1
|
Call DH, Adjei JA, Pilgrim R, Jeong JW, Willis EV, Zegarra RA, Tapia NL, Osterhaus M, Vance JA, Voyton CM, Call JA, Pizarro SS, Morris JC, Christensen KA. A multiplexed high throughput screening assay using flow cytometry identifies glycolytic molecular probes in bloodstream form Trypanosoma brucei. Int J Parasitol Drugs Drug Resist 2024; 26:100557. [PMID: 39163740 PMCID: PMC11381906 DOI: 10.1016/j.ijpddr.2024.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024]
Abstract
Kinetoplastid organisms, including Trypanosoma brucei, are a significant health burden in many tropical and semitropical countries. Much of their metabolism is poorly understood. To better study kinetoplastid metabolism, chemical probes that inhibit kinetoplastid enzymes are needed. To discover chemical probes, we have developed a high-throughput flow cytometry screening assay that simultaneously measures multiple glycolysis-relevant metabolites in live T. brucei bloodstream form parasites. We transfected parasites with biosensors that measure glucose, ATP, or glycosomal pH. The glucose and ATP sensors were FRET biosensors, while the pH sensor was a GFP-based biosensor. The pH sensor exhibited a different fluorescent profile from the FRET sensors, allowing us to simultaneously measure pH and either glucose or ATP. Cell viability was measured in tandem with the biosensors using thiazole red. We pooled sensor cell lines, loaded them onto plates containing a compound library, and then analyzed them by flow cytometry. The library was analyzed twice, once with the pooled pH and glucose sensor cell lines and once with the pH and ATP sensor cell lines. Multiplexing sensors provided some internal validation of active compounds and gave potential clues for each compound's target(s). We demonstrated this using the glycolytic inhibitor 2-deoxyglucose and the alternative oxidase inhibitor salicylhydroxamic acid. Individual biosensor-based assays exhibited a Z'-factor value acceptable for high-throughput screening, including when multiplexed. We tested assay performance in a pilot screen of 14,976 compounds from the Life Chemicals Compound Library. We obtained hit rates from 0.2 to 0.4% depending on the biosensor, with many compounds impacting multiple sensors. We rescreened 44 hits, and 28 (64%) showed repeatable activity for one or more sensors. One compound exhibited EC50 values in the low micromolar range against two sensors. We expect this method will enable the discovery of glycolytic chemical probes to improve metabolic studies in kinetoplastid parasites.
Collapse
Affiliation(s)
- Daniel H Call
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - John Asafo Adjei
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Ryan Pilgrim
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - James W Jeong
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - E Vance Willis
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Ronald A Zegarra
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Nicholas L Tapia
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Madalyn Osterhaus
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Jacob A Vance
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Charles M Voyton
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA; Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| | - James A Call
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, USA.
| | - Sabrina S Pizarro
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA.
| | - James C Morris
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC, USA.
| | | |
Collapse
|
2
|
Ma K, Gauthier LO, Cheung F, Huang S, Lek M. High-throughput assays to assess variant effects on disease. Dis Model Mech 2024; 17:dmm050573. [PMID: 38940340 PMCID: PMC11225591 DOI: 10.1242/dmm.050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Interpreting the wealth of rare genetic variants discovered in population-scale sequencing efforts and deciphering their associations with human health and disease present a critical challenge due to the lack of sufficient clinical case reports. One promising avenue to overcome this problem is deep mutational scanning (DMS), a method of introducing and evaluating large-scale genetic variants in model cell lines. DMS allows unbiased investigation of variants, including those that are not found in clinical reports, thus improving rare disease diagnostics. Currently, the main obstacle limiting the full potential of DMS is the availability of functional assays that are specific to disease mechanisms. Thus, we explore high-throughput functional methodologies suitable to examine broad disease mechanisms. We specifically focus on methods that do not require robotics or automation but instead use well-designed molecular tools to transform biological mechanisms into easily detectable signals, such as cell survival rate, fluorescence or drug resistance. Here, we aim to bridge the gap between disease-relevant assays and their integration into the DMS framework.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan O. Gauthier
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Frances Cheung
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Milanes JE, Kwain S, Drawdy A, Dodson L, Monaghan MT, Rice CA, Dominy BN, Whitehead DC, Morris JC. Glucose metabolism in the pathogenic free-living amoebae: Tempting targets for treatment development. Chem Biol Drug Des 2024; 103:e14377. [PMID: 37864277 PMCID: PMC10843269 DOI: 10.1111/cbdd.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Pathogenic free-living amoebae (pFLA) are single-celled eukaryotes responsible for causing intractable infections with high morbidity and mortality in humans and animals. Current therapeutic approaches include cocktails of antibiotic, antifungal, and antimicrobial compounds. Unfortunately, the efficacy of these can be limited, driving the need for the discovery of new treatments. Pan anti-amebic agents would be ideal; however, identifying these agents has been a challenge, likely due to the limited evolutionary relatedness of the different pFLA. Here, we discuss the potential of targeting amoebae glucose metabolic pathways as the differences between pFLA and humans suggest specific inhibitors could be developed as leads for new therapeutics.
