1
|
Mendes MC, Pereira JA, Silva AS, Mano JF. Magneto-Enzymatic Microgels for Precise Hydrogel Sculpturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402988. [PMID: 39139015 DOI: 10.1002/adma.202402988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The inclusion of hollow channels in tissue-engineered hydrogels is crucial for mimicking the natural physiological conditions and facilitating the delivery of nutrients and oxygen to cells. Although bio-fabrication techniques provide diverse strategies to create these channels, many require sophisticated equipment and time-consuming protocols. Herein, collagenase, a degrading agent for methacrylated gelatin hydrogels, and magnetic nanoparticles (MNPs) are combined and processed into enzymatically active spherical structures using a straightforward oil bath emulsion methodology. The generated microgels are then used to microfabricate channels within biomimetic hydrogels via a novel sculpturing approach that relied on the precise coupling of protein-enzyme pairs (for controlled local degradation) and magnetic actuation (for directional control). Results show that the sculpting velocity can be tailored by adjusting the magnetic field intensity or concentration of MNPs within the microgels. Additionally, varying the magnetic field position or microgel size generated diverse trajectories and channels of different widths. This innovative technology improves the viability of encapsulated cells through enhanced medium transport, outperforming non-sculpted hydrogels and offering new perspectives for hydrogel vascularization and drug/biomolecule administration. Ultimately, this novel concept can help design fully controlled channels in hydrogels or soft materials, even those with complex tortuosity, in a single wireless top-down biocompatible step.
Collapse
Affiliation(s)
- Maria C Mendes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João A Pereira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Ana S Silva
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
2
|
Janipour Shahroudkolaei M, Mredha MTI, Chuang KC, Jeon I. Hofmeister-Effect-Driven Hybrid Glycerogels for Perfect Wide-Temperature Shape Fixity and Shape Recovery in Soft Robotics Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400567. [PMID: 38750612 DOI: 10.1002/smll.202400567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Shape memory gels have emerged as crucial elements in soft robotics, actuators, and biomedical devices; however, several problems persist, like the trade-off between shape fixity and shape recovery, and the limited temperature range for their application. This article introduces a new class of shape memory hybrid glycerogels (GGs) designed to address these limitations. The well-modulated internal structure of the GGs, facilitated by the Hofmeister salting-out effect, strategically incorporates a higher crystallite content, abundant crosslinking points, and a high elastic modulus. Unlike reported shape memory gels, the GG exhibits a perfect triple-step shape memory behavior in air with 100% shape fixity in a wide programming temperature range (75-135 °C) and simultaneously achieves 100% shape recoverability. The gel recovers its shape at -40 °C under near-infrared light across a wide programming temperature range (25-135 °C), showing unexpected initiation even at subzero temperatures. Inspired by the mechanics of composite structures, a method is proposed to integrate the GG seamlessly with a shape memory alloy, which further expands the temperature range that yields perfect shape memory properties. Finally, two light-controlled fluttering and crawling soft robot prototypes are engineered to illustrate the versatility and potential applications of the composite gel in soft robotics.
Collapse
Affiliation(s)
- Mona Janipour Shahroudkolaei
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Md Tariful Islam Mredha
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Kuo-Chih Chuang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of Aeronautics and Astronautics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Insu Jeon
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
3
|
