1
|
Nagappan S, Apoorva S, Shome A, Bishnoi S, Shrivastava S, Mahawar M. Sensitivity to antimicrobial peptide A (SapA) contributes to the survival of Salmonella typhimurium against antimicrobial peptides, neutrophils and virulence in mice. Arch Microbiol 2024; 206:302. [PMID: 38874634 DOI: 10.1007/s00203-024-04032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Host-generated antimicrobial peptides (AMPs) play a pivotal role in defense against bacterial pathogens. AMPs kill invading bacteria majorly by disrupting the bacterial cell walls. AMPs are actively synthesized and released into the lumen of the gastrointestinal tract to limit colonization of enteric pathogens like Salmonella typhimurium (S. typhimurium). However, S. typhimurium has evolved several resistance mechanisms to defend AMPs. The multicomponent SapABCDF uptake transporter is one such system that helps in resisting AMPs. In the current study, we analyzed the role of S. typhimurium SapA against stress survival and virulence of this bacterium. ∆sapA mutant strain showed hypersensitivity to AMPs, like melittin and mastoparan. Further, ∆sapA mutant showed more than 22 folds (p = 0.019) hypersensitivity to neutrophils as compared to the WT strain of S. typhimurium. In addition, ∆sapA strain showed defective survival in mice. In conclusion, the results of the current study suggest that the SapA is essential for survival against AMPs and virulence of S. typhimurium.
Collapse
Affiliation(s)
- Sabapathi Nagappan
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shekhar Apoorva
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Arijit Shome
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Shikha Bishnoi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, 243122, India.
| |
Collapse
|
2
|
Dai W, Shu R, Yang F, Li B, Johnson HM, Yu S, Yang H, Chan YK, Yang W, Bai D, Deng Y. Engineered Bio-Heterojunction Confers Extra- and Intracellular Bacterial Ferroptosis and Hunger-Triggered Cell Protection for Diabetic Wound Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305277. [PMID: 37526952 DOI: 10.1002/adma.202305277] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/30/2023] [Indexed: 08/02/2023]
Abstract
Nanomaterial-mediated ferroptosis has garnered considerable interest in the antibacterial field, as it invokes the disequilibrium of ion homeostasis and boosts lipid peroxidation in extra- and intracellular bacteria. However, current ferroptosis-associated antibacterial strategies indiscriminately pose damage to healthy cells, ultimately compromising their biocompatibility. To address this daunting issue, this work has designed a precise ferroptosis bio-heterojunction (F-bio-HJ) consisting of Fe2 O3 , Ti3 C2 -MXene, and glucose oxidase (GOx) to induce extra-intracellular bacteria-targeted ferroptosis for infected diabetic cutaneous regeneration. Fe2 O3 /Ti3 C2 -MXene@GOx (FMG) catalytically generates a considerable amount of ROS which assaults the membrane of extracellular bacteria, facilitating the permeation of synchronously generated Fe2+ /Fe3+ into bacteria under near-infrared (NIR) irradiation, causing planktonic bacterial death via ferroptosis, Fe2+ overload, and lipid peroxidation. Additionally, FMG facilitates intracellular bacterial ferroptosis by transporting Fe2+ into intracellular bacteria via inward ferroportin (FPN). With GOx consuming glucose, FMG creates hunger protection which helps macrophages escape cell ferroptosis by activating the adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) pathway. In vivo results authenticate that FMG boosts diabetic infectious cutaneous regeneration without triggering ferroptosis in normal cells. As envisaged, the proposed tactic provides a promising approach to combat intractable infections by precisely terminating extra-intracellular infection via steerable ferroptosis, thereby markedly elevating the biocompatibility of therapeutic ferroptosis-mediated strategies.
Collapse
Affiliation(s)
- Wenyu Dai
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rui Shu
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bin Li
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, 999077, China
| | - Weizhong Yang
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Ding Bai
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
3
|
Stephani J, Gerhards L, Khairalla B, Solov’yov IA, Brand I. How do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration. ACS Infect Dis 2024; 10:763-778. [PMID: 38259029 PMCID: PMC10862549 DOI: 10.1021/acsinfecdis.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.
Collapse
Affiliation(s)
- Justus
C. Stephani
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Bishoy Khairalla
- Department
of Chemistry, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
- Research
Center Neurosensory Science, Carl von Ossietzky
University of Oldenburg, 26111 Oldenburg, Germany
- CeNaD—Center
for Nanoscale Dynamics, Carl von Ossietzky
University of Oldenburg, 26111 Oldenburg, Germany
| | - Izabella Brand
- Department
of Chemistry, Carl von Ossietzky University
of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
4
|
Zhang Y, Zheng M, Wang Z, Liu Z, Chen S, Li X, Shi Y, Hu H. Discovery of novel antibacterial agent for the infected wound treatment: all-hydrocarbon stapling optimization of LL-37. Theranostics 2024; 14:1181-1194. [PMID: 38323312 PMCID: PMC10845205 DOI: 10.7150/thno.87916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024] Open
Abstract
Rationale: Antimicrobial peptide LL-37 has been recognized as a favorable alternative to antibiotics due to its broad antibacterial spectrum, low resistance development and diverse biological activities. However, its high manufactory cost, poor proteolytic stability, and unpredictable cytotoxicity seriously hindered its medical translation. Methods: To push the frontiers of its clinical application, all-hydrocarbon stapling strategy was exploited here for the structural modification of KR-12, the core and minimal fragment of LL-37. Results: Based on a library of KR-12 derivatives that designed and synthesized to be stapled at positions of either i, i+4 or i, i+7, structure to activity relationship was investigated. Among them, KR-12(Q5, D9) with the glutamine and aspartic acid residues stapled displayed increased helical content and positive charge. The reinforced α-helical conformation not only protected it from proteolytic hydrolysis but also improved its antibacterial efficacy via effective membrane perturbation and anti-inflammatory efficacy via compact LPS binding. Besides, the increased positive charge endowed it with an enhanced therapeutic index. On infected wound mouse model, it was demonstrated to eliminate bacteria and promote wound closure and regeneration effectively. Conclusion: Overall, the all-hydrocarbon stapling was proven to lay the foundation for the future development of antibacterial agents. KR-12(Q5, D9) could serve as a lead compound for the clinical treatment of bacterial infections.
