1
|
Moeed S, Bousbih R, Ayub AR, Jafar NNA, Aljohani M, Jabir MS, Amin MA, Zubair H, Majdi H, Waqas M, Hadia NMA, Khera RA. A theoretical investigation for improving the performance of non-fullerene organic solar cells through side-chain engineering of BTR non-fused-ring electron acceptors. J Mol Graph Model 2024; 131:108792. [PMID: 38797085 DOI: 10.1016/j.jmgm.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.
Collapse
Affiliation(s)
- Sidra Moeed
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Nadhir N A Jafar
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, 56001, Iraq
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hasan Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - N M A Hadia
- Department of Physics, College of Science, Jouf University, Sakaka, 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Tang A, Cong P, Dai T, Wang Z, Zhou E. A 2-A 1-D-A 1-A 2-Type Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300175. [PMID: 37907430 DOI: 10.1002/adma.202300175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Indexed: 11/02/2023]
Abstract
The A2-A1-D-A1-A2-type molecules consist of one electron-donating (D) core flanked by two electron-accepting units (A1 and A2) and have emerged as an essential branch of nonfullerene acceptors (NFAs). These molecules generally possess higher molecular energy levels and wider optical bandgaps compared with those of the classic A-D-A- and A-DA'D-A-type NFAs, owing to the attenuated intramolecular charge transfer effect. These characteristics make them compelling choices for the fabrication of high-voltage organic photovoltaics (OPVs), ternary OPVs, and indoor OPVs. Herein, the recent progress in the A2-A1-D-A1-A2-type NFAs are reviewed, including the molecular engineering, structure-property relationships, voltage loss (Vloss), device stability, and photovoltaic performance of binary, ternary, and indoor OPVs. Finally, the challenges and provided prospects are discussed for the further development of this type of NFAs.
Collapse
Affiliation(s)
- Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tingting Dai
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zongtao Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Chang B, Chen CH, Hsueh TF, Tan S, Lin YC, Zhao Y, Tsai BS, Chu TY, Chang YN, Tsai CE, Chen CS, Wei KH. High-Performance Poly(3-hexyl thiophene)-Based Organic Photovoltaics with Side-Chain Engineering of Core Units of Small Molecule Acceptors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37923367 DOI: 10.1021/acsami.3c13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In this study, we synthesized a series of four large-band gap small molecule acceptors with side-chain engineering of the dithieno-pyrrolo-fused pentacyclic benzotriazole (BZTTP or Y1 core) or the fused-ring dithienothiophene-pyrrolobenzothiadiazole (TPBT or Y6 core) with difluoro-indene-dione (IO2F) or dichloro-indene-dione (IO2Cl) end groups to form Y1-IO2F, Y1-IO2Cl, Y6-IO2F, and Y6-IO2Cl acceptors, respectively, for blending with poly(3-hexyl thiophene) (P3HT) for bulk heterojunction organic photovoltaics. The complementary UV-vis absorption spectra of these small molecules and P3HT along with their offset energy bands allow broad absorption and effective electron transfer. Through synchrotron wide-angle X-ray scattering (WAXS) analyses and contact angle measurements, we found that the blend of the small molecule Y6-IO2F (having a TPBT core) and P3HT achieves an optimum morphology that balances their crystallinity and miscibility, among those of these four blends, leading to a substantial enhancement in the short-circuit current density and thus power conversion efficiency (PCE) in their devices. For example, the P3HT:Y6-IO2F (w/w: 1/1.2) device exhibited a champion PCE of 10.5% with a short current density (Jsc) value of 15.9 mA/cm2 as compared to the P3HT:Y1-IO2F device having a PCE of 2.2% with a Jsc value of 5.7 mA/cm2 because of the higher Y6-IO2F (with TPBT core) molecular packing that facilitated carrier transport in the devices. The enhanced thermal stability exhibited by the devices incorporating Y6-IO2F and Y6-IO2Cl, as compared to that of Y1-IO2F and Y1-IO2Cl devices, is also due to the more planar TPBT core structure, while the photostability of devices incorporating Y6-IO2Cl and Y1-IO2Cl is better than that of devices incorporating Y6-IO2F and Y1-IO2F, owing to more photostable chemical structures. These results present an outstanding performance for P3HT-based organic solar cells. Moreover, these small molecule blends are processed with an environmentally friendly solvent tetrahydrofuran, demonstrating both the sustainability and commercial viability of these types of organic photovoltaics.
Collapse
Affiliation(s)
- Bin Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Fang Hsueh
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Shaun Tan
- Department of Materials Science and Engineering, University of California─Los Angeles, Los Angeles, California 90095, United States
| | - Yu-Che Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yepin Zhao
- Department of Materials Science and Engineering, University of California─Los Angeles, Los Angeles, California 90095, United States
| | - Bing-Shiun Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Yi Chu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Ning Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ching-En Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Cheng-Sheng Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
4
|
Yang X, Gao M, Bi Z, Liu Y, Xian K, Peng Z, Qi Q, Li S, Song J, Ma W, Ye L. Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in Simple Poly(3-pentylthiophene) Solar Cells. Macromol Rapid Commun 2022; 43:e2200229. [PMID: 35591795 DOI: 10.1002/marc.202200229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
The power conversion efficiency of polythiophene organic solar cells is constantly refreshed. Despite the renewed device efficiency, very few efforts have been devoted to understanding how the type of electron acceptor alters the photovoltaic and mechanical properties of these low-cost solar cells. Herein, we conduct a thorough investigation of photovoltaic and mechanical characteristics of a simple yet less explored polythiophene, namely poly(3-pentylthiophene) (P3PT), in three different types of organic solar cells, where ZY-4Cl, PC71 BM, and N2200 are employed as three representative acceptors, respectively. Compared with the reference P3HT-based solar cells, P3PT-based devices all perform more efficiently. Particularly, the P3PT:ZY-4Cl blend exhibits the highest efficiency (nearly 10%) among the six combinations and outperforms the prior top-performance system P3HT:ZY-4Cl. Furthermore, the blend films based on N2200 exhibit a high crack-onset strain of ∼38% on average, which is approximately 15 and 17 times higher than those of ZY-4Cl and PC71 BM, respectively. The microstructural origins for the above difference are well elucidated by detailed grazing incidence X-ray scattering and microscopy analysis. This work not only underlines the potential of P3PT in prolific solar cell research but also demonstrates the superior tensile properties of polythiophene-based all-polymer blends for the preparation of stretchable solar cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuantong Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Qingchun Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Saimeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
5
|
Jaiswal R, Saha U, Prasad NE, Goswami TH. Microwave assisted synthesis of low band gap water soluble dyad materials using polythiophene carboxylic acids as donor and fullerenol as acceptor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rimpa Jaiswal
- Defence Materials and Stores Research and Development Establishment Kanpur India
| | - Uttam Saha
- Defence Materials and Stores Research and Development Establishment Kanpur India
| | - N. Eswara Prasad
- Defence Materials and Stores Research and Development Establishment Kanpur India
| | - Thako Hari Goswami
- Defence Materials and Stores Research and Development Establishment Kanpur India
| |
Collapse
|
6
|
Gao X, Tao X, Xu Y, Song X, Wang H, Yu R, Ye J, Tao Y. A simple single-thiophene derivative assists efficient as-cast ternary organic solar cells through Förster resonance energy transfer. NEW J CHEM 2022. [DOI: 10.1039/d2nj01906j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blending the single-thiophene derivative TTZD contributes to improved photovoltaic performance through utilizing an efficient Förster resonance energy transfer (FRET) process.