Ma Y, Lu Y, Yue Y, He S, Jiang S, Mei C, Xu X, Wu Q, Xiao H, Han J. Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances. Carbohydr Polym 2024; 335:122067. [PMID: 38616090 DOI: 10.1016/j.carbpol.2024.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Inspired by creatures, abundant stimulus-responsive hydrogel actuators with diverse functionalities have been manufactured for applications in soft robotics. However, constructing a shape memory and self-sensing bilayer hydrogel actuator with high mechanical strength and strong interfacial bonding still remains a challenge. Herein, a novel bilayer hydrogel with a stimulus-responsive TEMPO-oxidized cellulose nanofibers/poly(N-isopropylacrylamide) (TOCN/PNIPAM) layer and a non-responsive TOCN/polyacrylamide (TOCN/PAM) layer is proposed as a thermosensitive actuator. TOCNs as a nano-reinforced phase provide a high mechanical strength and endow the hydrogel actuator with a strong interfacial bonding. Due to the incorporation of TOCNs, the TOCN/PNIPAM hydrogel exhibits a high compressive strength (~89.2 kPa), elongation at break (~170.7 %) and tensile strength (~24.0 kPa). The prepared PNIPAM/TOCN/PAM hydrogel actuator performs the roles of an encapsulation, jack, temperature-controlled fluid valve and temperature-control manipulator. The incorporation of Fe3+ further endows the bilayer hydrogel actuator with a synergistic performance of shape memory and temperature-driven, which can be used as a temperature-responsive switch to detect ambient temperature. The PNIPAM/TOCN/PAM-Fe3+ conductive hydrogel can be assembled into a flexible sensor and generate sensing signals when driven by temperature changes to achieve real-time feedback. This research may lead to new insights into the design and manufacturing of intelligent flexible soft robots.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ya Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Saiz PG, Reizabal A, Vilas-Vilela JL, Dalton PD, Lanceros-Mendez S. Materials and Strategies to Enhance Melt Electrowriting Potential. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312084. [PMID: 38447132 DOI: 10.1002/adma.202312084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Indexed: 03/08/2024]
Abstract
Melt electrowriting (MEW) is an emerging additive manufacturing (AM) technology that enables the precise deposition of continuous polymeric microfibers, allowing for the creation of high-resolution constructs. In recent years, MEW has undergone a revolution, with the introduction of active properties or additional functionalities through novel polymer processing strategies, the incorporation of functional fillers, postprocessing, or the combination with other techniques. While extensively explored in biomedical applications, MEW's potential in other fields remains untapped. Thus, this review explores MEW's characteristics from a materials science perspective, emphasizing the diverse range of materials and composites processed by this technique and their current and potential applications. Additionally, the prospects offered by postprinting processing techniques are explored, together with the synergy achieved by combining melt electrowriting with other manufacturing methods. By highlighting the untapped potentials of MEW, this review aims to inspire research groups across various fields to leverage this technology for innovative endeavors.
Collapse
Affiliation(s)
- Paula G Saiz
- Macromolecular Chemistry Research Group (LABQUIMAC) Department of Physical Chemistry Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403, USA
| | - Ander Reizabal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403, USA
- BCMaterials, Basque Center for Materials Applications, and Nanostructures, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Jose Luis Vilas-Vilela
- Macromolecular Chemistry Research Group (LABQUIMAC) Department of Physical Chemistry Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
- BCMaterials, Basque Center for Materials Applications, and Nanostructures, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403, USA
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials Applications, and Nanostructures, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
5
|
Farrukh A, Nayab S. Shape Memory Hydrogels for Biomedical Applications. Gels 2024; 10:270. [PMID: 38667689 PMCID: PMC11049586 DOI: 10.3390/gels10040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The ability of shape memory polymers to change shape upon external stimulation makes them exceedingly useful in various areas, from biomedical engineering to soft robotics. Especially, shape memory hydrogels (SMHs) are well-suited for biomedical applications due to their inherent biocompatibility, excellent shape morphing performance, tunable physiochemical properties, and responsiveness to a wide range of stimuli (e.g., thermal, chemical, electrical, light). This review provides an overview of the unique features of smart SMHs from their fundamental working mechanisms to types of SMHs classified on the basis of applied stimuli and highlights notable clinical applications. Moreover, the potential of SMHs for surgical, biomedical, and tissue engineering applications is discussed. Finally, this review summarizes the current challenges in synthesizing and fabricating reconfigurable hydrogel-based interfaces and outlines future directions for their potential in personalized medicine and clinical applications.