Collapse
Affiliation(s)
- Yanan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mengjun Zheng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sumeng Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Martynowycz MW, Andreev K, Mor A, Gidalevitz D. Cancer-Associated Gangliosides as a Therapeutic Target for Host Defense Peptide Mimics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12541-12549. [PMID: 37647566 DOI: 10.1021/acs.langmuir.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.
Collapse
Affiliation(s)
- Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| | - Amram Mor
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 10 W 35th Street, Chicago, Illinois 60616, United States
| |
Collapse
|
6
|
Fernández-De La Cruz E, Wessely-Szponder J, Viñas M, Vinuesa T, Merlos A, Jorba M, Espinal P, Fusté E. Native Pig Neutrophil Products: Insights into Their Antimicrobial Activity. Microorganisms 2023; 11:2119. [PMID: 37630679 PMCID: PMC10459379 DOI: 10.3390/microorganisms11082119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cationic antimicrobial peptides are molecules with potential applications for treating infections due to their antimicrobial and immunomodulatory properties. The aim of this work was to explore the antimicrobial activity and mechanisms of action of a porcine neutrophil cathelicidin mixture (MPPN). Gram-positive and Gram-negative bacteria were used to determine the minimum inhibitory concentration (MIC) and experiments of both time-kill kinetics and effects on growth curves were performed. Planar black lipid bilayer conductance was measured to analyze the interaction of MPPN with lipid bilayers. Visualization of bacterial surfaces and membrane alterations was achieved using atomic force microscopy and transmission electron microscopy. The effects on the activity of efflux pumps (EPs) were studied with an intracellular accumulation of acridine orange (AO) assay. In E. coli, MPPN behaves as a bactericide at high concentrations and as a bacteriostatic at lower concentrations. The bacteriostatic effect was also observed for slightly shorter periods in S. enterica. The mixture was not active on S. aureus. The increase in AO accumulation in the presence of MPPN indicates that, at least in E. coli, the mixture causes inhibition of the EP function. Observed and detected variable conductance events demonstrate a strong MPPN effect on lipid bilayers. Damage to the structure of treated E. coli indicates that MPPN induces alterations in the bacterial surface. The use of AMPs capable of inhibiting EP can be seen as a good tool to combat antimicrobial resistance since they could be used alone or in combination with other conventional antibiotics to which bacteria have become resistant.
Collapse
Affiliation(s)
- Eric Fernández-De La Cruz
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Teresa Vinuesa
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Alexandra Merlos
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Marta Jorba
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Paula Espinal
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Ester Fusté
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
- Department of Public Health, Mental Health and Maternal and Child Nursing, University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
7
|
Pastuszak K, Kowalczyk B, Tarasiuk J, Luchowski R, Gruszecki WI, Jurak M, Palusinska-Szysz M. Insight into the Mechanism of Interactions between the LL-37 Peptide and Model Membranes of Legionella gormanii Bacteria. Int J Mol Sci 2023; 24:12039. [PMID: 37569419 PMCID: PMC10418352 DOI: 10.3390/ijms241512039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Legionella gormanii is a fastidious, Gram-negative bacterium known to be the etiological agent of atypical community-acquired pneumonia. The human cathelicidin LL-37 exhibits a dose-dependent bactericidal effect on L. gormanii. The LL-37 peptide at the concentration of 10 µM causes the bacteria to become viable but not cultured. The antibacterial activity of the peptide is attributed to its effective binding to the bacterial membrane, as demonstrated by the fluorescence lifetime imaging microscopy. In this study, to mimic the L. gormanii membranes and their response to the antimicrobial peptide, Langmuir monolayers were used with the addition of the LL-37 peptide to the subphase of the Langmuir trough to represent the extracellular fluid. The properties of the model membranes (Langmuir monolayers) formed by phospholipids (PL) isolated from the L. gormanii bacteria cultured on the non-supplemented (PL-choline) and choline-supplemented (PL+choline) medium were determined, along with the effect of the LL-37 peptide on the intermolecular interactions, packing, and ordering under the monolayer compression. Penetration tests at the constant surface pressure were carried out to investigate the mechanism of the LL-37 peptide action on the model membranes. The peptide binds to the anionic bacterial membranes preferentially, due to its positive charge. Upon binding, the LL-37 peptide can penetrate into the hydrophobic tails of phospholipids, destabilizing membrane integrity. The above process can entail membrane disruption and ultimately cell death. The ability to evoke such a great membrane destabilization is dependent on the share of electrostatic, hydrogen bonding and Lifshitz-van der Waals LL-37-PL interactions. Thus, the LL-37 peptide action depends on the changes in the lipid membrane composition caused by the utilization of exogenous choline by the L. gormanii.
Collapse
Affiliation(s)
- Katarzyna Pastuszak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland;
| | - Bozena Kowalczyk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| | - Jacek Tarasiuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Informatics, Maria Curie-Skłodowska University, Radziszewskiego 10, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Faculty of Mathematics, Physics and Informatics, Maria Curie-Skłodowska University, Radziszewskiego 10, 20-031 Lublin, Poland; (R.L.); (W.I.G.)
| | - Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland;
| | - Marta Palusinska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.K.); (J.T.); (M.P.-S.)
| |
Collapse
|
8
|
Bossa GV, May S. Bragg-Williams Theory for Particles with a Size-Modulating Internal Degree of Freedom. Molecules 2023; 28:5060. [PMID: 37446721 DOI: 10.3390/molecules28135060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The field of soft matter teems with molecules and aggregates of molecules that have internal size-modulating degrees of freedom. Proteins, peptides, microgels, polymers, micelles, and even some colloids can exist in multiple-often just two dominating-states with different effective sizes, where size can refer to the volume or to the cross-sectional area for particles residing on surfaces. The size-dependence of their accessible states renders the behavior of these particles pressure-sensitive. The Bragg-Williams model is among the most simple mean-field methods to translate the presence of inter-particle interactions into an approximate phase diagram. Here, we extend the Bragg-Williams model to account for the presence of particles that are immersed in a solvent and exist in two distinct states, one occupying a smaller and the other one a larger size. The basis of the extension is a lattice-sublattice approximation that we use to host the two size-differing states. Our model includes particle-solvent interactions that act as an effective surface tension between particles and solvent and are ignorant of the state in which the particles reside. We analyze how the energetic preference of the particles for one or the other state affects the phase diagrams. The possibility of a single phase-two phases-single phase sequence of phase transitions as a function of increasing temperature is demonstrated.