Collapse
Affiliation(s)
- Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huabin Wang
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jian Ye
- Duolun Technology Corporation Ltd, 1555 Tianyin Avenue, Nanjing, 211100, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
7
|
Liang Q, Hu Z, Yao J, Wu Z, Ding Z, Zhao K, Jiao X, Liu J, Huang W. Blending Donors with Different Molecular Weights: An Efficient Strategy to Resolve the Conflict between Coherence Length and Intermixed Phase in Polymer/Nonfullerene Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103804. [PMID: 34825447 DOI: 10.1002/smll.202103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Long coherence lengths (CLs) of crystals and proper intermixed phase amount guarantee charge transport and exciton dissociate efficiently, which is crucial for organic solar cells (OSCs) to achieve high device performance. However, extending CLs usually reduces the intermixed phase, leading to an insufficient interface for exciton dissociation. Herein, a strategy using a binary polymer with different molecular weights as donor is employed, that is, poly(3-hexylthiophene-2,5-diyl) (P3HT) with high (P3HT-H) and low (P3HT-L) molecular weight are blended as donor, and (5Z,5'Z)-5,5'-(((4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR) is used as acceptor. In kinetics, the entanglements of P3HT-H are relieved due to the higher molecular diffusivity of P3HT-L. In thermodynamics, the miscibility of P3HT-L/O-IDTBR, P3HT-H/O-IDTBR, and P3HT-L/P3HT-H blends increases in turn. Hence, P3HT forms a more ordered structure with longer CLs after adding P3HT-L, which also drives O-IDTBR dispersed in P3HT crystalline regions diffuse to the O-IDTBR crystalline regions to further self-organize. Consequently, the CLs of both P3HT and O-IDTBR are extended, while keeping the intermixed phase amount proper. The optimized microstructure boosts device performance from 7.03% to 7.80%, which is one of the highest values reported for P3HT/O-IDTBR blends. This is a novel way to solve the conflict mentioned above, which may provide guidance to finely regulating the morphology of the active layer.
Collapse
Affiliation(s)
- Qiuju Liang
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhangbo Hu
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Jianhong Yao
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zihao Wu
- Northwestern Polytechnical University, Xi'an, 710129, China
| | | | - Kui Zhao
- Shaanxi Normal University, Xi'an, 710119, China
| | - Xuechen Jiao
- Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Jiangang Liu
- Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wei Huang
- Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
8
|
|
9
|
Xu J, Liu Z, Jing L, Chen J. Fabrication of PCDTBT Conductive Network via Phase Separation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5071. [PMID: 34501162 PMCID: PMC8433801 DOI: 10.3390/ma14175071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5-5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is a stable semiconducting polymer with high rigidity in its molecular chains, which makes it difficult to organize into an ordered structure and affects the device performance. Here, a PCDTBT network consisting of aggregates and nanofibers in thin films was fabricated through the phase separation of mixed PCDTBT and polyethylene glycol (PEG). Using atomic force microscopy (AFM), the effect of the blending conditions (weight ratio, solution concentration, and molecular weight) and processing conditions (substrate temperature and solvent) on the resulting phase-separated morphologies of the blend films after a selective washing procedure was studied. It was found that the phase-separated structure's transition from an island to a continuous structure occurred when the weight ratio of PCDTBT/PEG changed from 2:8 to 7:3. Increasing the solution concentration from 0.1 to 3.0 wt% led to an increase in both the height of the PCDTBT aggregate and the width of the nanofiber. When the molecular weight of the PEG was increased, the film exhibited a larger PCDTBT aggregate size. Meanwhile, denser nanofibers were found in films prepared using PCDTBT with higher molecular weight. Furthermore, the electrical characteristics of the PCDTBT network were measured using conductive AFM. Our findings suggest that phase separation plays an important role in improving the molecular chain diffusion rate and fabricating the PCDTBT network.
