1
|
Barmin RA, Moosavifar M, Zhang R, Rütten S, Thoröe-Boveleth S, Rama E, Ojha T, Kiessling F, Lammers T, Pallares RM. Hybrid ultrasound and photoacoustic contrast agent designs combining metal phthalocyanines and PBCA microbubbles. J Mater Chem B 2024; 12:2511-2522. [PMID: 38334758 PMCID: PMC10916536 DOI: 10.1039/d3tb02950f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by in vitro imaging in serum and whole blood, and ex vivo imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.
Collapse
Affiliation(s)
- Roman A Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - MirJavad Moosavifar
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Stephan Rütten
- Electron Microscope Facility, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Sven Thoröe-Boveleth
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Elena Rama
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Tarun Ojha
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
2
|
Lorenz AS, Moses AS, Mamnoon B, Demessie AA, Park Y, Singh P, Taratula O, Taratula O. A Photoacoustic Contrast Nanoagent with a Distinct Spectral Signature for Ovarian Cancer Management. Adv Healthc Mater 2023; 12:e2202946. [PMID: 36495088 PMCID: PMC10079555 DOI: 10.1002/adhm.202202946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) has tremendous potential for improving ovarian cancer detection. However, the lack of effective exogenous contrast agents that can improve PAI diagnosis accuracy significantly limits this application. This study presents a novel contrast nanoagent with a specific spectral signature that can be easily distinguished from endogenous chromophores in cancer tissue, allowing for high-contrast tumor visualization. Constructed as a 40 nm biocompatible polymeric nanoparticle loaded with two naphthalocyanine dyes, this agent is capable of efficient ovarian tumor accumulation after intravenous injection. The developed nanoagent displays a spectral signature with two well-separated photoacoustic peaks of comparable PA intensities in the near-infrared (NIR) region at 770 and 860 nm, which remain unaffected in cancer tissue following systemic delivery. In vivo experiments in mice with subcutaneous and intraperitoneal ovarian cancer xenografts validate that this specific spectral signature allows for accurate spectral unmixing of the nanoagent signal from endogenous contrast in cancer tissue, allowing for sensitive noninvasive cancer diagnosis. In addition, this nanoagent can selectively eradicate ovarian cancer tissue with a single dose of photothermal therapy by elevating the intratumoral temperature to ≈49 °C upon exposure to NIR light within the 700-900 nm range.
Collapse
Affiliation(s)
- Anna St Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Babak Mamnoon
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Ananiya A. Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| |
Collapse
|
3
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Recent advances in mixing-induced nanoprecipitation: from creating complex nanostructures to emerging applications beyond biomedicine. NANOSCALE 2023; 15:3594-3609. [PMID: 36727557 DOI: 10.1039/d3nr00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mixing-induced nanoprecipitation (MINP) is an efficient, controllable, scalable, versatile, and cost-effective technique for the preparation of nanoparticles. In addition to the formulation of drugs, MINP has attracted tremendous interest in other fields. In this review, we highlight recent advances in the preparation of nanoparticles with complex nanostructures via MINP and their emerging applications beyond biomedicine. First, the mechanisms of nanoprecipitation and four mixing approaches for MINP are briefly discussed. Next, three strategies for the preparation of nanoparticles with complex nanostructures including sequential nanoprecipitation, controlling phase separation, and incorporating inorganic nanoparticles, are summarized. Then, emerging applications including the engineering of catalytic nanomaterials, environmentally friendly photovoltaic inks, colloidal surfactants for the preparation of Pickering emulsions, and green templates for the synthesis of nanomaterials, are reviewed. Furthermore, we discuss the structure-function relationships to gain more insight into design principles for the development of functional nanoparticles via MINP. Finally, the remaining issues and future applications are discussed. This review will stimulate the development of nanoparticles with complex nanostructures and their broader applications beyond biomedicine.