Collapse
Affiliation(s)
- Guilherme Volpe Bossa
- Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Sylvio May
- Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
9
|
Safi AUR, Bendixen E, Rahman H, Khattak B, Wu W, Ullah W, Khan N, Ali F, Yasin N, Qasim M. Molecular identification and differential proteomics of drug resistant Salmonella Typhi. Diagn Microbiol Infect Dis 2023; 105:115883. [PMID: 36731197 DOI: 10.1016/j.diagmicrobio.2022.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to elucidate differentially expressed proteins in drug resistant Salmonella Typhi. Among 100 samples, S. typhi were identified in 43 samples. In drug susceptibility profile, 95.3% (41/43), 80% (35/43) and 70% (30/43) resistances were observed against Nalidixic acid, Ampicillin, and Chloramphenicol respectively. No resistance was observed against Imipenum and Azithromycin while only 11% (5/43) isolates were found resistant to Ceftriaxone. Mass spectrometric differential analysis resulted in 23 up-regulated proteins in drug resistant isolates. Proteins found up-regulated are involved in virulence (vipB, galU, tufA, and lpp1), translation (rpsF, rpsG, rplJ, and rplR), antibiotic resistance (zwf, phoP, and ompX), cell metabolism (metK, ftsZ, pepD, and secB), stress response (ridA, rbfA, and dps), housekeeping (gapA and eno) and hypothetical proteins including ydfZ, t1802, and yajQ. These proteins are of diverse nature and functions but highly interconnected. Further characterization may be helpful for elucidation of new biomarker proteins and therapeutic drug targets.
Collapse
Affiliation(s)
- Aziz Ur Rehman Safi
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Emoke Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C Denmark
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan Pakistan
| | - Baharullah Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Wei Wu
- College of Animal Sciences and Technology, Southwest University, Chongqing China
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Nasar Khan
- Department of Microbiology, Kohsar University Murree, Kashmir Point, Punjab, Pakistan
| | - Farhad Ali
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Nusrat Yasin
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat Pakistan.
| |
Collapse
|
10
|
Rice A, Zimmerberg J, Pastor RW. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion. Biophys J 2023; 122:1018-1032. [PMID: 36575795 PMCID: PMC10111278 DOI: 10.1016/j.bpj.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The fusion peptide (FP) domain is necessary for the fusogenic activity of spike proteins in a variety of enveloped viruses, allowing the virus to infect the host cell, and is the only part of the protein that interacts directly with the target membrane lipid tails during fusion. There are consistent findings of poration by this domain in experimental model membrane systems, and, in certain conditions, the isolated FPs can generate pores. Here, we use molecular dynamics simulations to investigate the specifics of how these FP-induced pores form in membranes with different compositions of lysolipid and POPC. The simulations show that pores form spontaneously at high lysolipid concentrations via hybrid intermediates, where FP aggregates in the cis leaflet tilt to form a funnel-like structure that spans the leaflet and locally reduces the hydrophobic thickness that must be traversed by water to form a pore. By restraining a single FP within an FP aggregate to this tilted conformation, pores can be formed in lower-lysolipid-content membranes, including pure POPC, on the 100-ns timescale, much more rapidly than in unbiased simulations in bilayers with the same composition. The pore formation pathway is similar to the spontaneous formation in high lysolipid concentrations. Depending on the membrane composition, the pores can be metastable (as seen in POPC) or lead to membrane rupture.
Collapse
Affiliation(s)
- Amy Rice
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Qu S, Zhu K. Endocytosis-mediated redistribution of antibiotics targets intracellular bacteria. NANOSCALE 2023; 15:4781-4794. [PMID: 36779877 DOI: 10.1039/d2nr05421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing emergence and dissemination of antibiotic resistance pose a severe threat to overwhelming healthcare practices worldwide. The lack of new antibacterial drugs urgently calls for alternative therapeutic strategies to combat multidrug-resistant (MDR) bacterial pathogens, especially those that survive and replicate in host cells, causing relapse and recurrence of infections. Intracellular drug delivery is a direct efficient strategy to combat invasive pathogens by increasing the accumulation of antibiotics. However, the increased accumulation of antibiotics in the infected host cells does not mean high efficacy. The difficulty of treatment lies in the efficient intracellular delivery of antibiotics to the pathogen-containing compartments. Here, we first briefly review the survival mechanisms of intracellular bacteria to facilitate the exploration of potential antibacterial targets for precise delivery. Furthermore, we provide an overview of endocytosis-mediated drug delivery systems, including the biomedical and physicochemical properties modulating the endocytosis and intracellular redistribution of antibiotics. Lastly, we summarize the targets and payloads of recently described intracellular delivery systems and their modes of action against diverse pathogenic bacteria-associated infections. This overview of endocytosis-mediated redistribution of antibiotics sheds light on the development of novel delivery platforms and alternative strategies to combat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
- Engineering Research Center of Animal Innovative drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Morici P, Rizzato C, Ghelardi E, Rossolini GM, Lupetti A. Sensitization of KPC and NDM Klebsiella pneumoniae To Rifampicin by the Human Lactoferrin-Derived Peptide hLF1-11. Microbiol Spectr 2023; 11:e0276722. [PMID: 36537823 PMCID: PMC9927577 DOI: 10.1128/spectrum.02767-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A synergistic effect of non-bactericidal concentrations of the human lactoferrin (hLF)-derived peptide hLF1-11 and rifampicin against multidrug-resistant KPC (Klebsiella pneumoniae carbapenemase)-producing K. pneumoniae has been previously shown. The present study focuses on the mechanism(s) underlying this synergistic effect. The contribution of hLF1-11 and rifampicin to the synergistic effect was evaluated by killing assays with KPC K. pneumoniae cells incubated with hLF1-11 and, after washing, with rifampicin, or vice versa. Cell membrane permeability and polarization upon exposure to hLF1-11 and/or rifampicin were evaluated by ethidium bromide (EtBr) and DiBAC4(3) (bis-1,3-dibutylbarbituric acid trimethine oxonol) permeability, respectively. The effect of carbonyl cyanide m-chlorophenyl hydrazone (CCCP), an uncoupler of oxidative phosphorylation, was also evaluated. KPC K. pneumoniae cells were effectively killed after prior exposure to rifampicin for 30 to 60 min followed by treatment