Collapse
Affiliation(s)
- Jianwei Xu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| | | | | | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| |
Collapse
|
10
|
Bai Y, Xue LW, Wang HQ, Zhang ZG. Research Advances on Benzotriazole-based Organic Photovoltaic Materials. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Wang X, Tang A, Yang J, Du M, Li J, Li G, Guo Q, Zhou E. Tuning the intermolecular interaction of A2-A1-D-A1-A2 type non-fullerene acceptors by substituent engineering for organic solar cells with ultrahigh VOC of ~1.2 V. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9840-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Synthesis and Characterization of Benzotriazole-Based Polymer Donors with Good Planarity for Organic Photovoltaics. Macromol Res 2020. [DOI: 10.1007/s13233-020-8124-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Effects of BTA2 as the third component on the charge carrier generation and recombination behavior of PTB7:PC71BM photovoltaic system. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1936-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top Curr Chem (Cham) 2020; 378:34. [PMID: 32206929 PMCID: PMC7101601 DOI: 10.1007/s41061-020-0298-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
Abstract
In past decades, interdisciplinary research has been of great interest for scholars. Thiazolidine motifs behave as a bridge between organic synthesis and medicinal chemistry and compel researchers to explore new drug candidates. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. The presence of sulfur enhances their pharmacological properties, and, therefore, they are used as vehicles in the synthesis of valuable organic combinations. They show varied biological properties viz. anticancer, anticonvulsant, antimicrobial, anti-inflammatory, neuroprotective, antioxidant activity and so on. This diversity in the biological response makes it a highly prized moiety. Based on literature studies, various synthetic approaches like multicomponent reaction, click reaction, nano-catalysis and green chemistry have been employed to improve their selectivity, purity, product yield and pharmacokinetic activity. In this review article, we have summarized systematic approaches for the synthesis of thiazolidine and its derivatives, along with their pharmacological activity, including advantages of green synthesis, atom economy, cleaner reaction profile and catalyst recovery which will help scientists to probe and stimulate the study of these scaffolds.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Dinesh K. Agarwal
- Department of Pharmacy, B. N. University, MLSU, Udaipur, 313001 India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| |
Collapse
|
15
|
Li M, Liu Y, Zhou Y, Yang L, Shen S, Song J, Bo Z. Photovoltaic Performances of Fused Ring Acceptors with Isomerized Ladder-Type Dipyran Cores. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4887-4894. [PMID: 31898889 DOI: 10.1021/acsami.9b19676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We precisely design and synthesize two A-π-D-π-A type dipyran-cored nonfullerene acceptors (NFAs) Ph-DTDPo-OT and Ph-DTDPi-OT with oxygen atoms at the outer and inner positions, respectively. 3-Hexyloxythiophene is used as the π-spacer to expand the effective conjugation length of the acceptors. These two NFAs possess similar optical band gaps and energy levels. However, the position of the oxygen atom at the dipyran core can markedly influence the molecular packing and aggregation behavior of the resulted acceptors. Ph-DTDPo-OT with a strong intermolecular affinity tends to form larger aggregates blending with PBDB-T, leading to a lower photovoltaic performance; Ph-DTDPi-OT presents good miscibility with PBDB-T and the blend films preferentially adopt a face-on orientation. Ph-DTDPi-OT-based devices display high and balanced hole and electron mobilities, leading to an optimal power conversion efficiency of 11.38%, which is much higher than those of Ph-DTDPo-OT-based ones (7.60%). Moreover, Ph-DTDPi-OT-based devices also exhibit a lower nonradiative recombination voltage loss of 0.268 eV. Our work demonstrates that the π-spacer and chemical structure of the core unit can greatly influence the molecular packing and the morphology of blend films, which are critical to the photovoltaic performance of devices.
Collapse
Affiliation(s)
- Miao Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Yahui Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Yuanyuan Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Lisi Yang
- Engineering Research Center for Nanomaterials , Henan University , Kaifeng 475004 , China
| | - Shuaishuai Shen
- Engineering Research Center for Nanomaterials , Henan University , Kaifeng 475004 , China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials , Henan University , Kaifeng 475004 , China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
16
|
Xu J. The synthesis and property investigation of π-bridged 9,9′-bifluorenylidene ladder as an electron acceptor. NEW J CHEM 2020. [DOI: 10.1039/c9nj06090a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a ladder-type 9,9′-bifluorenylidene dimer with good electron acceptability and demonstrated the π-bridged insertion exhibited significant effects on photophysical and electrochemical properties compared with its macrocyclic counterpart.
Collapse
Affiliation(s)
- Jinjia Xu
- Molecular Design & Function Group
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
- Weldon School of Biomedical Engineering
| |
Collapse
|
17
|
Chen L, Zeng M, Weng C, Tan S, Shen P. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2- b:10,20- e]pyrazine Unit. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48134-48146. [PMID: 31823611 DOI: 10.1021/acsami.9b17185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this contribution, a series of A-π-D-π-A small molecules (SMs), IPY-T-IC, IPY-T-ICCl, and IPY-T-ICF, containing the central donor unit (D) of 6,12-dihydro-diindolo[1,2-b:10,20-e]pyrazine (IPY), the π-conjugated bridge of thiophene, and the end-accepting group (A) of 3-(dic yanomethylidene)indol-1-one, 5,6-dichloro-3-(dicyanomethylidene)indol-1-one, or 5,6-difluoro-3-(dicyanomethylene)indol-1-one, were developed, characterized, and employed as the acceptor materials for polymer solar cells (PSCs). Influences of the different end-accepting groups on thermal properties, spectral absorption, energy levels, photovoltaic performance, and film morphology of these small-molecule acceptors (SMAs) were investigated in detail. These SMAs exhibit an excellent thermal stability and strong crystallization. The absorption spectra of these SMs mainly locate the wavelength between 400 and 700 nm, associated with the optical band gaps in the range of 1.75-1.90 eV. Compared with nonhalogenated IPY-T-IC, the halogenated SMAs IPY-T-ICCl and IPY-T-ICF present better absorption abilities, wider absorption region, and downshifted highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels. With regard to the complementary spectral absorption and matched HOMO/LUMO levels, PTB7-Th as a low-band gap polymer was chosen to be an electron donor to pair with these SMAs for fabricating bulk-heterojuntion PSCs. Under optimized conditions, among these SMAs, the PTB7-Th:IPY-T-IC-based PSC processed from a halogenated solvent system (chlorobenzene + 1-chloronaphthalene) delivers the best power conversion efficiency (PCE) of 7.32%, mainly because of more complementary spectral absorption, upper-lying LUMO level, higher and balanced carrier mobility, more efficiently suppressed trap-assisted recombination, better charge collection property, and blend morphology. Encouragingly, an improved PCE of up to 7.68% is achieved when the IPY-T-IC-based solar cell was processed from a nonhalogenated solvent system (o-xylene + 2-methylnaphthalene). In view of the large band gap of these IPY-based SMAs, the PCE of over 7.5% is notable and attractive for the related community. Our study argues that the IPY moiety is a potential electron-donating building moiety to develop medium-band-gap high-performance A-π-D-π-A SMAs for nonhalogenated-solvent-processed photovoltaic devices.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Min Zeng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Chao Weng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Songting Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Ping Shen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| |
Collapse
|
18
|
Li F, Tang A, Zhang B, Zhou E. Indacenodithieno[3,2- b]thiophene-Based Wide Bandgap D-π-A Copolymer for Nonfullerene Organic Solar Cells. ACS Macro Lett 2019; 8:1599-1604. [PMID: 35619396 DOI: 10.1021/acsmacrolett.9b00704] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, a wide-bandgap (2.02 eV) donor-π-acceptor (D-π-A) polymer PIDTT-DTffBTA, composed of a rigid indacenodithieno[3,2-b]thiophene (IDTT) and fluorinated benzo[d][1,2,3]triazole (ffBTA) units as D and A units, respectively, is synthesized. In comparison with its analogue benzodithiophene-alt-benzotriazole copolymer J52 with classic benzodithiophene (BDT) as the D unit, PIDTT-DTffBTA demonstrates a lower-lying HOMO energy level and higher carrier mobilities when paired with a nonfullerene acceptor (NFA) Y6 based on a ladder-type dithienothiophen[3.2-b]-pyrrolobenzothiadiazole central unit. Thus, PIDTT-DTffBTA:Y6 based organic solar cells (OSCs) exhibit an improved power conversion efficiency (PCE) of 11.05% than that of J52:Y6 (7.15%), which is also the highest value for IDTT-based photovoltaic polymers. This result proves that the IDTT unit is also a promising building block to construct not only NFAs but also p-type photovoltaic polymers.
