1
|
Mishra A, Qamar F, Ashrafi K, Fatima S, Samim M, Mohmmed A, Abdin MZ. Emerging nanotechnology-driven drug delivery solutions for malaria: Addressing drug resistance and improving therapeutic success. Int J Pharm 2025; 670:125163. [PMID: 39788401 DOI: 10.1016/j.ijpharm.2024.125163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Malaria remains the fifth deadliest parasitic infection worldwide, despite significant advancements in technology. A major challenge in combating this disease lies in the growing resistance of malaria parasites to antimalarial drugs and insect vectors to insecticides. The emerging inefficacy of artemisinin-based combination therapies (ACTs) further exacerbates the issue. Additionally, the absence of a highly effective malaria vaccine continues to be a significant obstacle. The complex biology of the malaria parasite and the multifaceted nature of the disease contribute to these challenges. Recent advancements in nanotechnology offer promising solutions in malaria treatment, providing benefits such as improved drug stability, sustained release, and targeted delivery to specific cells. Encapsulation technology, in particular, addresses critical limitations like poor solubility, low bioavailability, and frequent dosing requirements. Thus, this review explores innovative strategies to combat malaria, focusing on nanotechnology-based antimalarial formulations and their evaluation in vitro and in vivo. Moreover, the study highlights the SAR of potent antimalarial compounds, molecular markers linked with drug resistance, ACTs, advocates for eco-friendly approaches, nanotechnology-driven vaccines, and new antimalarial agents with their specific targets.
Collapse
Affiliation(s)
- Anuradha Mishra
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Firdaus Qamar
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Kudsiya Ashrafi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Fatima
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Nayak S, Peto TJ, Kucharski M, Tripura R, Callery JJ, Quang Huy DT, Gendrot M, Lek D, Nghia HDT, van der Pluijm RW, Dong N, Long LT, Vongpromek R, Rekol H, Hoang Chau N, Miotto O, Mukaka M, Dhorda M, von Seidlein L, Imwong M, Roca X, Day NPJ, White NJ, Dondorp AM, Bozdech Z. Population genomics and transcriptomics of Plasmodium falciparum in Cambodia and Vietnam uncover key components of the artemisinin resistance genetic background. Nat Commun 2024; 15:10625. [PMID: 39639029 PMCID: PMC11621345 DOI: 10.1038/s41467-024-54915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The emergence of Plasmodium falciparum parasites resistant to artemisinins compromises the efficacy of Artemisinin Combination Therapies (ACTs), the global first-line malaria treatment. Artemisinin resistance is a complex genetic trait in which nonsynonymous SNPs in PfK13 cooperate with other genetic variations. Here, we present population genomic/transcriptomic analyses of P. falciparum collected from patients with uncomplicated malaria in Cambodia and Vietnam between 2018 and 2020. Besides the PfK13 SNPs, several polymorphisms, including nonsynonymous SNPs (N1131I and N821K) in PfRad5 and an intronic SNP in PfWD11 (WD40 repeat-containing protein on chromosome 11), appear to be associated with artemisinin resistance, possibly as new markers. There is also a defined set of genes whose steady-state levels of mRNA and/or splice variants or antisense transcripts correlate with artemisinin resistance at the base level. In vivo transcriptional responses to artemisinins indicate the resistant parasite's capacity to decelerate its intraerythrocytic developmental cycle (IDC), which can contribute to the resistant phenotype. During this response, PfRAD5 and PfWD11 upregulate their respective alternatively/aberrantly spliced isoforms, suggesting their contribution to the protective response to artemisinins. PfRAD5 and PfWD11 appear under selective pressure in the Greater Mekong Sub-region over the last decade, suggesting their role in the genetic background of the artemisinin resistance.
Collapse
Affiliation(s)
- Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James J Callery
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Duong Tien Quang Huy
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dysoley Lek
- Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- National Institute for Public Health, Phnom Penh, Cambodia
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, Paris, France
| | - Nguyen Dong
- Khanh Hoa Hospital for Tropical diseases, Ho Chi Minh City, Khanh Hoa province, Vietnam
| | - Le Thanh Long
- Phuoc Long Hospital, Ho Chi Minh City, Binh Phuoc province, Vietnam
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Huy Rekol
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Kattenberg JH, Mutsaers M, Nguyen VH, Nguyen THN, Umugwaneza A, Lara-Escandell M, Nguyen XX, Nguyen THB, Rosanas-Urgell A. Genetic surveillance shows spread of ACT resistance during period of malaria decline in Vietnam (2018-2020). Front Genet 2024; 15:1478706. [PMID: 39687741 PMCID: PMC11646998 DOI: 10.3389/fgene.2024.1478706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Vietnam's goal to eliminate malaria by 2030 is challenged by the further spread of drug-resistant Plasmodium falciparum malaria to key antimalarials, particularly dihydroartemisinin-piperaquine (DHA-PPQ). Methods The custom targeted NGS amplicon sequencing assay, AmpliSeq Pf Vietnam v2, targeting drug resistance, population genetic- and other markers, was applied to detect genetic diversity and resistance profiles in samples from 8 provinces in Vietnam (n = 354), in a period of steep decline of incidence (2018-2020). Variants in 14 putative resistance genes, including P. falciparum Kelch 13 (PfK13) and P. falciparum chloroquine resistance transporter (Pfcrt), were analyzed and within-country parasite diversity was evaluated. Other targets included KEL1-lineage markers and diagnostic markers of Pfhrp2/3. Results A concerning level of DHA-PPQ resistance was detected. The C580Y mutation in PfK13 was found in nearly 80% of recent samples, a significant rise from previous data. Vietnam has experienced a significant challenge with the spread of DHA-PPQ resistant malaria parasites, particularly in the provinces of Binh Phuoc and Gia Lai. Resistance spread to high levels in Binh Thuan prior to the country-wide treatment policy change from DHA-PPQ to pyronadine-artesunate (PA). A complex picture of PPQ-resistance dynamics was observed, with an increase of PPQ-resistance associated Pfcrt mutations, indicating an evolutionary response to antimalarial pressure. Additionally, the compensatory mutation C258W in Pfcrt, which increases chloroquine (CQ) resistance while reversing PPQ resistance, is emerging in Gia Lai following the adoption of PA as the first-line treatment. This study found high levels of multidrug resistance, with over 70% of parasites in 6 out of 8 provinces showing significant sulfadoxine-pyrimethamine (SP) resistance and widespread chloroquine-resistant Pfcrt haplotypes. We also report an absence of P. falciparum histidine rich protein 2 and 3 (Pfhrp2/3) gene deletions, ensuring the continued reliability of HRP2/3-based rapid diagnostic tests. P. falciparum populations in Vietnam are becoming more isolated, with clonal populations showing high geographical clustering by province. The central highlands, particularly Gia Lai province, have the highest residual malaria burden but exhibit low diversity and clonal populations, likely due to the pressures from the antimalarial drugs and targeted national malaria control program (NMCP) efforts. Discussion In conclusion, examining a broad panel of full-length resistance genes and SNPs provided high-resolution insights into genetic diversity and resistance evolution in Vietnam, offering valuable information to inform local treatment and intervention strategies.
