1
|
Qin J, Hong Y, Totsika M. Determining glycosyltransferase functional order via lethality due to accumulated O-antigen intermediates, exemplified with Shigella flexneri O-antigen biosynthesis. Appl Environ Microbiol 2024; 90:e0220323. [PMID: 38747588 PMCID: PMC11218652 DOI: 10.1128/aem.02203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 06/19/2024] Open
Abstract
The O antigen (OAg) polysaccharide is one of the most diverse surface molecules of Gram-negative bacterial pathogens. The structural classification of OAg, based on serological typing and sequence analysis, is important in epidemiology and the surveillance of outbreaks of bacterial infections. Despite the diverse chemical structures of OAg repeating units (RUs), the genetic basis of RU assembly remains poorly understood and represents a major limitation in assigning gene functions in polysaccharide biosynthesis. Here, we describe a genetic approach to interrogate the functional order of glycosyltransferases (GTs). Using Shigella flexneri as a model, we established an initial glycosyltransferase (IT)-controlled system, which allows functional order allocation of the subsequent GT in a 2-fold manner as follows: (i) first, by reporting the growth defects caused by the sequestration of UndP through disruption of late GTs and (ii) second, by comparing the molecular sizes of stalled OAg intermediates when each putative GT is disrupted. Using this approach, we demonstrate that for RfbF and RfbG, the GT involved in the assembly of S. flexneri backbone OAg RU, RfbG, is responsible for both the committed step of OAg synthesis and the third transferase for the second L-Rha. We also show that RfbF functions as the last GT to complete the S. flexneri OAg RU backbone. We propose that this simple and effective genetic approach can be also extended to define the functional order of enzymatic synthesis of other diverse polysaccharides produced both by Gram-negative and Gram-positive bacteria.IMPORTANCEThe genetic basis of enzymatic assembly of structurally diverse O antigen (OAg) repeating units (RUs) in Gram-negative pathogens is poorly understood, representing a major limitation in our understanding of gene functions for the synthesis of bacterial polysaccharides. We present a simple genetic approach to confidently assign glycosyltransferase (GT) functions and the order in which they act during assembly of the OAg RU. We employed this approach to determine the functional order of GTs involved in Shigella flexneri OAg assembly. This approach can be generally applied in interrogating GT functions encoded by other bacterial polysaccharides to advance our understanding of diverse gene functions in the biosynthesis of polysaccharides, key knowledge in advancing biosynthetic polysaccharide production.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane City, Queensland, Australia
| |
Collapse
|
2
|
Wang Z, Shen J. The role of goblet cells in Crohn' s disease. Cell Biosci 2024; 14:43. [PMID: 38561835 PMCID: PMC10985922 DOI: 10.1186/s13578-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is increasing worldwide. The pathogenesis of CD is hypothesized to be related to environmental, genetic, immunological, and bacterial factors. Current studies have indicated that intestinal epithelial cells, including columnar, Paneth, M, tuft, and goblet cells dysfunctions, are strongly associated with these pathogenic factors. In particular, goblet cells dysfunctions have been shown to be related to CD pathogenesis by direct or indirect ways, according to the emerging studies. The mucus barrier was established with the help of mucins secreted by goblet cells. Not only do the mucins mediate the mucus barrier permeability and bacterium selection, but also, they are closely linked with the endothelial reticulum stress during the synthesis process. Goblet cells also play a vital role in immune response. It was indicated that goblet cells take part in the antigen presentation and cytokines secretion process. Disrupted goblet cells related immune process were widely discovered in CD patients. Meanwhile, dysbiosis of commensal and pathogenic microbiota can induce myriad immune responses through mucus and goblet cell-associated antigen passage. Microbiome dysbiosis lead to inflammatory reaction against pathogenic bacteria and abnormal tolerogenic response. All these three pathways, including the loss of mucus barrier function, abnormal immune reaction, and microbiome dysbiosis, may have independent or cooperative effect on the CD pathogenesis. However, many of the specific mechanisms underlying these pathways remain unclear. Based on the current understandings of goblet cell's role in CD pathogenesis, substances including butyrate, PPARγagonist, Farnesoid X receptor agonist, nuclear factor-Kappa B, nitrate, cytokines mediators, dietary and nutrient therapies were all found to have potential therapeutic effects on CD by regulating the goblet cells mediated pathways. Several monoclonal antibodies already in use for the treatment of CD in the clinical settings were also found to have some goblet cells related therapeutic targets. In this review, we introduce the disease-related functions of goblet cells, their relationship with CD, their possible mechanisms, and current CD treatments targeting goblet cells.