with hLF1-11, while no antibacterial activity was observed when cells were incubated with hLF1-11 first and then with rifampicin. EtBr accumulation increased upon exposure to hLF1-11 or the combination of hLF1-11 and rifampicin, but not upon exposure to rifampicin alone. Moreover, hLF1-11 induced a dose-dependent membrane depolarization. As expected, the antibacterial activity of hLF1-11 alone or combined with rifampicin was significantly reduced in the presence of CCCP. Furthermore, hLF1-11 and rifampicin were synergistic also against a colistin-resistant NDM (New Delhi metallo-β-lactamase)-producing K. pneumoniae strain. The results suggest that rifampicin was accumulated by KPC cells during the 30-to-60-min incubation and that the addition of hLF1-11 sensitized bacterial cells to rifampicin by inducing a transient loss of membrane potential and increased cell membrane permeability, thus facilitating the entrance and retention of rifampicin into the cytoplasm. IMPORTANCE The present study describes a synergistic effect between rifampicin, an impermeable hydrophobic antibiotic with an intracellular target, and an hLF1-11, an antimicrobial peptide derived from human lactoferrin, against multidrug-resistant Klebsiella pneumoniae. Carbapenem-resistant K. pneumoniae has recently caused an outbreak in Tuscany, Italy, thus pressing the need for the development of new treatment options. The mechanisms underlying such a synergistic effect have been studied. The results suggest that the synergistic effect was due to the transient loss of membrane potential induced by hLF1-11 and the subsequent increase in cell membrane permeability which allowed rifampicin to enter the bacterial cell. Therefore, it is likely that a sub-inhibitory concentration of hLF1-11 can efficiently permeabilize K. pneumoniae cells to rifampicin, allowing the antibiotic to reach its intracellular target. These results encourage further exploration of possible applications of this synergistic combination in the treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Paola Morici
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Chen X, Wu X, Wang S. An optimized antimicrobial peptide analog acts as an antibiotic adjuvant to reverse methicillin-resistant Staphylococcus aureus. NPJ Sci Food 2022; 6:57. [PMID: 36509755 PMCID: PMC9744894 DOI: 10.1038/s41538-022-00171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The misuse of antibiotics in animal protein production has driven the emergence of a range of drug-resistant pathogens, which threaten existing public health security. Consequently, there is an urgent need to develop novel antimicrobials and new infection treatment options to address the challenges posed by the dramatic spread of antibiotic resistance. Piscidins, a class of fish-specific antimicrobial peptides (AMPs), are regarded as promising therapies for biomedical applications. Progress towards potential analogs from the piscidin family has been hampered by unenforceable structural optimization strategies. Here, we leverage a strategy of bioinformatics analysis combined with molecular dynamics (MD) simulation to identify specific functional hotspots in piscidins and rationally design related analogues. As expected, this approach yields a potent and non-toxic PIS-A-1 that can be used as an antibiotic adjuvant to reverse methicillin-resistant Staphylococcus aureus (MRSA) pathogens. Remarkably, the structural optimization scheme and application strategy proposed here will contribute richer therapeutic options for the safe production of animal protein.
Collapse
Affiliation(s)
- Xuan Chen
- grid.411604.60000 0001 0130 6528College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108 China ,grid.411604.60000 0001 0130 6528College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Xiaoping Wu
- grid.411604.60000 0001 0130 6528College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108 China ,grid.411604.60000 0001 0130 6528College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 China
| | - Shaoyun Wang
- grid.411604.60000 0001 0130 6528College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108 China
| |
Collapse
|
14
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
15
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
16
|
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022; 20:236-248. [PMID: 34732874 PMCID: PMC8934262 DOI: 10.1038/s41579-021-00638-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
It has long been appreciated that the Gram-negative outer membrane acts as a permeability barrier, but recent studies have uncovered a more expansive and versatile role for the outer membrane in cellular physiology and viability. Owing to recent developments in microfluidics and microscopy, the structural, rheological and mechanical properties of the outer membrane are becoming apparent across multiple scales. In this Review, we discuss experimental and computational studies that have revealed key molecular factors and interactions that give rise to the spatial organization, limited diffusivity and stress-bearing capacity of the outer membrane. These physical properties suggest broad connections between cellular structure and physiology, and we explore future prospects for further elucidation of the implications of outer membrane construction for cellular fitness and survival.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA,To whom correspondence should be addressed: , ,
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,To whom correspondence should be addressed: , ,
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
17
|
Paracini N, Schneck E, Imberty A, Micciulla S. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Adv Colloid Interface Sci 2022; 301:102603. [PMID: 35093846 DOI: 10.1016/j.cis.2022.102603] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPSs) are a constitutive element of the cell envelope of Gram-negative bacteria, representing the main lipid in the external leaflet of their outer membrane (OM) lipid bilayer. These unique surface-exposed glycolipids play a central role in the interactions of Gram-negative organisms with their surrounding environment and represent a key element for protection against antimicrobials and the development of antibiotic resistance. The biophysical investigation of a wide range of different types of in vitro model membranes containing reconstituted LPS has revealed functional and structural properties of these peculiar membrane lipids, providing molecular-level details of their interaction with antimicrobial compounds. LPS assemblies reconstituted at interfaces represent a versatile tool to study the properties of the Gram-negative OM by exploiting several surface-sensitive techniques, in particular X-ray and neutron scattering, which can probe the structure of thin films with sub-nanometer resolution. This review provides an overview of different approaches employed to investigate structural and biophysical properties of LPS, focusing on studies on Langmuir monolayers of LPS at the air/liquid interface and a range of supported LPS-containing model membranes reconstituted at solid/liquid interfaces.