Collapse
Affiliation(s)
| | - Mathijs Mutsaers
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Van Hong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Hong Ngoc Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Arlette Umugwaneza
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maria Lara-Escandell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xuan Xa Nguyen
- Regional Artemisinin Initiative, RAI project, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Huong Binh Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
4
|
Rosenthal MR, Vijayrajratnam S, Firestone TM, Ng CL. Enhanced cell stress response and protein degradation capacity underlie artemisinin resistance in Plasmodium falciparum. mSphere 2024; 9:e0037124. [PMID: 39436072 PMCID: PMC11580438 DOI: 10.1128/msphere.00371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Malaria remains a global health burden, killing over half a million people each year. Decreased therapeutic efficacy to artemisinin, the most efficacious antimalarial, has been detected in sub-Saharan Africa, a worrying fact given that over 90% of deaths occur on this continent. Mutations in Kelch13 are the most well-established molecular marker for artemisinin resistance, but these do not explain all artemisinin-resistant isolates. Understanding the biological underpinnings of drug resistance is key to curbing the emergence and spread of artemisinin resistance. Artemisinin-mediated non-specific alkylation leads to the accumulation of misfolded and damaged proteins and activation of the parasite unfolded protein response (UPR). In addition, the parasite proteasome is vital to artemisinin resistance, as we have previously shown that chemical inhibition of the proteasome or mutations in the β2 proteasome subunit increase parasite susceptibility to dihydroartemisinin (DHA), the active metabolite of artemisinins. Here, we investigate parasites with mutations at the Kelch13 and/or 19S and 20S proteasome subunits with regard to UPR regulation and proteasome activity in the context of artemisinin resistance. Our data show that perturbing parasite proteostasis kills parasites, early parasite UPR signaling dictates DHA survival outcomes, and DHA susceptibility correlates with impairment of proteasome-mediated protein degradation. Importantly, we show that functional proteasomes are required for artemisinin resistance in a Kelch13-independent manner, and compound-selective proteasome inhibition demonstrates why artemisinin-resistant Kelch13 mutants remain susceptible to the related antimalarial peroxide OZ439. These data provide further evidence for targeting the parasite proteasome and UPR to overcome existing artemisinin resistance.IMPORTANCEDecreased therapeutic efficacy represents a major barrier to malaria treatment control strategies. The malaria proteasome and accompanying unfolded protein response are crucial to artemisinin resistance, revealing novel antimalarial therapeutic strategies.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhithasri Vijayrajratnam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tessa M. Firestone
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Caroline L. Ng
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biology, University of Omaha, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Alghamdi JM, Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Recent Advances in the Treatment of Malaria. Pharmaceutics 2024; 16:1416. [PMID: 39598540 PMCID: PMC11597227 DOI: 10.3390/pharmaceutics16111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Malaria is still one of the major global health challenges affecting millions annually, particularly in non-Mediterranean Africa and Southeast Asia. Over the past two decades, substantial progress has been made in reducing malaria-related morbidity and mortality, primarily due to advancements in antimalarial therapeutics. This review provides a comprehensive overview of recent developments in malaria treatment, focusing on the evolution of drug therapies, mechanisms of action, and emerging resistance patterns. The cornerstone of current treatment strategies is artemisinin-based combination therapies (ACTs), which have proven highly effective against P. falciparum and P. vivax, the most prevalent malaria-causing parasites. However, the onset of artemisinin resistance, particularly in Southeast Asian countries, poses a significant threat to these gains. Additionally, other antimalarial classes, including quinine derivatives, 8-aminoquinolines, and antifolate drugs, are examined for their efficacy, resistance mechanisms, and future potential. This review also discusses the challenges associated with drug resistance, the genetic underpinnings of resistance in malaria parasites, and the implications for future treatment protocols. Furthermore, the review examines combinational therapies, such as triple artemisinin combination therapies (TACTs), and vaccines that are approved or in development to circumvent resistance issues. The need for continuous surveillance, innovative therapeutic strategies, and advances in novel antimalarial therapeutic agents is emphasized to sustain and further progress in the control of malaria and its eventual eradication.
Collapse
Affiliation(s)
- Jawaher M. Alghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh 13242, Saudi Arabia;
| | - Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
6
|
Kucharski M, Nayak S, Gendrot M, Dondorp AM, Bozdech Z. Peeling the onion: how complex is the artemisinin resistance genetic trait of malaria parasites? Trends Parasitol 2024; 40:970-986. [PMID: 39358163 DOI: 10.1016/j.pt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The genetics of Plasmodium as an intracellular, mostly haploid, sexually reproducing, eukaryotic organism with a complex life cycle, presents unprecedented challenges in studying drug resistance. This article summarizes current knowledge on the genetic basis of artemisinin resistance (AR) - a main component of current drug therapies for falciparum malaria. Although centered on nonsynonymous single-nucleotide polymorphisms (nsSNPs), we describe multifaceted resistance mechanisms as part of a complex, cumulative genetic trait that involves regulation of expression by a wide array of polymorphisms in noncoding regions. These genetic variations alter transcriptome profiles linked to Plasmodium's development and population dynamics, ultimately influencing the emergence and spread of the resistance.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore; Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Xie Y, Zhang Y, Lin F, Chen X, Xing J. The effect of malaria-induced alteration of metabolism on piperaquine disposition in Plasmodium yoelii infected mice and predicted in malaria patients. Int J Antimicrob Agents 2024; 64:107209. [PMID: 38761871 DOI: 10.1016/j.ijantimicag.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVES Malaria-induced alteration of physiological parameters and pharmacokinetic properties of antimalarial drugs may be clinically relevant. Whether and how malaria alters the disposition of piperaquine (PQ) was investigated in this study. METHODS The effect of malaria on drug metabolism-related enzymes and PQ pharmacokinetic profiles was studied in Plasmodium yoelii-infected mice in vitro/in vivo. Whether the malaria effect was clinically relevant for PQ was evaluated using a validated physiologically-based pharmacokinetic model with malaria-specific scalars obtained in mice. RESULTS The infection led to a higher blood-to-plasma partitioning (Rbp) for PQ, which was concentration-dependent and correlated to parasitemia. No significant change in plasma protein binding was found for PQ. Drug metabolism-related genes (CYPs/UDP-glucuronosyltransferase/nuclear receptor, except for CYP2a5) were downregulated in infected mice, especially at the acute phase. The plasma oral clearances (CL/F) of three probe substrates for CYP enzymes were significantly decreased (by ≥35.9%) in mice even with moderate infection. The validated physiologically-based pharmacokinetic model indicated that the hepatic clearance (CLH) of PQ was the determinant of its simulated CL/F, which was predicted to slightly decrease (by ≤23.6%) in severely infected mice but not in malaria patients. The result fitted well with the plasma pharmacokinetics of PQ in infected mice and literature data on malaria patients. The blood clearance of PQ was much lower than its plasma clearance due to its high Rbp. CONCLUSIONS The malaria-induced alteration of drug metabolism was substrate-dependent, and its impact on the disposition of PQ and maybe other long-acting aminoquinoline antimalarials was not expected to be clinically relevant.