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Zhao Y, Zhu M, Zhao Y, He Z, Zhang H. Photoacoustic and Photothermal Effect of New Pair of Water-Soluble NIR Cyanine Dyes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Zheng BD, Ye J, Huang YY, Xiao MT. Phthalocyanine-based photoacoustic contrast agents for imaging and theranostics. Biomater Sci 2021; 9:7811-7825. [PMID: 34755723 DOI: 10.1039/d1bm01435h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phthalocyanine, as an organic dye, has attracted much attention due to its high molar absorption coefficient in the near-infrared region (NIR). It is precisely because of this advantage that phthalocyanine is very beneficial to photoacoustic imaging (PAI). At present, many different strategies have been adopted to design phthalocyanine-based contrast agents with photoacoustic (PA) effect, including increasing water solubility, changing spectral properties, prolonging the circulation time, constructing activatable supramolecular nanoparticles, increasing targeting, etc. Based on this, this minireview highlighted the above ways to enhance the PA effect of phthalocyanine. What's more, the application of phthalocyanine-based PA contrast agents in biomedical imaging and image-guided phototherapy has been discussed. Finally, this minireview also provides the prospects and challenges of phthalocyanine-based PA contrast agents in order to provide some reference for the application of phthalocyanine-based PA contrast agents in biomedical imaging and guiding tumor treatment.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
6
|
Park EY, Oh D, Park S, Kim W, Kim C. New contrast agents for photoacoustic imaging and theranostics: Recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng 2021; 5:031510. [PMID: 34368604 PMCID: PMC8325568 DOI: 10.1063/5.0047660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The phthalocyanine (Pc) and naphthalocyanine (Nc) nanoagents have drawn much attention as contrast agents for photoacoustic (PA) imaging due to their large extinction coefficients and long absorption wavelengths in the near-infrared region. Many investigations have been conducted to enhance Pc/Ncs' photophysical properties and address their poor solubility in an aqueous solution. Many diverse strategies have been adopted, including centric metal chelation, structure modification, and peripheral substitution. This review highlights recent advances on Pc/Nc-based PA agents and their extended use for multiplexed biomedical imaging, multimodal diagnostic imaging, and image-guided phototherapy.
Collapse
Affiliation(s)
| | - Donghyeon Oh
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Sinyoung Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Wangyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
7
|
Miki K, Imaizumi N, Nogita K, Oe M, Mu H, Huo W, Ohe K. Aluminum naphthalocyanine conjugate as an MMP-2-activatable photoacoustic probe for in vivo tumor imaging. Methods Enzymol 2021; 657:89-109. [PMID: 34353500 DOI: 10.1016/bs.mie.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2), which is one of MMPs family, is known as an extracellular gelatinase controlling cancer cell adhesion, growth, and metastasis. Because of the great interest in MMP-2 activity, the detailed protocols for evaluating MMP-2-responsive contrast agents, especially photoacoustic probes for in vivo use, are helpful for researchers in the field. We here describe the detailed synthetic procedure of MMP-2-activatable photoacoustic probe AlNc-pep-PEG consisting of aluminum naphthalocyanine, MMP-2-responsive peptide sequence, and poly(ethylene glycol), which has recently been developed in our research group. The detailed measurement protocol of photoacoustic signal intensity in vitro and in vivo by using in-house built photoacoustic signal measurement system and photoacoustic imaging apparatus are also summarized.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Naoto Imaizumi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Miki K, Imaizumi N, Nogita K, Oe M, Mu H, Huo W, Harada H, Ohe K. MMP-2-Activatable Photoacoustic Tumor Imaging Probes Based on Al- and Si-Naphthalocyanines. Bioconjug Chem 2021; 32:1773-1781. [PMID: 34167292 DOI: 10.1021/acs.bioconjchem.1c00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzyme-activatable photoacoustic probes are powerful contrast agents to visualize diseases in which a specific enzyme is overexpressed. In this study, aluminum and silicon naphthalocyanines (AlNc and SiNc, respectively) conjugated with matrix metalloprotease-2 (MMP-2)-responsive PLGLAG peptide sequence and poly(ethylene glycol) (PEG) as an axial ligand were designed and synthesized. AlNc-peptide-PEG conjugates AlNc-pep-PEG formed dimeric species interacting with each other through face-to-face H-aggregation in water, while SiNc-based conjugates SiNc-pep-PEG hardly interacted with each other because of the two bulky hydrophilic axial ligands. Both conjugates formed spherical nanometer-sized self-assemblies in water, generating photoacoustic waves under near-infrared photoirradiation. The treatment of MNc-peptide-PEG conjugates (M = Al, Si) with MMP-2 smoothly induced the cleavage of the PLGLAG sequence to release the hydrophilic PEG moiety, resulting in the aggregation of MNcs. By comparing the PA signal intensity changes at 680 and 760 nm, the photoacoustic signal intensity ratios were shown to be enhanced by 3-5 times after incubation with MMP-2. We demonstrated that MNc-peptide-PEG conjugates (M = Al, Si) could work as activatable photoacoustic probes in the in vitro experiment of MMP-2-overexpressed cell line HT-1080 as well as the in vivo photoacoustic imaging of HT-1080-bearing mice.