1
|
Metibemu DS, Adeyinka OS, Falode J, Hampton T, Crown O, Ojobor JC, Narayanan A, Julander J, Ogungbe IV. Inhibitor of the non-structural protein 2 protease shows promising efficacy in mouse models of chikungunya. Eur J Med Chem 2024; 278:116808. [PMID: 39236495 PMCID: PMC11440364 DOI: 10.1016/j.ejmech.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Chikungunya virus (CHIKV) is responsible for the most endemic alphavirus infections called Chikungunya. The endemicity of Chikungunya has increased over the past two decades, and it is a pathogen with pandemic potential. There is currently no approved direct-acting antiviral to treat the disease. As part of our antiviral drug discovery program focused on alphaviruses and the non-structural protein 2 protease, we discovered that J12 and J13 can inhibit CHIKV nsP2 protease and block the replication of CHIKV in cell cultures. Both compounds are metabolically stable to human liver microsomal and S9 enzymes. J13 has excellent oral bioavailability in pharmacokinetics studies in mice and ameliorated Chikungunya symptoms in preliminary efficacy studies in mice. J13 exhibited an excellent safety profile in in vitro safety pharmacology and off-target screening assays, making J13 and its analogs good candidates for drug development against Chikungunya.
Collapse
Affiliation(s)
- Damilohun S Metibemu
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olawale S Adeyinka
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Tamia Hampton
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - J Chinenye Ojobor
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA, 22030, USA
| | - Justin Julander
- Institute for Antiviral Research and the Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
2
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Tse EG, Stashko MA, Li K, Norris-Drouin JL, Herring LE, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith CH, Couñago RM, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise MT, Willson TM, Popov KI, Pearce KH. Identification of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. Proc Natl Acad Sci U S A 2024; 121:e2409166121. [PMID: 39388272 PMCID: PMC11494320 DOI: 10.1073/pnas.2409166121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV nonstructural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow-up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a kinact /KI of 6.4 × 103 M-1s-1. LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity in proteomic experiments or against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the identification and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic.
Collapse
Affiliation(s)
- Eric M. Merten
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - John D. Sears
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tina M. Leisner
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - P. Brian Hardy
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Anirban Ghoshal
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kesatebrhan Haile Asressu
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Peter J. Brown
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Edwin G. Tse
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael A. Stashko
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kelin Li
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jacqueline L. Norris-Drouin
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Laura E. Herring
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Angie L. Mordant
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Thomas S. Webb
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Christine A. Mills
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalie K. Barker
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Rafael Miguez Couñago
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP13083-886, Brazil
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mark T. Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Timothy M. Willson
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Konstantin I. Popov
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kenneth H. Pearce
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Molecular Therapeutics Research Program, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
3
|
Tong J, Shu J, Wang Y, Qi Y, Wang Y. A bioactive sprite: Recent advances in the application of vinyl sulfones in drug design and organic synthesis. Life Sci 2024; 352:122904. [PMID: 38986895 DOI: 10.1016/j.lfs.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Vinyl sulfones, with their exceptional chemical properties, are known as the "chameleons" of organic synthesis and are widely used in the preparation of various sulfur-containing structures. However, their most alluring feature lies in their biological activity. The vinyl sulfone skeleton is ubiquitous in natural products and drug molecules and boasts a unique molecular structure and drug activity when compared to conventional drug molecules. As a result, vinyl sulfones have been extensively studied, playing a critical role in organic synthesis and pharmaceutical chemistry. In this review, we present a comprehensive analysis of the recent applications of vinyl sulfone structures in drug design, biology, and chemical synthesis. Furthermore, we explore the prospects of vinyl sulfones in diverse fields, offering insight into their potential future applications.
Collapse
Affiliation(s)
- Jiangtao Tong
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiong Shu
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhua Wang
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yajuan Qi
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Metibemu DS, Adeyinka OS, Falode J, Crown O, Ogungbe IV. Inhibitors of the Structural and Nonstructural Proteins of Alphaviruses. ACS Infect Dis 2024; 10:2507-2524. [PMID: 38992989 DOI: 10.1021/acsinfecdis.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olawale Samuel Adeyinka
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| |
Collapse
|
5
|
Ghoshal A, Magalhães ÁF, Asressu KH, Hossain MA, Todd MH, Willson TM. Identification of Dihydropyrazolo[1,5- a]pyrazin-4(5 H)-ones as Cyclic Products of β-Amidomethyl Vinyl Sulfone Alphavirus Cysteine Protease Inhibitors. Pharmaceuticals (Basel) 2024; 17:836. [PMID: 39065687 PMCID: PMC11279629 DOI: 10.3390/ph17070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Optimized syntheses of (E)-5-(2-ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-3-carboxamide (RA-0002034, 1), a promising antiviral covalent cysteine protease inhibitor lead, were developed. The syntheses avoid the contamination of 1 with the inactive cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2, which is formed by the intramolecular aza-Michael reaction of the vinyl sulfone warhead under basic conditions and slowly at pH 7.4 in phosphate buffer. The pure cysteine protease inhibitor 1 could be synthesized using either modified amide coupling conditions or through the introduction of a MOM-protecting group and was stable as a TFA or HCl salt. Although acyclic 1 demonstrated poor pharmacokinetics with high in vivo clearance in mice, inactive cyclic 2 showed improved plasma exposure. The potential use of cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-ones as prodrugs for the acyclic β-amidomethyl vinyl sulfone warhead was demonstrated by GSH capture experiments with an analog of 2.