Collapse
Affiliation(s)
- Yuewu Xie
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yifan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyue Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
8
|
Pierreux J, Bottieau E, Florence E, Maniewski U, Bruggemans A, Malotaux J, Martin C, Cox J, Konopnicki D, Guetens P, Verschueren J, Coppens J, Van Esbroeck M, Mutsaers M, Rosanas-Urgell A. Failure of artemether-lumefantrine therapy in travellers returning to Belgium with Plasmodium falciparum malaria: an observational case series with genomic analysis. J Travel Med 2024; 31:taad165. [PMID: 38157311 DOI: 10.1093/jtm/taad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Failure of artemisinin-based combination therapy is increasingly reported in patients with Plasmodium falciparum malaria in sub-Saharan Africa. We aimed to describe the clinical and genomic characteristics of recent cases of P. falciparum malaria failing artemether-lumefantrine in Belgium. METHODS Travel-related cases of malaria confirmed at the national reference laboratory of the Institute of Tropical Medicine, Antwerp, Belgium, were reviewed. All cases for which attending clinicians reported persistence (beyond Day 3 post-treatment initiation, i.e. early failure) or recrudescence (from Day 7 to 42, i.e. late failure) of P. falciparum parasites despite adequate drug intake were analysed. Both initial and persistent/recurrent samples were submitted to next generation sequencing to investigate resistance-conferring mutations. RESULTS From July 2022 to June 2023, eight P. falciparum cases of failure with artemether-lumefantrine therapy were reported (early failure = 1; late failure = 7). All travellers were returning from sub-Saharan Africa, most (6/8) after a trip to visit friends and relatives. PfKelch13 (PF3D7_1343700) mutations associated with resistance to artemisinin were found in two travellers returning from East Africa, including the validated marker R561H in the patient with early failure and the candidate marker A675V in a patient with late failure. Additional mutations were detected that could contribute to decreased susceptibility to artemisinin in another three cases, lumefantrine in six cases and proguanil in all eight participants. Various regimens were used to treat the persistent/recrudescent cases, with favourable outcome. CONCLUSION Within a 12-month period, we investigated eight travellers returning from sub-Saharan Africa with P. falciparum malaria and in whom artemether-lumefantrine failure was documented. Mutations conferring resistance to antimalarials were found in all analysed blood samples, especially against lumefantrine and proguanil, but also artemisinin. There is a pressing need for systematic genomic surveillance of resistance to antimalarials in international travellers with P. falciparum malaria, especially those experiencing treatment failure.
Collapse
Affiliation(s)
- Jan Pierreux
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Eric Florence
- Department of General Internal Medicine and Infectious Diseases, University Hospital of Antwerp, Antwerp 2000, Belgium
| | - Ula Maniewski
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Anne Bruggemans
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Jiska Malotaux
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent 9000, Belgium
| | - Charlotte Martin
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Janneke Cox
- Department of Infectious Diseases and Immunity, Jessa Hospital, Hasselt 3500, Belgium
- Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt 3500, Belgium
| | - Deborah Konopnicki
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels 1000, Belgium
| | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Jacob Verschueren
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Jasmine Coppens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Mathijs Mutsaers
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
| |
Collapse
|
9
|
Hsu HC, Li D, Zhan W, Ye J, Liu YJ, Leung A, Qin J, Crespo B, Gamo FJ, Zhang H, Cui L, Roth A, Kirkman LA, Li H, Lin G. Structures revealing mechanisms of resistance and collateral sensitivity of Plasmodium falciparum to proteasome inhibitors. Nat Commun 2023; 14:8302. [PMID: 38097652 PMCID: PMC10721928 DOI: 10.1038/s41467-023-44077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The proteasome of the malaria parasite Plasmodium falciparum (Pf20S) is an advantageous drug target because its inhibition kills P. falciparum in multiple stages of its life cycle and synergizes with artemisinins. We recently developed a macrocyclic peptide, TDI-8304, that is highly selective for Pf20S over human proteasomes and is potent in vitro and in vivo against P. falciparum. A mutation in the Pf20S β6 subunit, A117D, confers resistance to TDI-8304, yet enhances both enzyme inhibition and anti-parasite activity of a tripeptide vinyl sulfone β2 inhibitor, WLW-vs. Here we present the high-resolution cryo-EM structures of Pf20S with TDI-8304, of human constitutive proteasome with TDI-8304, and of Pf20Sβ6A117D with WLW-vs that give insights into the species selectivity of TDI-8304, resistance to it, and the collateral sensitivity associated with resistance, including that TDI-8304 binds β2 and β5 in wild type Pf20S as well as WLW-vs binds β2 and β5 in Pf20Sβ6A117D. We further show that TDI-8304 kills P. falciparum as quickly as chloroquine and artemisinin and is active against P. cynomolgi at the liver stage. This increases interest in using these structures to facilitate the development of Pf20S inhibitors that target multiple proteasome subunits and limit the emergence of resistance.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Daqiang Li
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jianxiang Ye
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Yi Jing Liu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Annie Leung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Benigno Crespo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Francisco-Javier Gamo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, The Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, 20910, MD, USA
| | - Laura A Kirkman
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
11
|
Chen J, Gao P, Xiao W, Cheng G, Krishna S, Wang J, Wong YK, Wang C, Gu L, Yang DH, Wang J. Multi-omics dissection of stage-specific artemisinin tolerance mechanisms in Kelch13-mutant Plasmodium falciparum. Drug Resist Updat 2023; 70:100978. [PMID: 37385107 DOI: 10.1016/j.drup.2023.100978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