Collapse
Affiliation(s)
- Zichen Wang
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Ascari A, Frölich S, Zang M, Tran ENH, Wilson DW, Morona R, Eijkelkamp BA. Shigella flexneri remodeling and consumption of host lipids during infection. J Bacteriol 2023; 205:e0032023. [PMID: 37991380 PMCID: PMC10729657 DOI: 10.1128/jb.00320-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Bacterial pathogens have vastly distinct sites that they inhabit during infection. This requires adaptation due to changes in nutrient availability and antimicrobial stress. The bacterial surface is a primary barrier, and here, we show that the bacterial pathogen Shigella flexneri increases its surface decorations when it transitions to an intracellular lifestyle. We also observed changes in bacterial and host cell fatty acid homeostasis. Specifically, intracellular S. flexneri increased the expression of their fatty acid degradation pathway, while the host cell lipid pool was significantly depleted. Importantly, bacterial proliferation could be inhibited by fatty acid supplementation of host cells, thereby providing novel insights into the possible link between human malnutrition and susceptibility to S. flexneri.
Collapse
Affiliation(s)
- Alice Ascari
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Sonja Frölich
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Maoge Zang
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Elizabeth N. H. Tran
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Danny W. Wilson
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Renato Morona
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Bart A. Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
4
|
Perlman M, Senger S, Verma S, Carey J, Faherty CS. A foundational approach to culture and analyze malnourished organoids. Gut Microbes 2023; 15:2248713. [PMID: 37724815 PMCID: PMC10512930 DOI: 10.1080/19490976.2023.2248713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The gastrointestinal (GI) epithelium plays a major role in nutrient absorption, barrier formation, and innate immunity. The development of organoid-based methodology has significantly impacted the study of the GI epithelium, particularly in the fields of mucosal biology, immunity, and host-microbe interactions. Various effects on the GI epithelium, such as genetics and nutrition, impact patients and alter disease states. Thus, incorporating these effects into organoid-based models will facilitate a better understanding of disease progression and offer opportunities to evaluate therapeutic candidates. One condition that has a significant effect on the GI epithelium is malnutrition, and studying the mechanistic impacts of malnutrition would enhance our understanding of several pathologies. Therefore, the goal of this study was to begin to develop methodology to generate viable malnourished organoids with accessible techniques and resources that can be used for a wide array of mechanistic studies. By selectively limiting distinct macronutrient components of organoid media, we were able to successfully culture and evaluate malnourished organoids. Genetic and protein-based analyses were used to validate the approach and confirm the presence of known biomarkers of malnutrition. Additionally, as proof-of-concept, we utilized malnourished organoid-derived monolayers to evaluate the effect of malnourishment on barrier formation and the ability of the bacterial pathogen Shigella flexneri to infect the GI epithelium. This work serves as the basis for new and exciting techniques to alter the nutritional state of organoids and investigate the related impacts on the GI epithelium.
Collapse
Affiliation(s)
- Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - James Carey
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Ascari A, Waters JK, Morona R, Eijkelkamp BA. Shigella flexneri Adapts to Niche-Specific Stresses through Modifications in Cell Envelope Composition and Decoration. ACS Infect Dis 2023; 9:1610-1621. [PMID: 37494550 DOI: 10.1021/acsinfecdis.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Shigella flexneri is the primary causative agent of worldwide shigellosis. As the pathogen transverses the distinct niches of the gastrointestinal tract it necessitates dynamic adaptation strategies to mitigate host antimicrobials such as dietary fatty acids (FAs) and the bile salt, deoxycholate (DOC). This study investigates the dynamics of the S. flexneri cell envelope, by interrogating adaptations following FA or DOC exposure. We deciphered the effects of FAs and DOC on bacterial membrane fatty acid and lipopolysaccharide (LPS) compositions. We identified novel LPS-based strategies by the pathogen to support resistance to these host compounds. In particular, expression of S. flexneri very-long O antigen (VL-Oag) LPS was found to play a central role in stress mitigation, as VL-Oag protects against antimicrobial FAs, but its presence rendered S. flexneri susceptible to DOC stress. Collectively, this work underpins the importance for S. flexneri to maintain appropriate regulation of cell envelope constituents, in particular VL-Oag LPS, to adequately adapt to diverse stresses during infection.