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoto Imaizumi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Wang LZ, Lim TL, Padakanti PK, Carlin SD, Alavi A, Mach RH, Prud’homme RK. Kinetics of Nanoparticle Radiolabeling of Metalloporphyrin with 64Cu for Positron Emission Tomography (PET) Imaging. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leon Z. Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Tristan L. Lim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Prashanth K. Padakanti
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sean D. Carlin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proc Natl Acad Sci U S A 2020; 117:11289-11298. [PMID: 32385159 DOI: 10.1073/pnas.1918148117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The properties of organic molecules can be influenced by magnetic fields, and these magnetic field effects are diverse. They range from inducing nuclear Zeeman splitting for structural determination in NMR spectroscopy to polaron Zeeman splitting organic spintronics and organic magnetoresistance. A pervasive magnetic field effect on an aromatic molecule is the aromatic ring current, which can be thought of as an induction of a circular current of π-electrons upon the application of a magnetic field perpendicular to the π-system of the molecule. While in NMR spectroscopy the effects of ring currents on the chemical shifts of nearby protons are relatively well understood, and even predictable, the consequences of these modified electronic states on the spectroscopy of molecules has remained unknown. In this work, we find that photophysical properties of model phthalocyanine compounds and their aggregates display clear magnetic field dependences up to 25 T, with the aggregates showing more drastic magnetic field sensitivities depending on the intermolecular interactions with the amplification of ring currents in stacked aggregates. These observations are consistent with ring currents measured in NMR spectroscopy and simulated in time-dependent density functional theory calculations of magnetic field-dependent phthalocyanine monomer and dimer absorption spectra. We propose that ring currents in organic semiconductors, which commonly comprise aromatic moieties, may present new opportunities for the understanding and exploitation of combined optical, electronic, and magnetic properties.
Collapse
|
11
|
Le Floc'h J, Lu HD, Lim TL, Démoré C, Prud'homme RK, Hynynen K, Foster FS. Transcranial Photoacoustic Detection of Blood-Brain Barrier Disruption Following Focused Ultrasound-Mediated Nanoparticle Delivery. Mol Imaging Biol 2020; 22:324-334. [PMID: 31286352 PMCID: PMC7197023 DOI: 10.1007/s11307-019-01397-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Blood-brain barrier disruption (BBBD) is of interest for treating neurodegenerative diseases and tumors by enhancing drug delivery. Focused ultrasound (FUS) is a powerful method to alleviate BBB challenges; however, the detection of BBB opening by non-invasive methods remains limited. The purpose of this work is to demonstrate that 3D transcranial color Doppler (3DCD) and photoacoustic imaging (PAI) combined with custom-made nanoparticle (NP)-mediated FUS delivery can detect BBBD in mice. PROCEDURES We use MRI and stereotactic ultrasound-mediated BBBD to create and confirm four openings in the left hemisphere and inject intravenously indocyanine green (ICG) and three sizes (40 nm, 100 nm, and 240 nm in diameter) of fluorophore-labeled NPs. We use PAI and fluorescent imaging (FI) to assess the spatial distribution of ICG/NPs in tissues. RESULTS A reversible 41 ± 12 % (n = 8) decrease in diameter of the left posterior cerebral artery (PCA) relative to the right after FUS treatment is found using CD images. The spectral unmixing of photoacoustic images of the in vivo (2 h post FUS), perfused, and ex vivo brain reveals a consistent distribution pattern of ICG and NPs at *FUS locations. Ex vivo spectrally unmixed photoacoustic images show that the opening width is, on average, 1.18 ± 0.12 mm and spread laterally 0.49 ± 0.05 mm which correlated well with the BBB opening locations on MR images. In vivo PAI confirms a deposit of NPs in tissues for hours and potentially days, is less sensitive to NPs of lower absorbance at a depth greater than 3 mm and too noisy with NPs above an absorbance of 85.4. FI correlates well with ex vivo PAI to a depth of 3 mm in tissues for small NPs and 4.74 mm for large NPs. CONCLUSIONS 3DCD can monitor BBBD over time by detecting reversible anatomical changes in the PCA. In vivo 3DPAI at 15 MHz combined with circulating ICG and/or NPs with suitable properties can assess BBB opening 2 h post FUS.