Collapse
Affiliation(s)
| | - Emanuel Schneck
- Physics Departent, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
18
|
Sinha S, Dhanabal VB, Sperandeo P, Polissi A, Bhattacharjya S. Linking dual mode of action of host defense antimicrobial peptide thanatin: Structures, lipopolysaccharide and LptA m binding of designed analogs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183839. [PMID: 34915021 DOI: 10.1016/j.bbamem.2021.183839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
At present, antibiotics options to cure infections caused by drug resistant Gram-negative pathogens are highly inadequate. LPS outer membrane, proteins involved in LPS transport and biosynthesis pathways are vital targets. Thanatin, an insect derived 21-residue long antimicrobial peptide may be exploited for the development of effective antibiotics against Gram-negative bacteria. As a mode of bacterial cell killing, thanatin disrupts LPS outer membrane and inhibits LPS transport by binding to the periplasmic protein LptAm. Here, we report structure-activity correlation of thanatin and analogs for the purpose of rational design. These analogs of thanatin are investigated, by NMR, ITC and fluorescence, to correlate structure, antibacterial activity and binding with LPS and LptAm, a truncated monomeric variant. Our results demonstrate that an analog thanatin M21F exhibits superior antibacterial activity. In LPS interaction analyses, thanatin M21F demonstrate high affinity binding to outer membrane LPS. The atomic resolution structure of thanatin M21F in LPS micelle reveals four stranded β-sheet structure in a dimeric topology whereby the sidechain of aromatic residues Y10, F21 sustained mutual packing at the interface. Strikingly, LptAm binding affinity of thanatin M21F has been significantly increased with an estimated Kd ~ 0.73 nM vs 13 nM for thanatin. Further, atomic resolution structures and interactions of Ala based thanatin analogs define plausible correlations with antibacterial activity and LPS, LptAm interactions. Taken together, the current work provides a frame-work for the designing of thanatin based potent antimicrobial peptides for the treatment of drug resistance Gram-negative bacteria.
Collapse
Affiliation(s)
- Sheetal Sinha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Vidhya Bharathi Dhanabal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Paola Sperandeo
- Dept. of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Dept. of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
19
|
de Souza CM, da Silva ÁP, Júnior NGO, Martínez OF, Franco OL. Peptides as a therapeutic strategy against Klebsiella pneumoniae. Trends Pharmacol Sci 2022; 43:335-348. [DOI: 10.1016/j.tips.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
|
20
|
González-Fernández C, Bringas E, Oostenbrink C, Ortiz I. In silico investigation and surmounting of Lipopolysaccharide barrier in Gram-Negative Bacteria: How far has molecular dynamics Come? Comput Struct Biotechnol J 2022; 20:5886-5901. [PMID: 36382192 PMCID: PMC9636410 DOI: 10.1016/j.csbj.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Lipopolysaccharide (LPS), a main component of the outer membrane of Gram-negative bacteria, has crucial implications on both antibiotic resistance and the overstimulation of the host innate immune system. Fighting against these global concerns calls for the molecular understanding of the barrier function and immunostimulatory ability of LPS. Molecular dynamics (MD) simulations have become an invaluable tool for uncovering important findings in LPS research. While the reach of MD simulations for investigating the immunostimulatory ability of LPS has been already outlined, little attention has been paid to the role of MD simulations for exploring its barrier function and synthesis. Herein, we give an overview about the impact of MD simulations on gaining insight into the shield role and synthesis pathway of LPS, which have attracted considerable attention to discover molecules able to surmount antibiotic resistance, either circumventing LPS defenses or disrupting its synthesis. We specifically focus on the enhanced sampling and free energy calculation methods that have been combined with MD simulations to address such research. We also highlight the use of special-purpose MD supercomputers, the importance of appropriate LPS and ions parameterization to obtain reliable results, and the complementary views that MD and wet-lab experiments provide. Thereby, this work, which covers the last five years of research, apart from outlining the phenomena and strategies that are being explored, evidences the valuable insights that are gained by MD, which may be useful to advance antibiotic design, and what the prospects of this in silico method could be in LPS research.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
- Corresponding author.
| |
Collapse
|
21
|
González-Fernández C, Basauri A, Fallanza M, Bringas E, Oostenbrink C, Ortiz I. Fighting Against Bacterial Lipopolysaccharide-Caused Infections through Molecular Dynamics Simulations: A Review. J Chem Inf Model 2021; 61:4839-4851. [PMID: 34559524 PMCID: PMC8549069 DOI: 10.1021/acs.jcim.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Lipopolysaccharide
(LPS) is the primary component of the outer
leaflet of Gram-negative bacterial outer membranes. LPS elicits an
overwhelming immune response during infection, which can lead to life-threatening
sepsis or septic shock for which no suitable treatment is available
so far. As a result of the worldwide expanding multidrug-resistant
bacteria, the occurrence and frequency of sepsis are expected to increase;
thus, there is an urge to develop novel strategies for treating bacterial
infections. In this regard, gaining an in-depth understanding about
the ability of LPS to both stimulate the host immune system and interact
with several molecules is crucial for fighting against LPS-caused
infections and allowing for the rational design of novel antisepsis
drugs, vaccines and LPS sequestration and detection methods. Molecular
dynamics (MD) simulations, which are understood as being a computational
microscope, have proven to be of significant value to understand LPS-related
phenomena, driving and optimizing experimental research studies. In
this work, a comprehensive review on the methods that can be combined
with MD simulations, recently applied in LPS research, is provided.