Collapse
Affiliation(s)
- Alice Ascari
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, South Australia, Australia
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia
| | - Jack K Waters
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia
| |
Collapse
|
6
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Identification of the Shigella flexneri Wzy Domain Modulating Wzz pHS-2 Interaction and Detection of the Wzy/Wzz/Oag Complex. J Bacteriol 2022; 204:e0022422. [PMID: 35980183 PMCID: PMC9487639 DOI: 10.1128/jb.00224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri implements the Wzy-dependent pathway to biosynthesize the O antigen (Oag) component of its surface lipopolysaccharide. The inner membrane polymerase WzySF catalyzes the repeat addition of undecaprenol-diphosphate-linked Oag (Und-PP-RUs) to produce a polysaccharide, the length of which is tightly regulated by two competing copolymerase proteins, WzzSF (short-type Oag; 10 to 17 RUs) and WzzpHS-2 (very-long-type Oag; >90 RUs). The nature of the interaction between WzySF and WzzSF/WzzpHS-2 in Oag polymerization remains poorly characterized, with the majority of the literature characterizing the individual protein constituents of the Wzy-dependent pathway. Here, we report instead a major investigation into the specific binding interactions of WzySF with its copolymerase counterparts. For the first time, a region of WzySF that forms a unique binding site for WzzpHS-2 has been identified. Specifically, this work has elucidated key WzySF moieties at the N- and C-terminal domains (NTD and CTD) that form an intramolecular pocket modulating the WzzpHS-2 interaction. Novel copurification data highlight that disruption of residues within this NTD-CTD pocket impairs the interaction with WzzpHS-2 without affecting WzzSF binding, thereby specifically disrupting polymerization of longer polysaccharide chains. This study provides a novel understanding of the molecular interaction of WzySF with WzzSF/WzzpHS-2 in the Wzy-dependent pathway and, furthermore, detects the Wzy/Wzz/Und-PP-Oag complex for the first time. Beyond S. flexneri, this work may be extended to provide insight into the interactions between protein homologues expressed by related species, especially members of Enterobacteriaceae, that produce dual Oag chain length determinants. IMPORTANCE Shigella flexneri is a pathogen causing significant morbidity and mortality, predominantly devastating the pediatric age group in developing countries. A major virulence factor contributing to S. flexneri pathogenesis is its surface lipopolysaccharide, which is comprised of three domains: lipid A, core oligosaccharide, and O antigen (Oag). The Wzy-dependent pathway is the most common biosynthetic mechanism implemented for Oag biosynthesis by Gram-negative bacteria, including S. flexneri. The nature of the interaction between the polymerase, WzySF, and the polysaccharide copolymerases, WzzSF and WzzpHS-2, in Oag polymerization is poorly characterized. This study investigates the molecular interplay between WzySF and its copolymerases, deciphering key interactions in the Wzy-dependent pathway that may be extended beyond S. flexneri, providing insight into Oag biosynthesis in Gram-negative bacteria.