Collapse
Affiliation(s)
- Johann Le Floc'h
- Department of Medical Biophysics, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
| | - Hoang D Lu
- Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton, NJ, 08540, USA
| | - Tristan L Lim
- Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton, NJ, 08540, USA
| | - Christine Démoré
- Department of Medical Biophysics, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, 50-70 Olden St, Princeton, NJ, 08540, USA
| | - Kullervo Hynynen
- Department of Medical Biophysics, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - F Stuart Foster
- Department of Medical Biophysics, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| |
Collapse
|
12
|
Xue Y, Li X, Dong J. Interfacial characteristics of block copolymer micelles stabilized Pickering emulsion by confocal laser scanning microscopy. J Colloid Interface Sci 2020; 563:33-41. [DOI: 10.1016/j.jcis.2019.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022]
|
13
|
Chen K, Wang Y, Cui H, Wei Z, Jia X, Liu Z, Guo X. Difunctional Fluorescence Nanoparticles for Accurate Tracing of Nanopesticide Fate and Crop Protection Prepared by Flash Nanoprecipitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:735-741. [PMID: 31895559 DOI: 10.1021/acs.jafc.9b06744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Facile fabrication of difunctional nanoparticles (NPs) for pesticide delivery and imaging is still a fascinating challenge. Here, water-dispersible difunctional NPs were developed using flash nanoprecipitation (FNP) where self-assembling amphiphilic block copolymers were used to encapsulate a highly hydrophobic model pesticide, Lambda-cyhalothrin, and the fluorescent dye Nile red. The particle size (ranging from 158 to 280 nm) and fluorescence property of NPs could be controlled by varying the flow rate or Nile red feed concentration. The aggregation state and rearrangement of the dye molecules in the NPs were also investigated. IVIS imaging and confocal laser scanning microscopy analysis demonstrated that the resulting difunctional nanopesticide particles could allow accurate in situ tracking of the pesticide on the leaf surface, while effectively avoiding interference from chlorophyll autofluorescence. The difunctional NP suspension maintained high insecticidal activity and stability. This work demonstrates the feasibility and great potential of the FNP method in universal fabrication of multifunctional NPs with in situ pesticide tracing and crop protection capabilities.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Chemical Engineering, Engineering Research Center of Large Scale Reactor Engineering and Technology (Ministry of Education), and International Joint Research Center of Green Energy Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Zhong Wei
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Xin Jia
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Zhiyong Liu
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, Engineering Research Center of Large Scale Reactor Engineering and Technology (Ministry of Education), and International Joint Research Center of Green Energy Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| |
Collapse
|
14
|
Zhou LN, Pan H, Kan JL, Guan Q, Zhou Y, Dong YB. Single-molecular phosphorus phthalocyanine-based near-infrared-II nanoagent for photothermal antitumor therapy. RSC Adv 2020; 10:22656-22662. [PMID: 35514554 PMCID: PMC9054689 DOI: 10.1039/d0ra03530k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
As one of the noninvasive cancer treatments, photothermal therapy (PTT) has drawn intense attention recently. In this context, an important task is to explore novel and versatile nanoscale photothermal agents (PTAs), especially those with strong NIR-II light absorption, high photothermal conversion efficiency, good photostability and biocompatibility. Phthalocyanines (Pcs), as the second-generation photosensitizers, are a promising class of candidates for PTT due to their strong NIR absorption and high photothermal conversion efficiency. However, the poor water solubility severely limited their application as PTAs in tumor treatment. Herein, we report a molecular phosphorus phthalocyanine (P-Pc)-based nanoagent via incorporation of human serum albumin (HSA) under mild conditions. The obtained nanoscale P-Pc-HSA possesses excellent photothermal conversion efficiency (64.7%) upon 1064 nm light irradiation, furthermore, it can be a highly efficient NIR-II antitumor nanoagent via photothermal treatment (PTT), which is fully evidenced by the in vitro and in vivo experiments. A molecular phosphorus phthalocyanine (P-Pc)-based nanoagent P-Pc-HSA, which can be a highly efficient NIR-II antitumor agent, is reported.![]()