Collapse
Affiliation(s)
- Feng Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bao Zhang
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
19
|
Side chain engineering of quinoxaline-based small molecular nonfullerene acceptors for high-performance poly(3-hexylthiophene)-based organic solar cells. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9618-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Xu X, Zhang G, Yu L, Li R, Peng Q. P3HT-Based Polymer Solar Cells with 8.25% Efficiency Enabled by a Matched Molecular Acceptor and Smart Green-Solvent Processing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1906045. [PMID: 31725181 DOI: 10.1002/adma.201906045] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Indexed: 05/20/2023]
Abstract
A novel molecular acceptor of TrBTIC (2,7,12-tris((2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile-7-benzothiadiazole-2-)truxene) is designed by attaching the 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile-benzothiadiazole (BTIC) electron-deficient unit to an electron-rich truxene core. TrBTIC has excellent solubility in common solvents and features good energy level matching with poly(3-hexylthiophene) (P3HT). Interestingly, P3HT can be readily dissolved in warm 1,2,4-trimethylbenzene (TMB), a green solvent, but crystallizes slowly with long-term aging in TMB at room temperature. A prephase separation can thus occur before active blend film deposition, and the separation degree can be easily controlled by varying the aging time. After 40 min of aging, the resulting active blend has the most appropriate phase separation with uniform nanowires, which forms favorable interpenetrating networks for exciton dissociation and charge transport. As a result, the device performance is improved from 6.62% to 8.25%. Excitingly, 8.25% is a new record for P3HT-based solar cells. The study not only provides an efficient nonfullerene acceptor for matching P3HT donors but also develops a promising processing technology to realize high-performance P3HT-based polymer solar cells with an efficiency over 8%.
Collapse
Affiliation(s)
- Xiaopeng Xu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Guangjun Zhang
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Liyang Yu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Qiang Peng
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
21
|
Liao Q, Yang K, Chen J, Koh CW, Tang Y, Su M, Wang Y, Yang Y, Feng X, He Z, Woo HY, Guo X. Backbone Coplanarity Tuning of 1,4-Di(3-alkoxy-2-thienyl)-2,5-difluorophenylene-Based Wide Bandgap Polymers for Efficient Organic Solar Cells Processed from Nonhalogenated Solvent. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31119-31128. [PMID: 31382736 DOI: 10.1021/acsami.9b09692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Halogenated solvents are prevailingly used in the fabrication of nonfullerene organic solar cells (NF-OSCs) at the current stage, imposing significant restraints on their practical applications. By copolymerizing phthalimide or thieno[3,4-c]pyrrole-4,6-dione (TPD) with 1,4-di(3-alkoxy-2-thienyl)-2,5-difluorophenylene (DOTFP), which features intramolecular noncovalent interactions, the backbone planarity of the resulting DOTFP-based polymers can be effectively tuned, yielding distinct solubilities, aggregation characters, and chain packing properties. Polymer DOTFP-PhI with a more twisted backbone showed a lower degree of aggregation in solution but an increased film crystallinity than polymer DOTFP-TPD. An organic thin-film transistor and NF-OSC based on DOTFP-PhI, processed with a nonhalogenated solvent, exhibited a high hole mobility up to 1.20 cm2 V-1 s-1 and a promising power conversion efficiency up to 10.65%, respectively. The results demonstrate that DOTFP is a promising building block for constructing wide bandgap polymers and backbone coplanarity tuning is an effective strategy to develop high-performance organic semiconductors processable with a nonhalogenated solvent.
Collapse
Affiliation(s)
- Qiaogan Liao
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | | | | | - Chang Woo Koh
- Department of Chemistry , Korea University , Seoul 136-713 , Republic of Korea
| | | | | | | | | | | | | | - Han Young Woo
- Department of Chemistry , Korea University , Seoul 136-713 , Republic of Korea
| | | |
Collapse
|
22
|
Wu L, Xie L, Tian H, Peng R, Huang J, Fanady B, Song W, Tan S, Bi W, Ge Z. Efficient ternary organic solar cells based on a twin spiro-type non-fullerene acceptor. Sci Bull (Beijing) 2019; 64:1087-1094. [PMID: 36659769 DOI: 10.1016/j.scib.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/21/2023]
Abstract
A novel small-molecule (SM) acceptor DTF-IC is designed and synthesized in this work. The power conversion efficiency (PCE) of ternary OSCs increased up to 12.14% from 10.90% by incorporating 10 wt% of DTF-IC as second acceptors into the binary OSCs consisting of PBDB-T as donor and IT-M as acceptor. This was mainly due to the large increase in short-circuit current (Jsc) from 16.18 to 17.95 mA/cm2, without any drop in the open-circuit voltage (Voc) and fill factor (FF). The addition of DTF-IC enabled the donor and acceptor to form a distinct complementary absorption profile in the visible-light region, which boosted the photon harvesting in the range of 730-800 nm and consequently increased the Jsc of the ternary system by 11%. Moreover, there was an energy transfer between the two SM acceptors, favorable for enhancing charge separation and transfer as well as reducing charge recombination at PBDB-T:IT-M and PBDB-T:DTF-IC interface. Simultaneously, HOMO and LUMO energy levels of DTF-IC were lower than those of PBDB-T, but still higher than those of IT-M. Thus, DTF-IC is able to provide a cascading energy level with the host donor and acceptor which are beneficial for efficient charge transfer between the acceptors and facilitating exciton dissociation and carrier transport. Meanwhile, the highly crystalline DTF-IC as a third component can improve the crystallization process of the active layer while maintaining proper phase separation. This work proposes a novel idea for non-fullerene acceptors achieved via twin spiro-type structure modifying by indanone and provides a new direction for the selection of ternary solar cell materials.
Collapse
Affiliation(s)
- Lirong Wu
- School of Electronics and Information Engineering, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300401, China
| | - Lingchao Xie
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hanmin Tian
- School of Electronics and Information Engineering, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300401, China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiaming Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Billy Fanady
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Wengang Bi
- School of Electronics and Information Engineering, Tianjin Key Laboratory of Electronic Materials and Devices, Hebei University of Technology, Tianjin 300401, China.