AIMS We investigated the stage-specific mechanisms of partial resistance to artemisinin (ART, an antimalarial drug) in Plasmodium falciparum (P. falciparum) carrying the Kelch13 C580Y mutation. METHODS Using fluorescence labeling and activity-based protein profiling, we systematically profile the ART activation levels in P. falciparum during the entire intra-erythrocytic developmental cycle (IDC), and determined the ART-targets profile of the ART-sensitive and -resistant strains at different stages. We retrieved and integrated datasets of single-cell transcriptomics and label-free proteomics across three IDC stages of wild-type P. falciparum. We also employed lipidomics to validate lipid metabolic reprogramming in the resistant strain. RESULTS The activation and expression patterns of genes and proteins of ART-targets in both ART-sensitive and resistant strains varied at different stages and periods of P. falciparum development, with the late trophozoite stage harboring the largest number of ART targets. We identified and validated 36 overlapping targets, such as GAPDH, EGF-1a, and SpdSyn, during the IDC stages in both strains. We revealed the ART-insensitivity of fatty acid-associated activities in the partially resistant strain at both the early ring and early trophozoite stages. CONCLUSIONS Our multi-omics strategies provide novel insights into the mechanisms of ART partial resistance in Kelch13 mutant P. falciparum, demonstrating the stage-specific interaction between ART and malaria parasites.
Collapse
Affiliation(s)
- Jiayun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Critical Medicine, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Peng Gao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Guangqing Cheng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sanjeev Krishna
- Clinical Academic Group in Institute for Infection & Immunity, St George's University of London, London, United Kingdom; St George's University Hospitals NHS Foundation Trust, United Kingdom; Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Jianyou Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin Kwan Wong
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dong Hua Yang
- New York College of Traditional Chinese Medicine Mineola, United States.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Critical Medicine, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
12
|
Pires CV, Oberstaller J, Wang C, Casandra D, Zhang M, Chawla J, Adapa SR, Otto TD, Ferdig MT, Rayner JC, Jiang RHY, Adams JH. Chemogenomic Profiling of a Plasmodium falciparum Transposon Mutant Library Reveals Shared Effects of Dihydroartemisinin and Bortezomib on Lipid Metabolism and Exported Proteins. Microbiol Spectr 2023; 11:e0501422. [PMID: 37067430 PMCID: PMC10269874 DOI: 10.1128/spectrum.05014-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
The antimalarial activity of the frontline drug artemisinin involves generation of reactive oxygen species (ROS) leading to oxidative damage of parasite proteins. To achieve homeostasis and maintain protein quality control in the overwhelmed parasite, the ubiquitin-proteasome system kicks in. Even though molecular markers for artemisinin resistance like pfkelch13 have been identified, the intricate network of mechanisms driving resistance remains to be elucidated. Here, we report a forward genetic screening strategy that enables a broader identification of genetic factors responsible for altering sensitivity to dihydroartemisinin (DHA) and a proteasome inhibitor, bortezomib (BTZ). Using a library of isogenic piggyBac mutants in P. falciparum, we defined phenotype-genotype associations influencing drug responses and highlighted shared mechanisms between the two processes, which mainly included proteasome-mediated degradation and the lipid metabolism genes. Additional transcriptomic analysis of a DHA/BTZ-sensitive piggyBac mutant showed it is possible to find differences between the two response mechanisms on the specific components for regulation of the exportome. Our results provide further insight into the molecular mechanisms of antimalarial drug resistance. IMPORTANCE Malaria control is seriously threatened by the emergence and spread of Plasmodium falciparum resistance to the leading antimalarial, artemisinin. The potent killing activity of artemisinin results from oxidative damage unleashed by free heme activation released by hemoglobin digestion. Although the ubiquitin-proteasome system is considered critical for parasite survival of this toxicity, the diverse genetic changes linked to artemisinin resistance are complex and, so far, have not included the ubiquitin-proteasome system. In this study, we use a systematic forward genetic approach by screening a library of P. falciparum random piggyBac mutants to decipher the genetic factors driving malaria parasite responses to the oxidative stress caused by antimalarial drugs. This study compares phenotype-genotype associations influencing dihydroartemisinin responses with the proteasome inhibitor bortezomib to delineate the role of ubiquitin-proteasome system. Our study highlights shared and unique pathways from the complex array of molecular processes critical for P. falciparum survival resulting from the oxidative damage of artemisinin.
Collapse
Affiliation(s)
- Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Debora Casandra
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jyotsna Chawla
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, MVLS, University of Glasgow, Glasgow, United Kingdom
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Rays H. Y. Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
14
|
Deni I, Stokes BH, Ward KE, Fairhurst KJ, Pasaje CFA, Yeo T, Akbar S, Park H, Muir R, Bick DS, Zhan W, Zhang H, Liu YJ, Ng CL, Kirkman LA, Almaliti J, Gould AE, Duffey M, O'Donoghue AJ, Uhlemann AC, Niles JC, da Fonseca PCA, Gerwick WH, Lin G, Bogyo M, Fidock DA. Mitigating the risk of antimalarial resistance via covalent dual-subunit inhibition of the Plasmodium proteasome. Cell Chem Biol 2023; 30:470-485.e6. [PMID: 36963402 PMCID: PMC10198959 DOI: 10.1016/j.chembiol.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic β2 and β5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the β5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.