Collapse
Affiliation(s)
- Jillian E. Milanes
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Samuel Kwain
- Eukaryotic Pathogens Innovation Center, Department of Chemistry, Clemson University, Clemson SC 29634
| | - Allyson Drawdy
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Laura Dodson
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Matthew T. Monaghan
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Christopher A. Rice
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, IN 47907
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, IN 47907
| | - Brian N. Dominy
- Department of Chemistry, Clemson University, Clemson SC 29634
| | - Daniel C. Whitehead
- Eukaryotic Pathogens Innovation Center, Department of Chemistry, Clemson University, Clemson SC 29634
| | - James C. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| |
Collapse
|
4
|
Lim J, Petersen M, Bunz M, Simon C, Schindler M. Flow cytometry based-FRET: basics, novel developments and future perspectives. Cell Mol Life Sci 2022; 79:217. [PMID: 35352201 PMCID: PMC8964568 DOI: 10.1007/s00018-022-04232-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
Abstract
Förster resonance energy transfer (FRET) is a widespread technology used to analyze and quantify protein interactions in multiple settings. While FRET is traditionally measured by microscopy, flow cytometry based-FRET is becoming popular within the last decade and more commonly used. Flow cytometry based-FRET offers the possibility to assess FRET in a short time-frame in a high number of cells thereby allowing stringent and statistically robust quantification of FRET in multiple samples. Furthermore, established, simple and easy to implement gating strategies facilitate the adaptation of flow cytometry based-FRET measurements to most common flow cytometers. We here summarize the basics of flow cytometry based-FRET, highlight recent novel developments in this field and emphasize on exciting future perspectives.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Simon
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Potekhina ES, Bass DY, Kelmanson IV, Fetisova ES, Ivanenko AV, Belousov VV, Bilan DS. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. Int J Mol Sci 2020; 22:E148. [PMID: 33375682 PMCID: PMC7794770 DOI: 10.3390/ijms22010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.
Collapse
Affiliation(s)
- Ekaterina S. Potekhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dina Y. Bass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
| | - Alexander V. Ivanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
6
|
Benítez D, Dibello E, Bonilla M, Comini MA. A simple, robust, and affordable bioluminescent assay for drug discovery against infective African trypanosomes. Drug Dev Res 2020; 83:253-263. [PMID: 31958156 DOI: 10.1002/ddr.21634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
African trypanosomiasis is a major problem for human and animal health in endemic countries, where it threatens millions of people and affects economic development. New drugs are needed to overcome the toxicity, administration, low efficacy, and resistance issues of the current chemotherapy. Robust, simple, and economical high-throughput, whole-cell-based assays are required to accelerate the identification of novel chemical entities. With this aim, we generated a bioluminescent cell line of the bloodstream stage of Trypanosoma brucei brucei and established a screening assay. Trypanosomes were stably transfected to constitutively express a thermostable red-shifted luciferase. The growth phenotype and drug sensitivity of the reporter cell line were essentially identical to that of the parental cell line. The endogenous luciferase activity, measured by a simple bioluminescence assay, proved to be proportional to parasite number and metabolic status. The assay, optimized to detect highly potent compounds in a 96-well-plate format, was validated by screening a small compound library (inter-assay values for Z' factor and coefficient variation were 0.77 and 5.8%, respectively). With a hit-confirmation ratio of ~97%, the assay was potent enough to identify several hits with EC50 ≤ 10 μM. Preliminary tests indicated that the assay can be scaled up to a 384-well-plate format without compromising its robustness. In summary, we have generated reporter trypanosomes and a simple, robust, and affordable bioluminescence screening assay with great potential to speed up the early-phase drug discovery against African trypanosomes.
Collapse
Affiliation(s)
- Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Estefania Dibello
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Laboratorio de Síntesis Orgánica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Mariana Bonilla
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Laboratorio de Fisicoquímica Biológica y Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
7
|
Voyton CM, Choi J, Qiu Y, Morris MT, Ackroyd PC, Morris JC, Christensen KA. A Microfluidic-Based Microscopy Platform for Continuous Interrogation of Trypanosoma brucei during Environmental Perturbation. Biochemistry 2019; 58:875-882. [PMID: 30638014 DOI: 10.1021/acs.biochem.8b01269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The African trypanosome, Trypanosoma brucei, is the causative agent of human African trypanosomiasis (HAT). African trypanosomes are extracellular parasites that possess a single flagellum that imparts a high degree of motility to the microorganisms. In addition, African trypanosomes show significant metabolic and structural adaptation to environmental conditions. Analysis of the ways that environmental cues affect these organisms generally requires rapid perfusion experiments in combination with single-cell imaging, which are difficult to apply under conditions of rapid motion. Microfluidic devices have been used previously as a strategy for trapping small motile cells in a variety of organisms, including trypanosomes; however, in the past, such devices required individual fabrication in a cleanroom, limiting their application. Here we demonstrate that a commercial microfluidic device, typically used for bacterial trapping, can trap bloodstream and procyclic form trypanosomes, allowing for rapid buffer exchange via perfusion. As a result, time-lapse single-cell microscopy images of these highly motile parasites were acquired during environmental variations. Using these devices, we have been able to perform and analyze perfusion-based single-cell tracking experiments of the responses of the parasite to changes in glucose availability, which is a major step in resolving the mechanisms of adaptation of kinetoplasts to their individual biological niches; we demonstrate utility of this tool for making measurements of procyclic form trypanosome intracellular glucose levels as a function of changes in extracellular glucose concentrations. These experiments demonstrate that cytosolic glucose equilibrates with external conditions as fast as, or faster than, the rate of solution exchange in the instrument.
Collapse
Affiliation(s)
- Charles M Voyton
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States.,Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Jongsu Choi
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Yijian Qiu
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Meredith T Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - P Christine Ackroyd
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - James C Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry , Clemson University , Clemson , South Carolina 29634 , United States
| | - Kenneth A Christensen
- Department of Chemistry , Clemson University , Clemson , South Carolina 29634 , United States.,Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|