairments and memory loss usually in aged people. In the past few years, it has been detected in the eye retina, manifesting the systematic spread of the disease. This might be used for biomarker discovery for early detection and treatment of the disease. Here, we have described the proteomic alterations in retina of 2, 4, and 6 months old 3×Tg-AD mice by using iTRAQ (isobaric tags for relative and absolute quantification) proteomics technology. Out of the total identified proteins, 121 (71 up- and 50 down-regulated), 79 (51 up- and 28 down-regulated), and 153 (37 up- and 116 down-regulated) significantly differentially expressed proteins (DEPs) are found in 2, 4, and 6 month's mice retina (2, 4, and 6 M), respectively. Seventeen DEPs are found common in these three groups with consistent expression behavior or opposite expression in the three groups. Bioinformatics analysis of these DEPs highlighted their involvement in vital AD-related biological phenomenon. To further prompt the results, four proteins from 2 M group, three from 4 M, and four from 6 M age groups are successfully validated with Western blot analysis. This study confirms the retinal involvement of AD in the form of proteomic differences and further explains the protein-based molecular mechanisms, which might be a step toward biomarker discovery for early detection and treatment of the disease.
Collapse
Affiliation(s)
- Javed Iqbal
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Kaoyuan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Department of Dermatology, Peking University Shenzhen Hospital, Guangdong 518036, China
| | - Na Jin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuxi Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xukun Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiazuan Ni
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
21
|
Shen L, Feng C, Zhang K, Chen Y, Gao Y, Ke J, Chen X, Lin J, Li C, Iqbal J, Zhao Y, Wang W. Proteomics Study of Peripheral Blood Mononuclear Cells (PBMCs) in Autistic Children. Front Cell Neurosci 2019; 13:105. [PMID: 30941018 PMCID: PMC6433831 DOI: 10.3389/fncel.2019.00105] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Autism is one of the most common neurological developmental disorder associated with social isolation and restricted interests in children. The etiology of this disorder is still unknown. There is neither any confirmed laboratory test nor any effective therapeutic strategy to diagnose or cure it. To search for biomarkers for early detection and exploration of the disease mechanisms, here, we investigated the protein expression signatures of peripheral blood mononuclear cells (PBMCs) in autistic children compared with healthy controls by using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach. The results showed a total of 41 proteins as differentially expressed in autistic group as compared to control. These proteins are found associated with metabolic pathways, endoplasmic reticulum (ER) stress and protein folding, endocytosis, immune and inflammatory response, plasma lipoprotein particle organization, and cell adhesion. Among these, 17 proteins (13 up-regulated and four down-regulated) are found to be linked with mitochondria. Eight proteins including three already reported proteins in our previous studies were selected to be verified. Five already reported autism associated pro-inflammatory cytokines [interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-12, and tumor necrosis factor-α (TNF-α)] were detected in plasma by enzyme-linked immunosorbent assay (ELISA) analysis. The results were consistent with proteomic results and reports from previous literature. These results proposed that PBMCs from autistic children might be activated, and ER stress, unfolded protein response (UPR), acute-phase response (APR), inflammatory response, and endocytosis may be involved in autism occurrence. These reported proteins may serve as potential biomarkers for early diagnosis of autism. More specifically, simultaneous detection of three proteins [complement C3 (C3), calreticulin (CALR), and SERPINA1] in the plasma and PBMCs could increase the authenticity of detection.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Youjiao Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- Xiang Ya Changde Hospital, Changde, China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Junyan Ke
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xinqian Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Cuihua Li
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Javed Iqbal
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Weibin Wang
- School of Art, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Iqbal J, Zhang K, Jin N, Zhao Y, Liu Q, Ni J, Shen L. Selenium positively affects the proteome of 3 × Tg-AD mice cortex by altering the expression of various key proteins: unveiling the mechanistic role of selenium in AD prevention. J Neurosci Res 2018; 96:1798-1815. [DOI: 10.1002/jnr.24309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Javed Iqbal
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Kaoyuan Zhang
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Na Jin
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Yuxi Zhao
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Qiong Liu
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Jiazuan Ni
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography; Shenzhen University; Shenzhen P. R. China
| |
Collapse
|