Collapse
Affiliation(s)
- Li-Na Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Houhe Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jing-Lan Kan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qun Guan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yang Zhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yu-Bin Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
15
|
Changalvaie B, Han S, Moaseri E, Scaletti F, Truong L, Caplan R, Cao A, Bouchard R, Truskett TM, Sokolov KV, Johnston KP. Indocyanine Green J Aggregates in Polymersomes for Near-Infrared Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46437-46450. [PMID: 31804795 DOI: 10.1021/acsami.9b14519] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical translation of photoacoustic imaging (PAI) has been limited by the lack of near-infrared (NIR) contrast agents with low toxicity required for regulatory approval. Herein, J aggregates of indocyanine green (ICG) with strong NIR absorbance were encapsulated at high loadings within small 77 nm polymersomes (nanocapsules) composed of poly(lactide-co-glycolide-b-poly(ethylene glycol)) (PLGA-b-PEG) bilayers, thus enabling PAI of of breast and ovarian cancer cells with high specificity and a sensitivity at the level of ∼100 total cells. All of the major components of the polymersomes are FDA approved and used in the clinic. During formation of polymersomes with a water-in-oil-in-water double emulsion process, loss of ICG from the ICG J aggregates was minimized by coating them with a layer of branched polyethylenimine and by providing excess "sacrificial" ICG to adsorb at the oil-water interfaces. The encapsulated J aggregates were protected against dissociation by the polymersome shell for 24 h in 100% fetal bovine serum, after which the polymersomes biodegraded and the J aggregates dissociated to ICG monomers.
Collapse
Affiliation(s)
| | - Sangheon Han
- Department of Imaging Physics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
- Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | | | | | | | | | | | - Richard Bouchard
- Department of Imaging Physics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
- Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Konstantin V Sokolov
- Department of Imaging Physics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
- Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | | |
Collapse
|
16
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
17
|
Kudisch B, Maiuri M, Wang L, Lim T, Lu H, Lee V, Prud'homme RK, Scholes GD. Binary small molecule organic nanoparticles exhibit both direct and diffusion-limited ultrafast charge transfer with NIR excitation. NANOSCALE 2019; 11:2385-2392. [PMID: 30667035 DOI: 10.1039/c8nr09619h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we describe a facile, one-step synthesis of a binary organic nanoparticle composed completely of NIR-absorbing small molecules, a quatterylene diimide and a vanadyl napthalocyanine, using Flash Nanoprecipitation. We show that the molecules are co-encapsulated within an amphiphilic block copolymer shell by observing distinct ultrafast dynamics in the binary nanoparticles compared to nanoparticles of their individual components, which we rationalize as a photoinduced charge transfer. We then draw similarities between the charge transfer dynamics studied in our system and the charge dissociation process in macroscale organic bulk heterojunction blends for OPV applications by assigning the ultrafast time component (∼10 ps) to direct interfacial charge transfer and the slow component (70-200 ps) to diffusion limited charge transfer. This discovery can inspire the development of mixed-composition nanoparticles with new functionality for optoelectronic and theranostic applications.