Collapse
Affiliation(s)
- Aleeza Farrukh
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Sana Nayab
- Institute of Chemistry, Quaid-i-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
6
|
Shi W, Jang S, Kuss MA, Alimi OA, Liu B, Palik J, Tan L, Krishnan MA, Jin Y, Yu C, Duan B. Digital Light Processing 4D Printing of Poloxamer Micelles for Facile Fabrication of Multifunctional Biocompatible Hydrogels as Tailored Wearable Sensors. ACS NANO 2024; 18:7580-7595. [PMID: 38422400 DOI: 10.1021/acsnano.3c12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The lack of both digital light processing (DLP) compatible and biocompatible photopolymers, along with inappropriate material properties required for wearable sensor applications, substantially hinders the employment of DLP 3D printing in the fabrication of multifunctional hydrogels. Herein, we discovered and implemented a photoreactive poloxamer derivative, Pluronic F-127 diacrylate, which overcomes these limitations and is optimized to achieve DLP 3D printed micelle-based hydrogels with high structural complexity, resolution, and precision. In addition, the dehydrated hydrogels exhibit a shape-memory effect and are conformally attached to the geometry of the detection point after rehydration, which implies the 4D printing characteristic of the fabrication process and is beneficial for the storage and application of the device. The excellent cytocompatibility and in vivo biocompatibility further strengthen the potential application of the poloxamer micelle-based hydrogels as a platform for multifunctional wearable systems. After processing them with a lithium chloride (LiCl) solution, multifunctional conductive ionic hydrogels with antifreezing and antiswelling properties along with good transparency and water retention are easily prepared. As capacitive flexible sensors, the DLP 3D printed micelle-based hydrogel devices exhibit excellent sensitivity, cycling stability, and durability in detecting multimodal deformations. Moreover, the DLP 3D printed conductive hydrogels are successfully applied as real-time human motion and tactile sensors with satisfactory sensing performances even in a -20 °C low-temperature environment.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Seonmin Jang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Olawale A Alimi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jayden Palik
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Li Tan
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
7
|
Ouro PMS, Costa DCS, Amaral AJR, Mano JF. A Supramolecular Injectable Methacryloyl Chitosan-Tricine-Based Hydrogel with 3D Printing Potential for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2300058. [PMID: 37154384 DOI: 10.1002/mabi.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Printable hydrogels have attracted significant attention as versatile, tunable, and spatiotemporally controlled biomaterials for tissue engineering (TE) applications. Several chitosan-based systems are reported presenting low or no solubility in aqueous solutions at physiological pH. Herein, a novel neutrally charged, biomimetic, injectable, and cytocompatible dual-crosslinked (DC) hydrogel system based on a double functionalized chitosan (CHT) with methacryloyl and tricine moieties (CHTMA-Tricine), completely processable at physiological pH, with promising three-dimensional (3D) printing potential is presented. Tricine, an amino acid typically used in biomedicine, is capable of establishing supramolecular interactions (H-bonds) and is never explored as a hydrogel component for TE. CHTMA-Tricine hydrogels demonstrate significantly greater toughness (ranging from 656.5 ± 82.2 to 1067.5 ± 121.5 kJ m-3 ) compared to CHTMA hydrogels (ranging from 382.4 ± 44.1 to 680.8 ± 104.5 kJ m-3 ), highlighting the contribution of the supramolecular interactions for the overall reinforced 3D structure provided by tricine moieties. Cytocompatibility studies reveal that MC3T3-E1 pre-osteoblasts cells remain viable for 6 days when encapsulated in CHTMA-Tricine constructs, with semi-quantitative analysis showing ≈80% cell viability. This system's interesting viscoelastic properties allow the fabrication of multiple structures, which couple with a straightforward approach, will open doors for the design of advanced chitosan-based biomaterials through 3D bioprinting for TE.
Collapse
Affiliation(s)
- Pedro M S Ouro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Dora C S Costa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Adérito J R Amaral
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
8
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Rational Design of Multifunctional Hydrogels for Wound Repair. J Funct Biomater 2023; 14:553. [PMID: 37998122 PMCID: PMC10672203 DOI: 10.3390/jfb14110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different requirements of wound healing stages, have greatly improved the healing effectiveness of chronic wounds, offering immense potential in wound repair applications. This review summarized the recent research and applications of multifunctional hydrogels in wound repair. The focus was placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of action at different stages of wound repair were discussed in detail. Through a comprehensive analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and effectively preventing infection. However, further implementation of multifunctional hydrogel-based therapeutic strategies also faces various challenges, such as the contradiction between the complexity of multifunctionality and the simplicity required for clinical translation and application. In the future, we should work to address these challenges, further optimize the design and preparation of multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread application in clinical practice.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Fan GL, Wang SW, Zhang YY, Liu ZT, Liu ZW, Wang L, Jiang JQ, Li G. Programmable Thermo-Responsive Actuation of Hydrogels via Light-Guided Surface Growth of Active Layers on Shape Memory Substrates. Macromol Rapid Commun 2023; 44:e2200705. [PMID: 36461768 DOI: 10.1002/marc.202200705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/03/2022] [Indexed: 12/05/2022]
Abstract
Hydrogel shape memory and actuating functionalities are heavily pursued and have found great potential in various application fields. However, their combination for more flexible and complicated morphing behaviors is still challenging. Herein, it is reported that by controlling the light-initiated polymerization of active hydrogel layers on shape memory hydrogel substrates, advanced morphing behaviors based on programmable hydrogel shapes and actuating trajectories are realized. The formation and photo-reduction-induced dissociation of Fe3+ -carboxylate coordination endow the hydrogel substrates with the shape memory functionality. The photo-reduced Fe2+ ions can diffuse from the substrates into the monomer solutions to initiate the polymerization of the thermally responsive active layers, whose actuating temperatures and amplitudes can be facially tuned by controlling their thicknesses and compositions. One potential application, a shape-programmable 3D hook that can lift an object with a specific shape, is also unveiled. The demonstrated strategy is extendable to other hydrogel systems to realize more versatile and complicated actuating behaviors.