We focus especially on both enhanced sampling methods, which enable
the exploration of more complex systems and access to larger time
scales, and free energy calculation approaches. Thereby, apart from
outlining several strategies for surmounting LPS-caused infections,
this work reports the current state-of-the-art of the methods applied
with MD simulations for moving a step forward in the development of
such strategies.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Arantza Basauri
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Marcos Fallanza
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| |
Collapse
|
22
|
Yin W, Ling Z, Dong Y, Qiao L, Shen Y, Liu Z, Wu Y, Li W, Zhang R, Walsh TR, Dai C, Li J, Yang H, Liu D, Wang Y, Gao GF, Shen J. Mobile Colistin Resistance Enzyme MCR-3 Facilitates Bacterial Evasion of Host Phagocytosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101336. [PMID: 34323389 PMCID: PMC8456205 DOI: 10.1002/advs.202101336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/12/2021] [Indexed: 05/10/2023]
Abstract
Mobile colistin resistance enzyme MCR-3 is a phosphoethanolamine transferase modifying lipid A in Gram-negative bacteria. MCR-3 generally mediates low-level (≤8 mg L-1 ) colistin resistance among Enterobacteriaceae, but occasionally confers high-level (>128 mg L-1 ) resistance in aeromonads. Herein, it is determined that MCR-3, together with another lipid A modification mediated by the arnBCADTEF operon, may be responsible for high-level colistin resistance in aeromonads. Lipid A is the critical site of pathogens for Toll-like receptor 4 recognizing. However, it is unknown whether or how MCR-3-mediated lipid A modification affects the host immune response. Compared with the wild-type strains, increased mortality is observed in mice intraperitoneally-infected with mcr-3-positive Aeromonas salmonicida and Escherichia coli strains, along with sepsis symptoms. Further, mcr-3-positive strains show decreased clearance rates than wild-type strains, leading to bacterial accumulation in organs. The increased mortality is tightly associated with the increased tissue hypoxia, injury, and post-inflammation. MCR-3 expression also impairs phagocytosis efficiency both in vivo and in vitro, contributing to the increased persistence of mcr-3-positive bacteria in tissues compared with parental strains. This study, for the first time, reveals a dual function of MCR-3 in bacterial resistance and pathogenicity, which calls for caution in treating the infections caused by mcr-positive pathogens.
Collapse
Affiliation(s)
- Wenjuan Yin
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- College of Basic Medical ScienceKey Laboratory of Pathogenesis Mechanism and Control of Inflammatory‐Autoimmune Diseases of Hebei ProvinceHebei UniversityBaoding071002China
| | - Zhuoren Ling
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yanjun Dong
- Department of Basic Veterinary MedicineCollege of Veterinary MedicineChina Agricultural UniversityHaidianBeijing100193China
| | - Lu Qiao
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yingbo Shen
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences (CAS)Beijing100101China
| | - Zhihai Liu
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Agricultural Bio‐Pharmaceutical LaboratoryCollege of Chemistry and Pharmaceutical SciencesQingdao Agricultural UniversityQingdao266109China
| | - Yifan Wu
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Wan Li
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang UniversityZhejiang UniversityHangzhou310009China
| | | | - Chongshan Dai
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Li
- State Key Laboratory of Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionChangpingBeijing102206China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk AssessmentChina National Center for Food Safety Risk AssessmentNo. 7 Panjiayuan NanliBeijing100021China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences (CAS)Beijing100101China
- College of Veterinary MedicineChina Agricultural UniversityHaidianBeijing100193China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food SafetyCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
23
|
Studying the surfaces of bacteria using neutron scattering: finding new openings for antibiotics. Biochem Soc Trans 2021; 48:2139-2149. [PMID: 33005925 PMCID: PMC7609035 DOI: 10.1042/bst20200320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
The use of neutrons as a scattering probe to investigate biological membranes has steadily grown in the past three decades, shedding light on the structure and behaviour of this ubiquitous and fundamental biological barrier. Meanwhile, the rise of antibiotic resistance has catalysed a renewed interest in understanding the mechanisms underlying the dynamics of antibiotics interaction with the bacterial cell envelope. It is widely recognised that the key reason behind the remarkable success of Gram-negative pathogens in developing antibiotic resistance lies in the effectiveness of their outer membrane (OM) in defending the cell from antibacterial compounds. Critical to its function, the highly asymmetric lipid distribution between the inner and outer bilayer leaflets of the OM, adds an extra level of complexity to the study of this crucial defence barrier. Here we review the opportunities offered by neutron scattering techniques, in particular reflectometry, to provide structural information on the interactions of antimicrobials with in vitro models of the OM. The differential sensitivity of neutrons towards hydrogen and deuterium makes them a unique probe to study the structure and behaviour of asymmetric membranes. Molecular-level understanding of the interactions between antimicrobials and the Gram-negative OM provides valuable insights that can aid drug development and broaden our knowledge of this critically important biological barrier.
Collapse
|
24
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
25
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
26
|
Effects of sub-lethal doses of nisin on the virulence of Salmonella enterica in Galleria mellonella larvae. Res Microbiol 2021; 172:103836. [PMID: 34029676 DOI: 10.1016/j.resmic.2021.103836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/27/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022]
Abstract
Salmonella enterica is a pathogen that induces self-limiting gastroenteritis and is of worldwide concern. Nisin, an antimicrobial peptide, has emerged as an alternative for the control of microbial growth but its effect on the virulence of pathogenic bacteria is not yet well-explored. This work aimed to evaluate the virulence of S. enterica in the presence of sub-inhibitory nisin using the experimental model Galleria mellonella. Sub-inhibitory concentrations of nisin of 11.72 and 46.88 μM did not affect the cellular viability of S. enterica but promoted changes in gene expression within 1 h of treatment, with increases of up to 3-fold of pagC, 1.8-fold of invA and 2.3-fold of invF. Larvae of G. mellonella inoculated with S. enterica combined with nisin at 46.88 μM presented mortality, and TL50 noticeably increased to 50% and 80% at 24 and 48 h post-infection, respectively. Defence responses, such as melanisation, nodulation, pseudopodia, immune response, and expression of defence proteins of the larvae G. mellonella were enhanced when the treatments with S. enterica were combined with 11.72 or 46.88 μM nisin. These results show an increase in virulence of S. enterica by sub-MIC concentration of nisin that needs to be explored.