Collapse
Affiliation(s)
- Bryan Kudisch
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lavaud L, Pascal S, Metwally K, Gasteau D, Da Silva A, Chen Z, Elhabiri M, Canard G, Jacquemin D, Siri O. Azacalixphyrins as NIR photoacoustic contrast agents. Chem Commun (Camb) 2018; 54:12365-12368. [PMID: 30325372 DOI: 10.1039/c8cc05851b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) azacalixphyrins bearing aryl substituents strongly impacting the physico-chemical properties of the macrocycles were designed, enabling hyperchromic and bathochromic shifts of the absorption compared to their N-alkylated analogues. This engineering enhances the photoacoustic response under NIR excitation, making azacalixphyrins promising organic contrast agents that reach the 800-1000 nm range.
Collapse
Affiliation(s)
- Lucien Lavaud
- Aix-Marseille Université, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Huang L, Han G. Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics. SMALL METHODS 2018; 2:1700370. [PMID: 31872045 PMCID: PMC6927252 DOI: 10.1002/smtd.201700370] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 05/11/2023]
Abstract
Boron dipyrromethene (BODIPY) is a class of important emerging fluorescent dyes. Due to their unique chemical and optical properties, near infrared (NIR)-emitting BODIPY dyes containing nanoparticles have recently been developed for a wide array of cutting-edge cancer optotheranostic applications. These nanoparticles not only have robust photostability and tunable photophysical properties, but they can also be flexibly tailored to a multitude of functional uses. Based on these outstanding characteristics, such nanoparticles have shown great promise in diagnosis as biological sensors, as well as in their utilization in advanced imaging and photomedicine for cancer treatment. In particular, here, this study first discusses their use as photoswitchable fluorescence probes toward in vitro single-molecule imaging. Second, this study takes a look at their opportunities for photoacoustic imaging utilization. Third, approaches are discussed to construct new NIR-absorbing BODIPY nanoparticles for photodynamic therapy (PDT). Fourth, this study delves into the new approach to use such nanoparticles as an emerging version of triplet-triplet annihilation upconversion (TTA-UC) and their biological uses, such as their photoactivation prodrug therapy (PAPT) for cancer. Finally, new biological sensors based on NIR BODIPY nanoparticles are introduced.
Collapse
Affiliation(s)
- Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
20
|
Ji Y, Ma C, Li J, Zhao H, Chen Q, Li M, Liu H. A Magnetic Adsorbent for the Removal of Cationic Dyes from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E710. [PMID: 30201925 PMCID: PMC6163381 DOI: 10.3390/nano8090710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023]
Abstract
In this article, a study was presented on the adsorption activity of a new nanocomposite particle Fe₃O₄@1, which was synthesized by combining [Cu(HL)₂]₂H₂[P₂Mo₅O23]·10H₂O (1) (HL = 2-acetylpyridine semicarbazone) and Fe₃O₄ nanoparticles. Transmission electron microscopy and X-ray powder diffraction analyses revealed that Fe₃O₄@1 possessed high crystallinity with an average particle size of 19.1 nm. The adsorption activity of the as-prepared Fe₃O₄@1 was investigated by photometrically monitoring the removal of methylene blue, rhodamine B, safranine T, gentian violet, fuchsin basic, and methyl orange from aqueous solutions. Significantly, we could easily separate Fe₃O₄@1 from the reaction media by applying an external magnet. Furthermore, the recycling performance was observed using methylene blue, revealing the recyclability and high stability of Fe₃O₄@1. It was shown that Fe₃O₄@1 is a promising candidate material for adsorbing cationic dyes in aqueous media.