Collapse
Affiliation(s)
- Guang-Lin Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China.,Sichuan Dongshu New Materials Co., Ltd., Deyang, Sichuan Province, 618000, China
| | - Shu-Wei Wang
- Shanxi Xinhua Chemical Defense Equipment Research Institute Co., Ltd., Taiyuan, Shanxi Province, 030008, China
| | - Ying-Ying Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Lei Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Jin-Qiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 71006, China
| |
Collapse
|
10
|
Sacramento MMA, Borges J, Correia FJS, Calado R, Rodrigues JMM, Patrício SG, Mano JF. Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Front Bioeng Biotechnol 2022; 10:1041102. [PMID: 36568299 PMCID: PMC9773402 DOI: 10.3389/fbioe.2022.1041102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, natural-origin polysaccharides have received increasing attention across different fields of application, including biomedicine and biotechnology, because of their specific physicochemical and biological properties that have afforded the fabrication of a plethora of multifunctional devices for healthcare applications. More recently, marine raw materials from fisheries and aquaculture have emerged as a highly sustainable approach to convert marine biomass into added-value polysaccharides for human benefit. Nowadays, significant efforts have been made to combine such circular bio-based approach with cost-effective and environmentally-friendly technologies that enable the isolation of marine-origin polysaccharides up to the final construction of a biomedical device, thus developing an entirely sustainable pipeline. In this regard, the present review intends to provide an up-to-date outlook on the current green extraction methodologies of marine-origin polysaccharides and their molecular engineering toolbox for designing a multitude of biomaterial platforms for healthcare. Furthermore, we discuss how to foster circular bio-based approaches to pursue the further development of added-value biomedical devices, while preserving the marine ecosystem.
Collapse
Affiliation(s)
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fernando J. S. Correia
- Laboratory of Scientific Illustration, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ricardo Calado
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - João M. M. Rodrigues
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia G. Patrício
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Zeng C, Wu P, Guo J, Zhao N, Ke C, Liu G, Zhou F, Liu W. Synergy of Hofmeister effect and ligand crosslinking enabled the facile fabrication of super-strong, pre-stretching-enhanced gelatin-based hydrogels. SOFT MATTER 2022; 18:8675-8686. [PMID: 36349798 DOI: 10.1039/d2sm01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogels are becoming increasingly popular in biomedical and soft machine manufacturing, but their practical application is limited by poor mechanical properties. In recent years, Hofmeister effect-enhanced gelatin hydrogels have become popular. However, the synergy of the Hofmeister effect using other toughening methods is still less investigated. We have fabricated an ultra-high strength gelatin-based hydrogel by introducing ligand cross-linking and hydrogen bonds. Unlike conventional double-network hydrogels, the dense physical cross-linking involving sacrificial bonds gives the hydrogel excellent fatigue resistance and self-recovery properties. The enhancement of mechanical properties by the Hofmeister effect is attributed to the disruption of the hydration shell of the gelatin molecular chains, which leads to stronger interactions between the molecular chains. The mechanical properties of the hydrogels are adjustable over a wide range by varying the concentration of the soaked (NH4)2SO4 solution. The fixation of the gelatin molecular chain orientation by the Hofmeister effect and the reorganization of the coordination bonds allow the hydrogels to be self-reinforced by pre-stretching. At the same time, the modulus contraction of hydrogels in high-concentration salt solutions, and relaxation and swelling in dilute solutions exhibit ionic stimulation responses and shape recovery capability, and hybrid hydrogels have great potential as bio-actuators.
Collapse
Affiliation(s)
- Cheng Zeng
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Pengxi Wu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Jinglun Guo
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Nan Zhao
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Cheng Ke
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guoqiang Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Sealing Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Qie H, Wang Z, Ren J, Lü S, Liu M. A tough shape memory hydrogel strain sensor based on gelatin grafted polypyrrole. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|