Collapse
Affiliation(s)
- Ioanna Deni
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara H Stokes
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E Ward
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kate J Fairhurst
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tomas Yeo
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shirin Akbar
- School of Molecular Biosciences, University of Glasgow, Glasgow, Scotland, UK
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniella S Bick
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenhu Zhan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Hao Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Jing Liu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Caroline L Ng
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biology, University of Nebraska Omaha, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura A Kirkman
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman, Jordan
| | | | | | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance and Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
15
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
16
|
Coghi P, Yaremenko I, Prommana P, Wu JN, Zhang RL, Ng JPL, Belyakova YY, Law BYK, Radulov PS, Uthaipibull C, Wong VKW, Terent'ev AO. Antimalarial and anticancer activity evaluation of bridged ozonides, aminoperoxides and tetraoxanes. ChemMedChem 2022; 17:e202200328. [PMID: 36045616 DOI: 10.1002/cmdc.202200328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Bridged aminoperoxides, for the first time, were investigated for the in vitro antimalarial activity against the chloroquine-resistant Plasmodium falciparum strain K1 and for their cytotoxic activities against immortalized human normal liver (LO2) and lung (BEAS-2B) cell lines as well as human liver (HepG2) and lung (A549) cancer cell lines. Aminoperoxides exhibit good cytotoxicity against lung A549 cancer cells line. Synthetic ozonides were shown to have high activity against the chloroquine-resistant P. falciparum . A cyclic voltammetry study of peroxides was performed, and most of the compounds did not show a direct correlation in oxidative capacity-activity. Peroxides were analyzed for ROS production to understand their mechanism of action. However, none of the compounds has an impact on ROS generation, suggesting that ozonides induce apoptosis in HepG2 cells through ROS - independent dysfunction pathway.
Collapse
Affiliation(s)
- Paolo Coghi
- Macau University of Science and Technology, State Key Laboratory of Quality Research in Chinese Medicines, Avenida wai long, N/A, macau, MACAU
| | - Ivan Yaremenko
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Department of Chemistry, RUSSIAN FEDERATION
| | - Parichat Prommana
- Biotec: National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), THAILAND
| | - Jia Ning Wu
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Rui Long Zhang
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Jerome P L Ng
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Yulia Yu Belyakova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| | - Betty Yuen Kwan Law
- Macau University of Science and Technology, Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, MACAU
| | - Peter S Radulov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| | - Chairat Uthaipibull
- Biotec: National Center for Genetic Engineering and Biotechnology, ), National Science and Technology Development Agency (NSTDA), THAILAND
| | - Vincent K W Wong
- Macau University of Science and Technology, SKL, avenida wai long, n/a, Macau, MACAU
| | - Alexander O Terent'ev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, RUSSIAN FEDERATION
| |
Collapse
|
17
|
Amado PSM, Jesus AJL, Paixão JA, Fausto R, Cristiano MLS. Unravelling the structure of peroxides with antiparasitic activity: relative impact of a trioxolane or a tetraoxane pharmacophore on the overall molecular structure. Chempluschem 2022; 87:e202200207. [DOI: 10.1002/cplu.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Patrícia S. M. Amado
- University of Algarve Faculty of Science and Technology: Universidade do Algarve Faculdade de Ciencias e Tecnologia Chemistry and Pharmacy PORTUGAL
| | - A. J. Lopes Jesus
- University of Coimbra Faculty of Pharmacy: Universidade de Coimbra Faculdade de Farmacia Chemistry PORTUGAL
| | - José A. Paixão
- University of Coimbra Faculty of Sciences and Technology: Universidade de Coimbra Faculdade de Ciencias e Tecnologia Department of Physics PORTUGAL
| | - Rui Fausto
- University of Coimbra Faculty of Sciences and Technology: Universidade de Coimbra Faculdade de Ciencias e Tecnologia Department of Chemistry PORTUGAL
| | - M. Lurdes S. Cristiano
- Universidade do Algarve Faculdade de Ciencias e Tecnologia Quimica e Farmácia Campus de Gambelas 8005-139 Faro PORTUGAL
| |
Collapse
|
18
|
The Plasmodium falciparum Nuclear Protein Phosphatase NIF4 Is Required for Efficient Merozoite Invasion and Regulates Artemisinin Sensitivity. mBio 2022; 13:e0189722. [PMID: 35938722 PMCID: PMC9426563 DOI: 10.1128/mbio.01897-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in Plasmodium falciparum has been associated with a mutation in the NLI-interacting factor-like phosphatase PfNIF4, in addition to the mutations in the Kelch13 protein as the major determinant. We found that PfNIF4 was predominantly expressed at the schizont stage and localized in the nuclei of the parasite. To elucidate the functions of PfNIF4 in P. falciparum, we performed PfNIF4 knockdown (KD) using the inducible ribozyme system. PfNIF4 KD attenuated merozoite invasion and affected gametocytogenesis. PfNIF4 KD parasites also showed significantly increased in vitro susceptibility to artemisinins. Transcriptomic and proteomic analysis revealed that PfNIF4 KD led to the downregulation of gene categories involved in invasion and artemisinin resistance (e.g., mitochondrial function, membrane, and Kelch13 interactome) at the trophozoite and/or schizont stage. Consistent with PfNIF4 being a protein phosphatase, PfNIF4 KD resulted in an overall upregulation of the phosphoproteome of infected erythrocytes. Quantitative phosphoproteomic profiling identified a set of PfNIF4-regulated phosphoproteins with functional similarity to FCP1 substrates, particularly proteins involved in chromatin organization and transcriptional regulation. Specifically, we observed increased phosphorylation of Ser2/5 of the tandem repeats in the C-terminal domain (CTD) of RNA polymerase II (RNAPII) upon PfNIF4 KD. Furthermore, using the TurboID-based proteomic approach, we identified that PfNIF4 interacted with the RNAPII components, AP2-domain transcription factors, and chromatin-modifiers and binders. These findings suggest that PfNIF4 may act as the RNAPII CTD phosphatase, regulating the expression of general and parasite-specific cellular pathways during the blood-stage development.