Collapse
|
27
|
Zeth K, Sancho-Vaello E. Structural Plasticity of LL-37 Indicates Elaborate Functional Adaptation Mechanisms to Bacterial Target Structures. Int J Mol Sci 2021; 22:ijms22105200. [PMID: 34068993 PMCID: PMC8156758 DOI: 10.3390/ijms22105200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The human cathelicidin LL-37 is a multifunctional peptide of the human innate immune system. Among the various functions of LL-37, its antimicrobial activity is important in controlling the microorganisms of the human body. The target molecules of LL-37 in bacteria include membrane lipids, lipopolysaccharides (LPS), lipoteichoic acid (LTA), proteins, DNA and RNA. In this mini-review, we summarize the entity of LL-37 structural data determined over the last 15 years and specifically discuss features implicated in the interactions with lipid-like molecules. For this purpose, we discuss partial and full-length structures of LL-37 determined in the presence of membrane-mimicking detergents. This constantly growing structural database is now composed of monomers, dimers, tetramers, and fiber-like structures. The diversity of these structures underlines an unexpected plasticity and highlights the conformational and oligomeric adaptability of LL-37 necessary to target different molecular scaffolds. The recent co-crystal structures of LL-37 in complex with detergents are particularly useful to understand how these molecules mimic lipids and LPS to induce oligomerization and fibrillation. Defined detergent binding sites provide deep insights into a new class of peptide scaffolds, widening our view on the fascinating world of the LL-37 structural factotum. Together, the new structures in their evolutionary context allow for the assignment of functionally conserved residues in oligomerization and target interactions. Conserved phenylalanine and arginine residues primarily mediate those interactions with lipids and LPS. The interactions with macromolecules such as proteins or DNA remain largely unexplored and open a field for future studies aimed at structures of LL-37 complexes. These complexes will then allow for the structure-based rational design of LL-37-derived peptides with improved antibiotic properties.
Collapse
Affiliation(s)
- Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Correspondence: (K.Z.); (E.S.-V.); Tel.: +45-604-666-29 (K.Z.)
| | - Enea Sancho-Vaello
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Correspondence: (K.Z.); (E.S.-V.); Tel.: +45-604-666-29 (K.Z.)
| |
Collapse
|
28
|
Arunima A, Swain SK, Ray S, Prusty BK, Suar M. RpoS-regulated SEN1538 gene promotes resistance to stress and influences Salmonella enterica serovar enteritidis virulence. Virulence 2020; 11:295-314. [PMID: 32193977 PMCID: PMC7161692 DOI: 10.1080/21505594.2020.1743540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis; wild type (WT)) is a major cause of foodborne illness globally. The ability of this pathogen to survive stress inside and outside the host, such as encountering antimicrobial peptides and heat stress, determines the efficiency of enteric infection. These stressors concertedly trigger virulence factors encoded on Salmonella pathogenicity islands (SPIs). Although RpoS is a well-known central transcriptional stress and virulence regulator, functional information regarding the genes of the regulon is currently limited. Here, we identified SEN1538 as a conserved RpoS-regulated gene belonging to the KGG protein superfamily. We further assessed its role in pathogenic stress responses and virulence. When SEN1538 was deleted (Δ1538), the pathogen showed reduced survival during antimicrobial peptide introduction and heat stress at 55°C compared to WT. The mutant displayed 70% reduced invasion in the HCT116 colon epithelial cell line, 5-fold attenuated phagocytic survival in RAW264.7 cells, and downregulation of several SPI-1 and SPI-2 genes encoding the three secretion system apparatus and effector proteins. Δ1538 also showed decreased virulence compared to WT, demonstrated by its reduced bacterial counts in the feces, mLN, spleen, and cecum of C57BL/6 mice. Comparative transcriptomic analysis of Δ1538 against WT revealed 111 differentially regulated genes, 103 of which were downregulated (fold change ≤ -1.5, P < 0.05). The majority of these genes were in clusters for metabolism, transporters, and pathogenesis, driving pathogenic stress responses and virulence. SEN1538 is, therefore, an important virulence determinant contributing to the resilience of S. Enteritidis to stress factors during infection.
Collapse
Affiliation(s)
- Aryashree Arunima
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Sunil Kumar Swain
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Shilpa Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
29
|
Andreev K, Martynowycz MW, Kuzmenko I, Bu W, Hall SB, Gidalevitz D. Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13439-13447. [PMID: 33080138 PMCID: PMC8754419 DOI: 10.1021/acs.langmuir.0c01813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
When compressed by the shrinking alveolar surface area during exhalation, films of pulmonary surfactant in situ reduce surface tension to levels at which surfactant monolayers collapse from the surface in vitro. Vesicles of pulmonary surfactant added below these monolayers slow collapse. X-ray scattering here determined the structural changes induced by the added vesicles. Grazing incidence X-ray diffraction on monolayers of extracted calf surfactant detected an ordered phase. Mixtures of dipalmitoyl phosphatidylcholine and cholesterol, but not the phospholipid alone, mimic that structure. At concentrations that stabilize the monolayers, vesicles in the subphase had no effect on the unit cell, and X-ray reflection showed that the film remained monomolecular. The added vesicles, however, produced a concentration-dependent increase in the diffracted intensity. These results suggest that the enhanced resistance to collapse results from enlargement by the additional material of the ordered phase.