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|
23
|
Zhu R, Wang Z, Gao Y, Zheng Z, Guo F, Gao S, Lu K, Zhao L, Zhang Y. Chain Engineering of Benzodifuran‐Based Wide‐Bandgap Polymers for Efficient Non‐Fullerene Polymer Solar Cells. Macromol Rapid Commun 2019; 40:e1900227. [DOI: 10.1002/marc.201900227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Ruoxi Zhu
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Zhen Wang
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Yueyue Gao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Zhi Zheng
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Fengyun Guo
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Shiyong Gao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Kun Lu
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Liancheng Zhao
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Yong Zhang
- School of Materials Science and EngineeringHarbin Institute of Technology Harbin 150001 China
- School of Materials Science and EngineeringZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
24
|
Yang J, Cong P, Chen L, Wang X, Li J, Tang A, Zhang B, Geng Y, Zhou E. Introducing Fluorine and Sulfur Atoms into Quinoxaline-Based p-type Polymers To Gradually Improve the Performance of Fullerene-Free Organic Solar Cells. ACS Macro Lett 2019; 8:743-748. [PMID: 35619533 DOI: 10.1021/acsmacrolett.9b00368] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three quinoxaline-based "D-π-A" conjugated polymers, named as PE61, PE62, and PE63, are utilized to investigate the effect of introducing fluorine and sulfur atoms into the thiophene side chains on the photovoltaic performance when paired with a nonfullerene Y6. The open-circuit voltage (VOC) and power conversion efficiency (PCE) can be improved from 0.66 V and 8.61% for PE61:Y6 to 0.78 V and 12.02% for PE62:Y6, and then to 0.83 V and 13.10% for PE63:Y6, respectively. The results provide a simple and effective strategy to fine-tune the optoelectronic properties and thus improve the photovoltaic performance.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqing Cong
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Lie Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaochen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianfeng Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bao Zhang
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yanfang Geng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
25
|
Nakano K, Chen Y, Xiao B, Han W, Huang J, Yoshida H, Zhou E, Tajima K. Anatomy of the energetic driving force for charge generation in organic solar cells. Nat Commun 2019; 10:2520. [PMID: 31175294 PMCID: PMC6555791 DOI: 10.1038/s41467-019-10434-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/11/2019] [Indexed: 11/29/2022] Open
Abstract
Eliminating the excess energetic driving force in organic solar cells leads to a smaller energy loss and higher device performance; hence, it is vital to understand the relation between the interfacial energetics and the photoelectric conversion efficiency. In this study, we systematically investigate 16 combinations of four donor polymers and four acceptors in planar heterojunction. The charge generation efficiency and its electric field dependence correlate with the energy difference between the singlet excited state and the interfacial charge transfer state. The threshold energy difference is 0.2 to 0.3 eV, below which the efficiency starts dropping and the charge generation becomes electric field-dependent. In contrast, the charge generation efficiency does not correlate with the energy difference between the charge transfer and the charge-separated states, indicating that the binding of the charge pairs in the charge transfer state is not the determining factor for the charge generation.
Collapse
Affiliation(s)
- Kyohei Nakano
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yujiao Chen
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, People's Republic of China
| | - Weining Han
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Jianming Huang
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Yoshida
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, People's Republic of China.
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
26
|
Tamilavan V, Lee J, Kwon JH, Jang S, Shin I, Agneeswari R, Jung JH, Jin Y, Park SH. Side-chain influences on the properties of benzodithiophene-alt-di(thiophen-2-yl)quinoxaline polymers for fullerene-free organic solar cells. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Xu X, Zhang G, Li Y, Peng Q. The recent progress of wide bandgap donor polymers towards non-fullerene organic solar cells. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Wang N, Long X, Ding Z, Feng J, Lin B, Ma W, Dou C, Liu J, Wang L. Improving Active Layer Morphology of All-Polymer Solar Cells by Dissolving the Two Polymers Individually. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ning Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of
Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zicheng Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jirui Feng
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Baojun Lin
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
29
|
Xu Y, Yao H, Hou J. Recent Advances in Fullerene-free Polymer Solar Cells: Materials and Devices. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800471] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ye Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
30
|
Deng M, Xu X, Lee YW, Woo HY, Bi Z, Ma W, Li Y, Peng Q. Dithienothiapyran: An Excellent Donor Block for Building High-Performance Copolymers in Nonfullerene Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3308-3316. [PMID: 30584758 DOI: 10.1021/acsami.8b18493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, a new but excellent donor block dithienothiapyran (DTTP) was developed for constructing highly efficient wide band gap copolymer donors. Compared to dithienopyran (DTP), DTTP features weaken electron-donating ability and more planar-conjugated backbones. Polymer-fluorinated benzotriazole (FBTA) based on DTTP exhibits lower highest occupied molecular orbital level (-5.30 vs -5.21 eV), higher molar extinction coefficient (1.54 × 105 vs 8.65 × 104 M-1 cm-1), and better crystallinity than -FBTA based on DTP, thus producing a higher device performance of 10.51% in binary blend nonfullerene polymer solar cells (NF-PSCs) blended with IT-M. To improve the absorption strength of PDTTP-FBTA: devices in the shorter wavelength range and further optimize the blend morphology, a small molecule of , which has strong absorption at short wavelength (300-600 nm), was incorporated. Finally, the performance of the ternary blends was successfully enhanced to 11.57% and a very high fill factor of 76.5%. Our work provided a new but excellent donor block for building high-performance conjugated copolymers to achieve highly efficient NF-PSCs.
Collapse
Affiliation(s)
- Min Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610064 , P. R. China
| | - Xiaopeng Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610064 , P. R. China
| | - Young Woong Lee
- Department of Chemistry , Korea University , Seoul 136-713 , Republic of Korea
| | - Han Young Woo
- Department of Chemistry , Korea University , Seoul 136-713 , Republic of Korea
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Ying Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610064 , P. R. China
| | - Qiang Peng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|
31
|
Mahmood A, Tang A, Wang X, Zhou E. First-principles theoretical designing of planar non-fullerene small molecular acceptors for organic solar cells: manipulation of noncovalent interactions. Phys Chem Chem Phys 2019; 21:2128-2139. [PMID: 30644477 DOI: 10.1039/c8cp05763j] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Non-fullerene small molecular acceptors (NFSMAs) exhibit promising photovoltaic performance; however, their electron mobilities are still relatively lower than those of fullerene derivatives. The construction of a highly planar conjugated system is an important strategy to achieve high charge mobility. In chemical parlance, it is tedious and costly to synthesize planar compounds by restricting the rotation at a specific bond. Recently, nonbonding intramolecular interactions, also termed "conformational locks," have been considered as an alternative way to achieve planar geometry. The successful implementation of this approach for designing polymers has been extensively reported. Recently, several examples of NFSMAs containing conformational locks have been presented in the literature. This situation encourages us to perform a detailed theoretical investigation in designing planar small molecular acceptors. Various nonbonding interactions were studied using accurate computational methods, and molecules with multiple nonbonding interactions showed high planarity. Planar acceptors showed red-shifted absorption with high oscillator strengths. In addition, backbone planarity plays a very important role in tuning the charge transport properties and decreasing reorganization energy. Our results could provide important information to guide the further design of promising NFSMA materials.