Collapse
|
19
|
Fang J, Song F, Wang F. The antimalarial activity of 1,2,4-trioxolane/trioxane hybrids and dimers: A review. Arch Pharm (Weinheim) 2022; 355:e2200077. [PMID: 35388499 DOI: 10.1002/ardp.202200077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/03/2023]
Abstract
Malaria, a mosquito-borne parasitic infection caused by protozoan parasites belonging to the genus Plasmodium, is a dangerous disease that contributes to millions of hospital visits and hundreds and thousands of deaths across the world, especially in Sub-Saharan Africa. Antimalarial agents are vital for treating malaria and controlling transmission, and 1,2,4-trioxolane/trioxane-containing agents, especially artemisinin and its derivatives, own antimalarial efficacy and low toxicity with unique mechanisms of action. Moreover, artemisinin-based combination therapies were recommended by the World Health Organization as the first-line treatment for uncomplicated malaria infection and have remained as the mainstay of the treatment of malaria, demonstrating that 1,2,4-trioxolane/trioxane derivatives are useful prototypes for the control and eradication of malaria. However, malaria parasites have already developed resistance to almost all of the currently available antimalarial agents, creating an urgent need for the search of novel pharmaceutical interventions for malaria. The purpose of this review article is to provide an emphasis on the current scenario (January 2012 to January 2022) of 1,2,4-trioxolane/trioxane hybrids and dimers with potential antimalarial activity and the structure-activity relationships are also discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Junman Fang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China.,Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, Shandong, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
20
|
Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response. Commun Biol 2022; 5:274. [PMID: 35347215 PMCID: PMC8960834 DOI: 10.1038/s42003-022-03215-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of artemisinin-resistant Plasmodium falciparum, first in the Greater Mekong Subregion (GMS), and now in East Africa, is a major threat to global malaria elimination ambitions. To investigate the artemisinin resistance mechanism, transcriptome analysis was conducted of 577 P. falciparum isolates collected in the GMS between 2016–2018. A specific artemisinin resistance-associated transcriptional profile was identified that involves a broad but discrete set of biological functions related to proteotoxic stress, host cytoplasm remodelling, and REDOX metabolism. The artemisinin resistance-associated transcriptional profile evolved from initial transcriptional responses of susceptible parasites to artemisinin. The genetic basis for this adapted response is likely to be complex. Transcriptomic analysis of isolates from the malaria parasite (Plasmodium falciparum) in the Greater Mekong Subregion of Southeast Asia identifies gene expression patterns that are correlated with resistance to a common anti-malaria drug, artemisinin.
Collapse
|
21
|
Zhou X, Soto-Gamez A, Nijdam F, Setroikromo R, Quax WJ. Dihydroartemisinin-Transferrin Adducts Enhance TRAIL-Induced Apoptosis in Triple-Negative Breast Cancer in a P53-Independent and ROS-Dependent Manner. Front Oncol 2022; 11:789336. [PMID: 35047402 PMCID: PMC8762273 DOI: 10.3389/fonc.2021.789336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype independent of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. It has a poor prognosis and high recurrence. Due to its limited treatment options in the clinic, novel therapies are urgently needed. Single treatment with the death receptor ligand TRAIL was shown to be poorly effective. Recently, we have shown that artemisinin derivatives enhance TRAIL-induced apoptosis in colon cancer cells. Here, we utilized transferrin (TF) to enhance the effectiveness of dihydroartemisinin (DHA) in inducing cell death in TNBC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT549). We found that the combination of DHA-TF and the death receptor 5-specific TRAIL variant DHER leads to an increase in DR5 expression in all four TNBC cell lines, while higher cytotoxicity was observed in MDA-MB-231, and MDA-MB-436. All the data point to the finding that DHA-TF stimulates cell death in TNBC cells, while the combination of DHA-TF with TRAIL variants will trigger more cell death in TRAIL-sensitive cells. Overall, DHA-TF in combination with TRAIL variants represents a potential novel combination therapy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Abel Soto-Gamez
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Fleur Nijdam
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
23
|
Amado PSM, Frija LMT, Coelho JAS, O'Neill PM, Cristiano MLS. Synthesis of Non-symmetrical Dispiro-1,2,4,5-Tetraoxanes and Dispiro-1,2,4-Trioxanes Catalyzed by Silica Sulfuric Acid. J Org Chem 2021; 86:10608-10620. [PMID: 34279102 DOI: 10.1021/acs.joc.1c01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel protocol for the preparation of non-symmetrical 1,2,4,5-tetraoxanes and 1,2,4-trioxanes, promoted by the heterogeneous silica sulfuric acid (SSA) catalyst, is reported. Different ketones react under mild conditions with gem-dihydroperoxides or peroxysilyl alcohols/β-hydroperoxy alcohols to generate the corresponding endoperoxides in good yields. Our mechanistic proposal, assisted by molecular orbital calculations, at the ωB97XD/def2-TZVPP/PCM(DCM)//B3LYP/6-31G(d) level of theory, enhances the role of SSA in the cyclocondensation step. This novel procedure differs from previously reported methods by using readily available and inexpensive reagents, with recyclable properties, thereby establishing a valid alternative approach for the synthesis of new biologically active endoperoxides.
Collapse
Affiliation(s)
- Patrícia S M Amado
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Luís M T Frija
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural (CQE), Faculdade de Ciências, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, P-8005-039 Faro, Portugal.,Department of Chemistry and Pharmacy, FCT, University of Algarve, P-8005-039 Faro, Portugal
| |
Collapse
|
24
|
Woodley CM, Amado PSM, Cristiano MLS, O'Neill PM. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Med Res Rev 2021; 41:3062-3095. [PMID: 34355414 DOI: 10.1002/med.21849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Artemisinin combination therapies (ACTs) have been used as the first-line treatments against Plasmodium falciparum malaria for decades. Recent advances in chemical proteomics have shed light on the complex mechanism of action of semi-synthetic artemisinin (ARTs), particularly their promiscuous alkylation of parasite proteins via previous heme-mediated bioactivation of the endoperoxide bond. Alarmingly, the rise of resistance to ART in South East Asia and the synthetic limitations of the ART scaffold have pushed the course for the necessity of fully synthetic endoperoxide-based antimalarials. Several classes of synthetic endoperoxide antimalarials have been described in literature utilizing various endoperoxide warheads including 1,2-dioxanes, 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes. Two of these classes, the 1,2,4-trioxolanes (arterolane and artefenomel) and the 1,2,4,5-tetraoxanes (N205 and E209) based antimalarials, have been explored extensively and are still in active development. In contrast, the most recent publication pertaining to the development of the 1,2-dioxane, Arteflene, and 1,2,4-trioxanes fenozan-50F, DU1301, and PA1103/SAR116242 was published in 2008. This review summarizes the synthesis, biological and clinical evaluation, and mechanistic studies of the most developed synthetic endoperoxide antimalarials, providing an update on those classes still in active development.