Collapse
Affiliation(s)
- Konstantin Andreev
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Michael W Martynowycz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Wei Bu
- The Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637, United States
| | - Stephen B Hall
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David Gidalevitz
- Department of Physics, Center for Molecular Study of Condensed Soft Matter (μCoSM), Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
30
|
Madhumanchi S, Suedee R, Kaewpiboon S, Srichana T, Khalil R, Ul-Haq Z. Effect of sodium deoxycholate sulfate on outer membrane permeability and neutralization of bacterial lipopolysaccharides by polymyxin B formulations. Int J Pharm 2020; 581:119265. [PMID: 32217155 DOI: 10.1016/j.ijpharm.2020.119265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
We demonstrated binding interactions of polymyxin B (PMB), PMB formulations in the mole ratios of 1:2 and 1:3 of PMB:sodium deoxycholate sulfate (SDCS) and a commercial PMB formulation (CPMB) with lipopolysaccharides (LPS). The 1:2 PMB formulation (78.5-135.2 nM) exhibited a lower number of binding sites to the tested LPS compared to CPMB (112.6-140.9 nM) whereas 1:3 PMB formulation exhibited a higher number of binding sites (143.9-340.2 nM). Similarly, in the presence of LPS, the 1:2 PMB formulation (163.8-221.4 nm) exhibited smaller particle sizes compared to PMB, CPMB and 1:3 PMB formulation (248.8-603.5 nm). Molecular docking simulation suggested that the fatty acyl tails of LPS wrap together to produce a pseudo-globular structure of PMB-LPS complex, and among those 1:2 PMB formulation formed a more stable structure. The primary forces behind this complex are hydrogen bonds and salt bridges among the LPS, PMB, and SDCS. This study revealed that the PMB, CPMB, and PMB formulations inserted into the LPS micelles to disrupt the LPS membrane, whereas the SDCS may induce aggregation. The 1:2 PMB formulation also had higher bacterial uptake than other PMB formulations. The 1:2 PMB formulation neutralized the LPS micelles and was effective against Escherichia coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Sreenu Madhumanchi
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Roongnapa Suedee
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sunisa Kaewpiboon
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Ruqaiya Khalil
- Computational Drug Design Lab, Dr. Panjwani Center for Molecular Medicine and Drug, Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Computational Drug Design Lab, Dr. Panjwani Center for Molecular Medicine and Drug, Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
31
|
Neshani A, Sedighian H, Mirhosseini SA, Ghazvini K, Zare H, Jahangiri A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb Pathog 2020; 146:104238. [PMID: 32387392 DOI: 10.1016/j.micpath.2020.104238] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND With the increasing rate of antibiotic resistance in Acinetobacter, the World Health Organization introduced the carbapenem-resistant isolates in the priority pathogens list for which innovative new treatments are urgently needed. Antimicrobial peptides (AMPs) are one of the antimicrobial agents with high potential to produce new anti-Acinetobacter drugs. This review aims to summarize recent advances and compare AMPs with anti-Acinetobacter baumannii activity. METHODS Active AMPs against Acinetobacter were considered, and essential features, including structure, mechanism of action, anti-A. baumannii potent, and other prominent characteristics, were investigated and compared to each other. In this regard, the Google Scholar search engine and databases of PubMed, Scopus, and Web of Science were used. RESULTS Forty-six anti-Acinetobacter peptides were identified and classified into ten groups: Cathelicidins, Defensins, Frog AMPs, Melittin, Cecropins, Mastoparan, Histatins, Dermcidins, Tachyplesins, and computationally designed AMPs. According to the Minimum Inhibitory Concentration (MIC) reports, six peptides of Melittin, Histatin-8, Omega76, AM-CATH36, Hymenochirin, and Mastoparan have the highest anti-A. baumannii power against sensitive and antibiotic-resistant isolates. All anti-Acinetobacter peptides except Dermcidin have a net positive charge. Most of these peptides have alpha-helical structure; however, β-sheet and other structures have been observed among them. The mechanism of action of these antimicrobial agents is divided into two categories of membrane-based and intracellular target-based attack. CONCLUSION Evidence from this review indicates that AMPs would be likely among the main anti-A. baumannii drugs in the post-antibiotic era. Also, the application of computer science to increase anti-A. baumannii activity and reduce toxicity could be helpful.
Collapse
Affiliation(s)
- Alireza Neshani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosna Zare
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Rice A, Rooney MT, Greenwood AI, Cotten ML, Wereszczynski J. Lipopolysaccharide Simulations Are Sensitive to Phosphate Charge and Ion Parameterization. J Chem Theory Comput 2020; 16:1806-1815. [PMID: 32023054 DOI: 10.1021/acs.jctc.9b00868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The high proportion of lipopolysaccharide (LPS) molecules in the outer membrane of Gram-negative bacteria makes it a highly effective barrier to small molecules, antibiotic drugs, and other antimicrobial agents. Given this vital role in protecting bacteria from potentially hostile environments, simulations of LPS bilayers and outer membrane systems represent a critical tool for understanding the mechanisms of bacterial resistance and the development of new antibiotic compounds that circumvent these defenses. The basis of these simulations is parameterizations of LPS, which have been developed for all major molecular dynamics force fields. However, these parameterizations differ in both the protonation state of LPS and how LPS membranes behave in the presence of various ion species. To address these discrepancies and understand the effects of phosphate charge on bilayer properties, simulations were performed for multiple distinct LPS chemotypes with different ion parameterizations in both protonated or deprotonated lipid A states. These simulations show that bilayer properties, such as the area per lipid and inter-lipid hydrogen bonding, are highly influenced by the choice of phosphate group charges, cation type, and ion parameterization, with protonated LPS and monovalent cations with modified nonbonded parameters providing the best match to the experiments. Additionally, alchemical free energy simulations were performed to determine theoretical pKa values for LPS and subsequently validated by 31P solid-state nuclear magnetic resonance experiments. Results from these complementary computational and experimental studies demonstrate that the protonated state dominates at physiological pH, contrary to the deprotonated form modeled by many LPS force fields. Overall, these results highlight the sensitivity of LPS simulations to phosphate charge and ion parameters while offering recommendations for how existing models should be updated for consistency between force fields as well as to best match experiments.
Collapse
Affiliation(s)
- Amy Rice
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Mary T Rooney
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Alexander I Greenwood
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States.,Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Myriam L Cotten
- Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
33
|
LL-37: Review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|