Collapse
Affiliation(s)
- Yumei Ji
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Chenguang Ma
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Jie Li
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Haiyan Zhao
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Qianqian Chen
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Hongling Liu
- Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
21
|
Duffy MJ, Planas O, Faust A, Vogl T, Hermann S, Schäfers M, Nonell S, Strassert CA. Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo. PHOTOACOUSTICS 2018; 9:49-61. [PMID: 29707479 PMCID: PMC5914198 DOI: 10.1016/j.pacs.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 05/10/2023]
Abstract
In this paper we establish a methodology to predict photoacoustic imaging capabilities from the structure of absorber molecules (sonochromes). The comparative in vitro and in vivo screening of naphthalocyanines and cyanine dyes has shown a substitution pattern dependent shift in photoacoustic excitation wavelength, with distal substitution producing the preferred maximum around 800 nm. Central ion change showed variable production of photoacoustic signals, as well as singlet oxygen photoproduction and fluorescence with the optimum for photoacoustic imaging being nickel(II). Our approach paves the way for the design, evaluation and realization of optimized sonochromes as photoacoustic contrast agents.
Collapse
Affiliation(s)
- Mitchell J. Duffy
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull, Spain
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
| | - Thomas Vogl
- Institut für Immunologie, University of Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Germany
- Department of Nuclear Medicine, University Hospital of Münster, Germany
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Spain
| | - Cristian A. Strassert
- Physikalisches Institut and Center for Nanotechnology (CeNTech) University of Münster, Germany
- Corresponding author.
| |
Collapse
|
22
|
Mauriello-Jimenez C, Henry M, Aggad D, Raehm L, Cattoën X, Wong Chi Man M, Charnay C, Alpugan S, Ahsen V, Tarakci DK, Maillard P, Maynadier M, Garcia M, Dumoulin F, Gary-Bobo M, Coll JL, Josserand V, Durand JO. Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles for two-photon photodynamic therapy or photoacoustic imaging. NANOSCALE 2017; 9:16622-16626. [PMID: 29082396 DOI: 10.1039/c7nr04677d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles (BSPOR and BSPHT) were prepared. Their endocytosis in MCF-7 cancer cells was shown with two-photon excited fluorescence (TPEF) imaging. With two-photon excited photodynamic therapy (TPE-PDT), BSPOR was more phototoxic than BSPHT, which in contrast displayed a very high signal for photoacoustic imaging in mice.
Collapse
Affiliation(s)
- Chiara Mauriello-Jimenez
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM-ENSCM, cc 1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xie C, Zhen X, Lyu Y, Pu K. Nanoparticle Regrowth Enhances Photoacoustic Signals of Semiconducting Macromolecular Probe for In Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703693. [PMID: 29024155 DOI: 10.1002/adma.201703693] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/11/2017] [Indexed: 05/26/2023]
Abstract
Smart molecular probes that emit deep-tissue penetrating photoacoustic (PA) signals responsive to the target of interest are imperative to understand disease pathology and develop innovative therapeutics. This study reports a self-assembly approach to develop semiconducting macromolecular activatable probe for in vivo imaging of reactive oxygen species (ROS). This probe comprises a near-infrared absorbing phthalocyanine core and four poly(ethylene glycol) (PEG) arms linked by ROS-responsive self-immolative segments. Such an amphiphilic macromolecular structure allows it to undergo an ROS-specific cleavage process to release hydrophilic PEG and enhance the hydrophobicity of the nanosystem. Consequently, the residual phthalocyanine component self-assembles and regrows into large nanoparticles, leading to ROS-enhanced PA signals. The small size of the intact macromolecular probe is beneficial to penetrate into the tumor tissue of living mice, while the ROS-activated regrowth of nanoparticles prolongs the retention along with enhanced PA signals, permitting imaging of ROS during chemotherapy. This study thus capitalizes on stimuli-controlled self-assembly of macromolecules in conjunction with enhanced heat transfer in large nanoparticles for the development of smart molecular probes for PA imaging.
Collapse
Affiliation(s)
- Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
24
|
Sun P, Yuan P, Wang G, Deng W, Tian S, Wang C, Lu X, Huang W, Fan Q. High Density Glycopolymers Functionalized Perylene Diimide Nanoparticles for Tumor-Targeted Photoacoustic Imaging and Enhanced Photothermal Therapy. Biomacromolecules 2017; 18:3375-3386. [DOI: 10.1021/acs.biomac.7b01029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Pengcheng Yuan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Gaina Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Weixing Deng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Sichao Tian
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Chao Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Xiaomei Lu
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| |
Collapse
|