Collapse
Affiliation(s)
| | - Patrícia S M Amado
- Department of Chemistry, University of Liverpool, Liverpool, UK.,Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Maria L S Cristiano
- Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,Department of Chemistry and Pharmacy, Faculdade de Ciências e Tecnologia, University of Algarve, Faro, Portugal
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Siddiqui FA, Liang X, Cui L. Plasmodium falciparum resistance to ACTs: Emergence, mechanisms, and outlook. Int J Parasitol Drugs Drug Resist 2021; 16:102-118. [PMID: 34090067 PMCID: PMC8188179 DOI: 10.1016/j.ijpddr.2021.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
Emergence and spread of resistance in Plasmodium falciparum to the frontline treatment artemisinin-based combination therapies (ACTs) in the epicenter of multidrug resistance of Southeast Asia threaten global malaria control and elimination. Artemisinin (ART) resistance (or tolerance) is defined clinically as delayed parasite clearance after treatment with an ART drug. The resistance phenotype is restricted to the early ring stage and can be measured in vitro using a ring-stage survival assay. ART resistance is associated with mutations in the propeller domain of the Kelch family protein K13. As a pro-drug, ART is activated primarily by heme, which is mainly derived from hemoglobin digestion in the food vacuole. Activated ARTs can react promiscuously with a wide range of cellular targets, disrupting cellular protein homeostasis. Consistent with this mode of action for ARTs, the molecular mechanisms of K13-mediated ART resistance involve reduced hemoglobin uptake/digestion and increased cellular stress response. Mutations in other genes such as AP-2μ (adaptor protein-2 μ subunit), UBP-1 (ubiquitin-binding protein-1), and Falcipain 2a that interfere with hemoglobin uptake and digestion also increase resistance to ARTs. ART resistance has facilitated the development of resistance to the partner drugs, resulting in rapidly declining ACT efficacies. The molecular markers for resistance to the partner drugs are mostly associated with point mutations in the two food vacuole membrane transporters PfCRT and PfMDR1, and amplification of pfmdr1 and the two aspartic protease genes plasmepsin 2 and 3. It has been observed that mutations in these genes can have opposing effects on sensitivities to different partner drugs, which serve as the principle for designing triple ACTs and drug rotation. Although clinical ACT resistance is restricted to Southeast Asia, surveillance for drug resistance using in vivo clinical efficacy, in vitro assays, and molecular approaches is required to prevent or slow down the spread of resistant parasites.
Collapse
Affiliation(s)
- Faiza Amber Siddiqui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
26
|
Behrens HM, Schmidt S, Spielmann T. The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev 2021; 41:2998-3022. [PMID: 34309894 DOI: 10.1002/med.21848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022]
Abstract
Artemisinin and its derivatives (ART) are the cornerstone of malaria treatment as part of artemisinin combination therapy (ACT). However, reduced susceptibility to artemisinin as well as its partner drugs threatens the usefulness of ACTs. Single point mutations in the parasite protein Kelch13 (K13) are necessary and sufficient for the reduced sensitivity of malaria parasites to ART but several alternative mechanisms for this resistance have been proposed. Recent work found that K13 is involved in the endocytosis of host cell cytosol and indicated that this is the process responsible for resistance in parasites with mutated K13. These studies also identified a series of further proteins that act together with K13 in the same pathway, including previously suspected resistance proteins such as UBP1 and AP-2μ. Here, we give a brief overview of artemisinin resistance, present the recent evidence of the role of endocytosis in ART resistance and discuss previous hypotheses in light of this new evidence. We also give an outlook on how the new insights might affect future research.
Collapse
Affiliation(s)
- Hannah Michaela Behrens
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
27
|
Rashidzadeh H, Tabatabaei Rezaei SJ, Adyani SM, Abazari M, Rahamooz Haghighi S, Abdollahi H, Ramazani A. Recent advances in targeting malaria with nanotechnology-based drug carriers. Pharm Dev Technol 2021; 26:807-823. [PMID: 34190000 DOI: 10.1080/10837450.2021.1948568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Malaria, as one of the most common human infectious diseases, remains the greatest global health concern, since approximately 3.5 billion people around the world, especially those in subtropical areas, are at the risk of being infected by malaria. Due to the emergence and spread of drug resistance to the current antimalarials, malaria-related mortality and incidence rates have recently increased. To overcome the aforementioned obstacles, nano-vehicles based on biodegradable, natural, and non-toxic polymers have been developed. Accordingly, these systems are considered as a potential drug vehicle, which due to their unique properties such as the excellent safety profile, good biocompatibility, tunable structure, diversity, and the presence of functional groups within the polymer structure, could facilitate covalent attachment of targeting moieties and antimalarials to the polymeric nano-vehicles. In this review, we highlighted some recent developments of liposomes as unique nanoscale drug delivery vehicles and several polymeric nanovehicles, including hydrogels, dendrimers, self-assembled micelles, and polymer-drug conjugates for the effective delivery of antimalarials.