Collapse
|
8
|
Dunker K, de la Torre Canny SG, Nordgård CT, Dague E, Formosa-Dague C, Bakke I, Sletmoen M. Elucidating bacterial adhesion to mucosal surface by an original AFM approach. BMC Microbiol 2021; 21:244. [PMID: 34488629 PMCID: PMC8422614 DOI: 10.1186/s12866-021-02303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Fish skin represents an ancient vertebrate mucosal surface, sharing characteristics with other mucosal surfaces including those of the intestine. The skin mucosa is continuously exposed to microbes in the surrounding water and is therefore important in the first line defense against environmental pathogens by preventing bacteria from accessing the underlying surfaces. Understanding the microbe-host interactions at the fish skin mucosa is highly relevant in order to understand and control infection, commensalism, colonization, persistence, infection, and disease. Here we investigate the interactions between the pathogenic bacteria Aeromonas salmonicida (A. salmonicida) and Yersinia ruckeri (Y. ruckeri), respectively, and the skin mucosal surface of Atlantic salmon fry using AFM force spectroscopy. Results The results obtained revealed that when retracting probes functionalized with bacteria from surfaces coated with immobilized mucins, isolated from salmon mucosal surfaces, rupture events reflecting the disruption of adhesive interactions were observed, with rupture strengths centered around 200 pN. However, when retracting probes functionalized with bacteria from the intact mucosal surface of salmon fish fry no adhesive interactions could be detected. Furthermore, rheological measurements revealed a near fluid-like behavior for the fish fry skin mucus. Taken together, the experimental data indicate that the adhesion between the mucin molecules within the mucous layer may be significantly weaker than the interaction between the bacteria and the mucin molecules. The bacteria, immobilized on the AFM probe, do bind to individual mucins in the mucosal layer, but are released from the near fluid mucus with little resistance upon retraction of the AFM probe, to which they are immobilized. Conclusion The data provided in the current paper reveal that A. salmonicida and Y. ruckeri do bind to the immobilized mucins. However, when retracting the bacteria from intact mucosal surfaces, no adhesive interactions are detected. These observations suggest a mechanism underlying the protective function of the mucosal surface based on the clearing of potential threats by adhering them to loosely attached mucus that is subsequently released from the fish skin.
Collapse
Affiliation(s)
- Karen Dunker
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Sol Gomez de la Torre Canny
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Catherine Taylor Nordgård
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | | | - Ingrid Bakke
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Marit Sletmoen
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| |
Collapse
|
9
|
Poole J, Hartley-Tassell LE, Day CJ, Stanisic DI, Groves PL, Chakravarty S, Lee Sim BK, Hoffman SL, Tiralongo J, Bovin N, Doolan DL, Jennings MP. Identification of the Glycan Binding Profile of Human and Rodent Plasmodium Sporozoites. ACS Infect Dis 2021; 7:2383-2389. [PMID: 34170120 DOI: 10.1021/acsinfecdis.1c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transmission of Plasmodium spp. sporozoites to the mammalian host is the first step in the initiation of the mosquito-borne disease known as malaria. The exact route of transmission from the bloodstream to the liver is still not clearly elucidated, and identification of the host glycan structures bound by the sporozoites may inform as to which host cells are involved. Here, we provide a comprehensive analysis of the glycan structures that sporozoites from the human pathogen, P. falciparum, and the rodent pathogen, P. yoelii, recognize and bind. Glycan array analysis was used to profile the glycans bound by the sporozoites, and the binding affinities of these sporozoite-glycan interactions were then determined by surface plasmon resonance. Data showed that the different Plasmodium spp. bind different classes of glycans. P. falciparum was observed to bind to glycans with terminal N-acetylgalactosamine (GalNAc) or Galactose (Gal) linked to a GalNAc, and the highest-affinity observed was with the GalNAc monosaccharide (12.5 nM). P. yoelii bound glycosaminoglycans, mannosyl glycans, Gal linked to N-acetylglucosamine structures, and the αGal epitope. The highest-affinity interaction for P. yoelii was with the αGal epitope (31.4 nM). This is the first study to identify the key host glycan structures recognized by human and rodent Plasmodium spp. sporozoites. An understanding of how Plasmodium sporozoites interact with the specific glycan structures identified here may provide further insight into this infectious disease that could help direct the design of an effective therapeutic.
Collapse
Affiliation(s)
- Jessica Poole
- Institute for Glycomics, Griffith University, Southport 4222, Queensland Australia
| | | | - Christopher J. Day
- Institute for Glycomics, Griffith University, Southport 4222, Queensland Australia
| | - Danielle I. Stanisic
- Institute for Glycomics, Griffith University, Southport 4222, Queensland Australia
| | - Penny L. Groves
- QIMR Berghofer Medical Research Institute, Herston 4029, Queensland Australia
| | | | - B. Kim Lee Sim
- Sanaria Inc, Rockville, Maryland 20852, United States of America
| | | | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Southport 4222, Queensland Australia
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Southport 4222, Queensland Australia
| |
Collapse
|