Collapse
Affiliation(s)
- Asif Mahmood
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | | | | | | |
Collapse
|
32
|
Costa C, Farinhas J, Velho MFG, Avó J, Matos M, Galvão AM, Charas A. Band-gap tunable thiadiazolo[3,4-g]quinoxaline derivatives as non-fullerene acceptors in organic photovoltaic cells processed from low toxic ethanol/anisole mixtures. NEW J CHEM 2019. [DOI: 10.1039/c9nj02419k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New non-fullerene acceptors were combined with a new polythiophene donor and processed from solvent mixtures of low toxicity in organic photovoltaic cells.
Collapse
Affiliation(s)
- Cristiana Costa
- Instituto de Telecomunicações
- Instituto Superior Técnico
- Lisboa
- Portugal
- Centro de Química Estrutural
| | - Joana Farinhas
- Instituto de Telecomunicações
- Instituto Superior Técnico
- Lisboa
- Portugal
| | | | - João Avó
- CQFM-IN and IBB-Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- University of Lisbon
- Lisboa
- Portugal
| | - Manuel Matos
- Instituto de Telecomunicações
- Instituto Superior Técnico
- Lisboa
- Portugal
- Departamento de Engenharia, Química
| | - Adelino M. Galvão
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Ana Charas
- Instituto de Telecomunicações
- Instituto Superior Técnico
- Lisboa
- Portugal
| |
Collapse
|
33
|
Xiao B, Tang A, Zhang Q, Li G, Wang X, Zhou E. A 2-A 1-D-A 1-A 2 Type Non-Fullerene Acceptors with 2-(1,1-Dicyanomethylene)rhodanine as the Terminal Groups for Poly(3-hexylthiophene)-Based Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34427-34434. [PMID: 30226749 DOI: 10.1021/acsami.8b10312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
2-(1,1-Dicyanomethylene)rhodanine (RCN) is an important electron-deficient terminal unit to build non-fullerene acceptors (NFAs) having been realized high power conversion efficiency (PCE) beyond 12% with complicated p-type polymer as electron donor. However, the photovoltaic properties of RCN-based NFAs are unsatisfied when paired with the classic p-type polymer poly(3-hexylthiophene) (P3HT). In order to make a contribution in this regard, we designed two RCN-based small molecular acceptors with A2-A1-D-A1-A2 structure, BT3 and BTA3, where benzothiadiazole (BT) and benzotriazole (BTA) are bridged A1 segments, respectively, to modulate the optoelectronic properties. As a result, P3HT:BTA3 solar cell exhibits a promising PCE of 5.64%, with a VOC of 0.90 V and a fill factor (FF) of 0.65, which is obviously much better than that of P3HT:BT3 (PCE = 2.55%, VOC = 0.72 V, FF = 0.61). The higher electron mobility of P3HT:BTA3 film indicates BTA3 tends to form a continuous pathway for electron transport even at a lower weight ratio of 1:0.3 than 1:0.5 for P3HT:BT3 film. Our results indicate that introducing a weak electron-withdrawing building block BTA is an effective strategy compared with the BT counterpart to improve the performance of RCN-based NFA devices.
Collapse
Affiliation(s)
- Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Qianqian Zhang
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Gongqiang Li
- Key Laboratory of Flexible Electronic (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Xiaochen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| |
Collapse
|
34
|
Yang J, Yin Y, Chen F, Zhang Y, Xiao B, Zhao L, Zhou E. Comparison of Three n-Type Copolymers Based on Benzodithiophene and Naphthalene Diimide/Perylene Diimide/Fused Perylene Diimides for All-Polymer Solar Cells Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23263-23269. [PMID: 29921122 DOI: 10.1021/acsami.8b06306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
All-polymer solar cells have gained large attention in recent years because of their tunable energy levels and absorption spectra for both polymeric donor and acceptor. Comparing with the numerous polymeric donors, the development of polymeric acceptors was relatively slow. Rylene diimide-based polymers are regarded as the most promising n-type polymers, which were widely investigated in the past decade, and some novel rylene diimide structures are constantly designed. In this work, three n-type polymers with a donor/acceptor (D/A) alternative backbone structure, named PNDI-BDT, PPDI-BDT, and PFPDI-BDT, were synthesized. In these polymers, naphthalene diimide (NDI), perylene diimide (PDI), and recently developed fused perylene diimide (FPDI) were utilized as electron-withdrawing segment, respectively, and benzodithiophene (BDT) with thiophenes as conjugated side chains was utilized as an electron-rich unit. The optical properties, electron energy levels, charge transport properties, photovoltaic performance, charge recombination loss, and surface morphology were systematically investigated. After optimizing the device fabrication conditions, PNDI-BDT-, PPDI-BDT-, and PFPDI-BDT-based photovoltaic cells realized the power conversion efficiencies of 0.88, 3.74, and 5.65%, respectively. Our results indicate that FPDI is a better electron-deficient segment in comparison with NDI and PDI, for the design of n-type photovoltaic polymers.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yuli Yin
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Fan Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yong Zhang
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Liancheng Zhao
- School of Materials Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190 , China
| |
Collapse
|
35
|
Tang A, Chen F, Xiao B, Yang J, Li J, Wang X, Zhou E. Utilizing Benzotriazole and Indacenodithiophene Units to Construct Both Polymeric Donor and Small Molecular Acceptors to Realize Organic Solar Cells With High Open-Circuit Voltages Beyond 1.2 V. Front Chem 2018; 6:147. [PMID: 29765938 PMCID: PMC5938601 DOI: 10.3389/fchem.2018.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023] Open
Abstract
Devolopment of organic solar cells with high open-circuit voltage (VOC) and power conversion efficiency (PCE) simutaniously plays a significant role, but there is no guideline how to choose the suitable photovoltaic material combinations. In our previous work, we developed "the Same-Acceptor-Strategy" (SAS), by utilizing the same electron-accepting segment to construct both polymeric donor and small molecular acceptor. In this study, we further expend SAS to use both the same electron-accepting and electron-donating units to design the material combination. The p-type polymer of PIDT-DTffBTA is designed by inserting conjugated bridge between indacenodithiophene (IDT) and fluorinated benzotriazole (BTA), while the n-type small molecules of BTAx (x = 1, 2, 3) are obtained by introducing different end-capped groups to BTA-IDT-BTA backbone. PIDT-DTffBTA: BTAx (x = 1-3) based photovolatic devices can realize high VOC of 1.21-1.37 V with the very small voltage loss (0.55-0.60 V), while only the PIDT-DTffBTA: BTA3 based device possesses the enough driving force for efficient hole and electron transfer and yields the optimal PCE of 5.67%, which is among the highest value for organic solar cells (OSCs) with a VOC beyond 1.20 V reported so far. Our results provide a simple and effective method to obtain fullerene-free OSCs with a high VOC and PCE.