Collapse
Affiliation(s)
- Hamid Rashidzadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Seyed Masih Adyani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Rahamooz Haghighi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Hossien Abdollahi
- Department of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
28
|
Mok S, Stokes BH, Gnädig NF, Ross LS, Yeo T, Amaratunga C, Allman E, Solyakov L, Bottrill AR, Tripathi J, Fairhurst RM, Llinás M, Bozdech Z, Tobin AB, Fidock DA. Artemisinin-resistant K13 mutations rewire Plasmodium falciparum's intra-erythrocytic metabolic program to enhance survival. Nat Commun 2021; 12:530. [PMID: 33483501 PMCID: PMC7822823 DOI: 10.1038/s41467-020-20805-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence and spread of artemisinin resistance, driven by mutations in Plasmodium falciparum K13, has compromised antimalarial efficacy and threatens the global malaria elimination campaign. By applying systems-based quantitative transcriptomics, proteomics, and metabolomics to a panel of isogenic K13 mutant or wild-type P. falciparum lines, we provide evidence that K13 mutations alter multiple aspects of the parasite's intra-erythrocytic developmental program. These changes impact cell-cycle periodicity, the unfolded protein response, protein degradation, vesicular trafficking, and mitochondrial metabolism. K13-mediated artemisinin resistance in the Cambodian Cam3.II line was reversed by atovaquone, a mitochondrial electron transport chain inhibitor. These results suggest that mitochondrial processes including damage sensing and anti-oxidant properties might augment the ability of mutant K13 to protect P. falciparum against artemisinin action by helping these parasites undergo temporary quiescence and accelerated growth recovery post drug elimination.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara H Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erik Allman
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Lev Solyakov
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Astra Zeneca, Gaithersburg, MD, 20878, USA
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
29
|
Neal ML, Wei L, Peterson E, Arrieta-Ortiz ML, Danziger S, Baliga N, Kaushansky A, Aitchison J. A systems-level gene regulatory network model for Plasmodium falciparum. Nucleic Acids Res 2021; 49:4891-4906. [PMID: 33450011 PMCID: PMC8136813 DOI: 10.1093/nar/gkaa1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Many of the gene regulatory processes of Plasmodium falciparum, the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism's gene regulatory network, we generated a systems-level model of P. falciparum gene regulation using a well-validated, machine-learning approach for predicting interactions between transcription regulators and their targets. The resulting network accurately predicts expression levels of transcriptionally coherent gene regulatory programs in independent transcriptomic data sets from parasites collected by different research groups in diverse laboratory and field settings. Thus, our results indicate that our gene regulatory model has predictive power and utility as a hypothesis-generating tool for illuminating clinically relevant gene regulatory mechanisms within P. falciparum. Using the set of regulatory programs we identified, we also investigated correlates of artemisinin resistance based on gene expression coherence. We report that resistance is associated with incoherent expression across many regulatory programs, including those controlling genes associated with erythrocyte-host engagement. These results suggest that parasite populations with reduced artemisinin sensitivity are more transcriptionally heterogenous. This pattern is consistent with a model where the parasite utilizes bet-hedging strategies to diversify the population, rendering a subpopulation more able to navigate drug treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John D Aitchison
- To whom correspondence should be addressed. Tel: +1 206 884 3125; Fax: +1 206 884 3104;
| |
Collapse
|
30
|
Gonciarz RL, Collisson EA, Renslo AR. Ferrous Iron-Dependent Pharmacology. Trends Pharmacol Sci 2021; 42:7-18. [PMID: 33261861 PMCID: PMC7754709 DOI: 10.1016/j.tips.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
The recent emergence of oxidation state selective probes of cellular iron has produced a more nuanced understanding of how cells utilize this crucial nutrient to empower enzyme function, and also how labile ferrous iron contributes to iron-dependent cell death (ferroptosis) and other disease pathologies including cancer, bacterial infections, and neurodegeneration. These findings, viewed in light of the Fenton chemistry promoted by ferrous iron, suggest a new category of therapeutics exhibiting ferrous iron-dependent pharmacology. While still in its infancy, this nascent field draws inspiration from the remarkable activity and tremendous clinical impact of the antimalarial artemisinin. Here, we review recent insights into the role of labile ferrous iron in biology and disease, and describe new therapeutic approaches designed to exploit this divalent transition metal.
Collapse
Affiliation(s)
- Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158
| | - Eric A. Collisson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158,Correspondence:
| |
Collapse
|
31
|
Izrael R, Marton L, Nagy GN, Pálinkás HL, Kucsma N, Vértessy BG. Identification of a nuclear localization signal in the Plasmodium falciparum CTP: phosphocholine cytidylyltransferase enzyme. Sci Rep 2020; 10:19739. [PMID: 33184408 PMCID: PMC7665022 DOI: 10.1038/s41598-020-76829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipid biosynthesis of the malaria parasite, Plasmodium falciparum is a key process for its survival and its inhibition is a validated antimalarial therapeutic approach. The second and rate-limiting step of the de novo phosphatidylcholine biosynthesis is catalysed by CTP: phosphocholine cytidylyltransferase (PfCCT), which has a key regulatory function within the pathway. Here, we investigate the functional impact of the key structural differences and their respective role in the structurally unique pseudo-heterodimer PfCCT protein in a heterologous cellular context using the thermosensitive CCT-mutant CHO-MT58 cell line. We found that a Plasmodium-specific lysine-rich insertion within the catalytic domain of PfCCT acts as a nuclear localization signal and its deletion decreases the nuclear propensity of the protein in the model cell line. We further showed that the putative membrane-binding domain also affected the nuclear localization of the protein. Moreover, activation of phosphatidylcholine biosynthesis by phospholipase C treatment induces the partial nuclear-to-cytoplasmic translocation of PfCCT. We additionally investigated the cellular function of several PfCCT truncated constructs in a CHO-MT58 based rescue assay. In absence of the endogenous CCT activity we observed that truncated constructs lacking the lysine-rich insertion, or the membrane-binding domain provided similar cell survival ratio as the full length PfCCT protein.
Collapse
Affiliation(s)
- Richard Izrael
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720, Szeged, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary.
| | - Lívia Marton
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hajnalka L Pálinkás
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720, Szeged, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111, Budapest, Hungary.
| |
Collapse
|
32
|
Sahu SK, Behera PK, Choudhury P, Panda S, Rout L. Strategy and Problems for Synthesis of Antimalaria Artemisinin (Qinghaosu). ChemistrySelect 2020. [DOI: 10.1002/slct.202002885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Santosh Kumar Sahu
- Department of Chemistry Berhampur University Bhanjabihar Ganjam Odisha 760007
| | | | | | - Subhalaxmi Panda
- Department of Chemistry Berhampur University Bhanjabihar Ganjam Odisha 760007
| | - Laxmidhar Rout
- Department of Chemistry Berhampur University Bhanjabihar Ganjam Odisha 760007
- Adjunct Faculty Department of Chemical Science IISER Berhampur Odisha
| |
Collapse
|
33
|
Medrán NS, Sayé M, Pereira CA, Tekwani BL, La-Venia A, Labadie GR. Expanding the scope of synthetic 1,2,4-trioxanes towards Trypanosoma cruzi and Leishmania donovani. Bioorg Med Chem Lett 2020; 30:127491. [PMID: 32795626 DOI: 10.1016/j.bmcl.2020.127491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/29/2023]
Abstract
A series of synthetic 1,2,4-trioxanes related to artemisinin was tested against L. donovani and T. cruzi parasites. This screening identified some active compounds, with key common structural features. Interestingly, these selected trioxanes were efficient against both parasites, and achieved antiparasitic activities comparable or superior than those presented by the corresponding reference drugs, artemisinin and artesunate. This study represents the first example of synthetic trioxanes evaluated on T. cruzi and provides possible candidates for developing new drugs for the treatment of leishmaniasis and Chagas disease.
Collapse
Affiliation(s)
- Noelia S Medrán
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Babu L Tekwani
- National Center for Natural Products Research & Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Agustina La-Venia
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Universidad Nacional de Rosario-CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|