Collapse
Affiliation(s)
- Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Fan Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
36
|
Cai Z, Zhao D, Sharapov V, Awais MA, Zhang N, Chen W, Yu L. Enhancement in Open-Circuit Voltage in Organic Solar Cells by Using Ladder-Type Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13528-13533. [PMID: 29589434 DOI: 10.1021/acsami.8b01308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The open-circuit voltage ( Voc) loss has always been a major factor in lowering power conversion efficiencies (PCEs) in bulk heterojunction organic photovoltaic cells (OPVs). A method to improve the Voc is indispensable to achieve high PCEs. In this paper, we investigated a series of perylene diimide-based ladder-type molecules as electron acceptors in nonfullerene OPVs. The D-A ladder-type structures described here lock our π-systems into a planar structure and eliminate bond twisting associated with linear conjugated systems. This enlarges the interface energy gap (Δ EDA), extends electronic delocalization, and hence improves the Voc. More importantly, these devices showed an increase in Voc without compromising either the Jsc or the FF. C5r exhibited a strong intermolecular interaction and a PCE value of 6.1%. Moreover, grazing-incident wide-angle X-ray scattering analysis and atomic force microscopy images suggested that our fused-ring acceptors showed a suitable domain size and uniform blend films, which were not affected by their rigid molecular structures.
Collapse
Affiliation(s)
- Zhengxu Cai
- Department of Chemistry and the James Franck Institute , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Donglin Zhao
- Department of Chemistry and the James Franck Institute , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Valerii Sharapov
- Department of Chemistry and the James Franck Institute , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Mohammad A Awais
- Department of Chemistry and the James Franck Institute , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Na Zhang
- Department of Chemistry and the James Franck Institute , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Wei Chen
- Institute for Molecular Engineering and Materials Science Division , Argonne National Laboratory , 9700 Cass Avenue , Lemont , Illinois 60439 , United States
- Institute for Molecular Engineering , The University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Luping Yu
- Department of Chemistry and the James Franck Institute , The University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| |
Collapse
|
37
|
Xiao B, Tang A, Yang J, Mahmood A, Sun X, Zhou E. Quinoxaline-Containing Nonfullerene Small-Molecule Acceptors with a Linear A 2-A 1-D-A 1-A 2 Skeleton for Poly(3-hexylthiophene)-Based Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10254-10261. [PMID: 29521083 DOI: 10.1021/acsami.8b00216] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We used the quinoxaline (Qx) unit to design and synthesize two nonfullerene small-molecule acceptors of Qx1 and Qx1b with an A2-A1-D-A1-A2 skeleton, where indacenodithiophene (IDT), Qx, and rhodanine (R) were adopted as the central donor (D), bridge acceptors (A1), and terminal acceptors (A2), respectively. Qx1 and Qx1b contain different side chains of 4-hexylphenyl and octyl in the central IDT segment to modulate the properties of final small molecules. Both small molecules show good thermal stability, high solubility, and strong and broad absorption spectra with optical band gaps of 1.74 and 1.68 eV, respectively. Qx1 and Qx1b exhibit the complementary absorption spectra with the classic poly(3-hexylthiophene) (P3HT) and the high-lying lowest unoccupied molecular orbital energy levels of -3.60 and -3.66 eV, respectively. Polymer solar cells based on P3HT:Qx1 showed a high open-circuit voltage ( Voc) of 1.00 V and a power conversion efficiency (PCE) of 4.03%, whereas P3HT:Qx1b achieved a Voc of 0.95 V and a PCE of 4.81%. These results demonstrate that the Qx unit is also an effective building block to construct promising n-type nonfullerene small molecules to realize a relatively high Voc and PCE for P3HT-based solar cells.
Collapse
Affiliation(s)
- Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Asif Mahmood
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xiangnan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
38
|
Wen X, Xiao B, Tang A, Hu J, Yang C, Zhou E. Wide Band Gap Non-Fullerene Small Molecular Acceptors Containing Spirobifluorene and Benzotriazole with Three Different End-Capped Groups for P3HT-Based Organic Solar Cells. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoyu Wen
- Department of Chemistry, School of Science; Beijing Jiaotong University; Beijing 100044 China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Junyi Hu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chunhe Yang
- Department of Chemistry, School of Science; Beijing Jiaotong University; Beijing 100044 China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| |
Collapse
|
39
|
Wen S, Wu Y, Wang Y, Li Y, Liu L, Jiang H, Liu Z, Yang R. Pyran-Bridged Indacenodithiophene as a Building Block for Constructing Efficient A-D-A-Type Nonfullerene Acceptors for Polymer Solar Cells. CHEMSUSCHEM 2018; 11:360-366. [PMID: 29152892 DOI: 10.1002/cssc.201701917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Indexed: 05/20/2023]
Abstract
In recent years, nonfullerene acceptors have attracted much attention, owing to their great potential for use in high-performance polymer solar cells.The ladder-type building block, pyran-bridged indacenodithiophene (PDT), was used for constructing A-D-A nonfullerene acceptors through introduction of oxygen atoms into an indacenodithiophene (IDT) unit. The synthesis of PDT is accomplished by a BBr3 -mediated tandem cyclization-deprotection reaction to construct the pyran ring. Hence, molecular acceptor PTIC was synthesized and used in a polymer solar cell device. Compared to the IDT-based acceptor, PTIC exhibits higher HOMO levels and wider optical band gap at 550-800 nm. Devices fabricated with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione)] (PBDB-T):PTIC as the active layer give a power conversion efficiency (PCE) of 7.66 %.
Collapse
Affiliation(s)
- Shuguang Wen
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| | - Yao Wu
- School of Materials Science&Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Yingying Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| | - Yi Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| | - Ling Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| | - Huanxiang Jiang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| | - Zhitian Liu
- School of Materials Science&Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| |
Collapse
|
40
|
Li J, Yang J, Hu J, Chen Y, Xiao B, Zhou E. The first thieno[3,4-b]pyrazine based small molecular acceptor with a linear A2–A1–D–A1–A2 skeleton for fullerene-free organic solar cells with a high Voc of 1.05 V. Chem Commun (Camb) 2018; 54:10770-10773. [DOI: 10.1039/c8cc06198j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first thieno[3,4-b]pyrazine (TP) based non-fullerene acceptor was designed and synthesized, which could realize a moderate power conversion efficiency (PCE) of 5.81% with a high open-circuit voltage (Voc) of 1.05 V by using J61 as a donor polymer.
Collapse
Affiliation(s)
- Jianfeng Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Junyi Hu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - You Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| |
Collapse
|
41
|
Hu J, Wang X, Chen F, Xiao B, Tang A, Zhou E. Medium Bandgap D-A Type Photovoltaic Polymers Based on an Asymmetric Dithienopyran Donor and a Benzotriazole Acceptor. Polymers (Basel) 2017; 9:E516. [PMID: 30965820 PMCID: PMC6418947 DOI: 10.3390/polym9100516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Conjugated polymers based on the donor of an asymmetric 5H-dithieno[3,2-b:2',3'-d]pyran (DTPa) and the acceptors of benzo[d][1,2,3]triazole (BTA) or di-fluorinated benzo[d][1,2,3]triazole (ffBTA) with thiophene as π-bridge were designed and synthesized. Two asymmetric-building-block-containing polymers (ABC-polymers) possess a strong and broad absorption in the range of 300⁻750 nm and medium optical bandgap of 1.73 and 1.77 eV for PDTPa-TBTA and PDTPa-TffBTA, respectively. Polymer solar cells using PDTPa-TBTA as donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor exhibited power conversion efficiencies (PCE) of 2.22% with a Voc of 0.58 V, a Jsc of 6.04 mA/cm², and an FF of 63.41%. The introduction of fluorine substituents on the BTA unit evidently influenced the optical and photovoltaic properties. Interestingly, although the HOMO energy level indeed decreased, PDTPa-TffBTA showed a decreased Voc of 0.52 V in solar cells. Combined with an obviously enhanced Jsc of 10.23 mA/cm², and an outstanding FF of 0.64, the PCE of solar cells based on PDTPa-TffBTA was improved by nearly 55%, reached 3.43%. Our results indicate that the BTA unit can be used to construct ABC polymers with a medium bandgap, and the introduction of fluorine on the BTA unit is also effective in improving the photovoltaic performance.
Collapse
Affiliation(s)
- Junyi Hu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaochen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Fan Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
42
|
Xiao B, Zhao Y, Tang A, Wang H, Yang J, Zhou E. PTB7-Th based organic solar cell with a high V oc of 1.05V by modulating the LUMO energy level of benzotriazole-containing non-fullerene acceptor. Sci Bull (Beijing) 2017; 62:1275-1282. [PMID: 36659456 DOI: 10.1016/j.scib.2017.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/26/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023]
Abstract
The open-circuit voltage (Voc) of classical photovoltaic polymers, such as P3HT and PTB7-Th, are always restricted when combining with fullerene derivatives, due to the difficulty of modulating the energy levels of fullerene derivatives. Thus, design of new non-fullerene small molecule acceptor (NFSMA) is very significant to match with these mature polymer donors and improve the Voc and power conversion efficiency (PCE). Here, a new benzotriazole (BTA)-based NFSMA, BTA7 was synthesized by adopting A2A1DA1A2 type molecular backbone. By using a strong electron-accepting unit of malononitrile (M) as terminal segment A2, BTA7 demonstrates strong crystallinity, red-shifted absorption spectrum and down-shifted lowest unoccupied molecular orbital (LUMO) energy levels in comparison with BTA1 and BTA2. Organic solar cells (OSCs) based on PTB7-Th:BTA7 realized a high Voc of 1.05V with a moderate PCE of 4.60%. The energy loss (Eloss=Eg-eVoc) of 0.53eV is lower than the experiential minimum value of 0.6eV, which indicates PTB7-Th still has large potential to improve the Voc and photovoltaic performance after the development of novel electron acceptors.
Collapse
Affiliation(s)
- Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haiqiao Wang
- State Key Laboratory of Organic-Inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
43
|
Wang L, Liu H, Huai Z, Yang S. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28828-28837. [PMID: 28792202 DOI: 10.1021/acsami.7b09253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent years have seen a rapid progress in the power conversion efficiencies (PCEs) of non-fullerene polymer solar cells (NF PSCs). However, the donor materials accordingly used are typical low or medium band gap polymers, some of which possess badly overlapped absorption spectra relative to the low band gap n-type acceptors, for example, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)indanone)-5,5,11,11-tetrakis(4-hexylphenyl)dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene) (ITIC). To obtain polymers simultaneously owning a wide band gap, a highly extended π-conjugation system, and a low-lying highest occupied molecular orbital (HOMO), a polymer (PBDTSi-TA) incorporating 2-(triisopropylsilylethynyl)thiophene substituted benzodithiophene (BDTSi) and fluorinated benzotriazole (FTAZ) units was designed and synthesized. PBDTSi-TA (Egopt = 1.92 eV) exhibits strong molecular aggregation properties and a lower-lying HOMO energy level compared to its structural analogues. When blended with ITIC and after device optimization with solvent vapor annealing in combination with a developed PDIN/BCP/Ag cathode structure, PSCs yielded a PCE of 7.51%, with Voc = 0.96 V. Moreover, a rather small energy loss (Eloss) of 0.6-0.63 eV was determined. For comparison, another polymer (PBDTSi-Qx) with a more-electron-deficient quinoxaline-based acceptor unit was also synthesized and applied to NF PSCs. Charge generation rate, exciton dissociation probabilities, dark leakage current, nanoscale morphology, and charge carrier mobilities have been evaluated to probe the reasons for the differentiated performances. The results suggest that PBDTSi-TA is a promising donor material for NF PSCs, and the molecular design strategy demonstrated here would be helpful for pursuing high-performance polymers for PSCs.
Collapse
Affiliation(s)
- Lixin Wang
- Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University , Baoding 071002, P. R. China
| | - Haifen Liu
- Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University , Baoding 071002, P. R. China
| | - Zhaoxiang Huai
- Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University , Baoding 071002, P. R. China
| | - Shaopeng Yang
- Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University , Baoding 071002, P. R. China
| |
Collapse
|