Collapse
Affiliation(s)
- Anirban Ghoshal
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Álvaro F. Magalhães
- Structural Genomics Consortium, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Kesatebrhan Haile Asressu
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew H. Todd
- Structural Genomics Consortium, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Stashko MA, Herring L, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith C, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise M, Willson TM, Popov K, Pearce KH. Discovery of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586341. [PMID: 38562906 PMCID: PMC10983941 DOI: 10.1101/2024.03.22.586341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.
Collapse
|
7
|
Xiao YC, Chen FE. The vinyl sulfone motif as a structural unit for novel drug design and discovery. Expert Opin Drug Discov 2024; 19:239-251. [PMID: 37978948 DOI: 10.1080/17460441.2023.2284201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
9
|
Hoffka G, Lountos GT, Needle D, Wlodawer A, Waugh DS, Tőzsér J, Mótyán JA. Self-inhibited State of Venezuelan Equine Encephalitis Virus (VEEV) nsP2 Cysteine Protease: A Crystallographic and Molecular Dynamics Analysis. J Mol Biol 2023; 435:168012. [PMID: 36792007 PMCID: PMC10758287 DOI: 10.1016/j.jmb.2023.168012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
The Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is pathogenic to both humans and equines. The VEEV non-structural protein 2 (nsP2) is a cysteine protease (nsP2pro) that processes the polyprotein and thus it is a drug target for inhibitor discovery. The atomic structure of the VEEV nsP2 catalytic domain was previously characterized by both X-ray crystallography and computational studies. A modified nsP2pro harboring a N475A mutation in the N terminus was observed to exhibit an unexpected conformation: the N-terminal residues bind to the active site, mimicking binding of a substrate. The large conformational change of the N terminus was assumed to be induced by the N475A mutation, as N475 has an important role in stabilization of the N terminus and the active site. This conformation was first observed in the N475A mutant, but we also found it while determining a crystal structure of the catalytically active nsP2pro containing the wild-type N475 active site residue and K741A/K767A surface entropy reduction mutations. This suggests that the N475A mutation is not a prerequisite for self-inhibition. Here, we describe a high resolution (1.46 Å) crystal structure of a truncated nsP2pro (residues 463-785, K741A/K767A) and analyze the structure further by molecular dynamics to study the active and self-inhibited conformations of nsP2pro and its N475A mutant. A comparison of the different conformations of the N-terminal residues sheds a light on the interactions that play an important role in the stabilization of the enzyme.
Collapse
Affiliation(s)
- Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Danielle Needle
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary.
| |
Collapse
|
10
|
Ogorek TJ, Golden JE. Advances in the Development of Small Molecule Antivirals against Equine Encephalitic Viruses. Viruses 2023; 15:413. [PMID: 36851628 PMCID: PMC9958955 DOI: 10.3390/v15020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.
Collapse
Affiliation(s)
- Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
11
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|
12
|
Identification and evaluation of 4-anilinoquin(az)olines as potent inhibitors of both dengue virus (DENV) and Venezuelan equine encephalitis virus (VEEV). Bioorg Med Chem Lett 2021; 52:128407. [PMID: 34624490 DOI: 10.1016/j.bmcl.2021.128407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023]
Abstract
There is an urgent need for novel strategies for the treatment of emerging arthropod-borne viral infections, including those caused by dengue virus (DENV) and Venezuelan equine encephalitis virus (VEEV). We prepared and screened focused libraries of 4-anilinoquinolines and 4-anilinoquinazolines for antiviral activity and identified three potent compounds. N-(2,5-dimethoxyphenyl)-6-(trifluoromethyl)quinolin-4-amine (10) inhibited DENV infection with an EC50 = 0.25 µM, N-(3,4-dichlorophenyl)-6-(trifluoromethyl)quinolin-4-amine (27) inhibited VEEV with an EC50 = 0.50 µM, while N-(3-ethynyl-4-fluorophenyl)-6,7-dimethoxyquinazolin-4-amine (54) inhibited VEEV with an EC50 = 0.60 µM. These series of compounds demonstrated nearly no toxicity with CC50 values greater than 10 µM in all cases. These promising results provide a future prospective to develop a clinical compound against these emerging viral threats.
Collapse
|
13
|
Shindo N, Ojida A. Recent progress in covalent warheads for in vivo targeting of endogenous proteins. Bioorg Med Chem 2021; 47:116386. [PMID: 34509863 DOI: 10.1016/j.bmc.2021.116386] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 01/21/2023]
Abstract
Covalent drugs exert potent and durable activity by chemical modification of the endogenous target protein in vivo. To maximize the pharmacological efficacy while alleviating the risk of toxicity due to nonspecific off-target reactions, current covalent drug discovery focuses on the development of targeted covalent inhibitors (TCIs), wherein a reactive group (warhead) is strategically incorporated onto a reversible ligand of the target protein to facilitate specific covalent engagement. Various aspects of warheads, such as intrinsic reactivity, chemoselectivity, mode of reaction, and reversibility of the covalent engagement, would affect the target selectivity of TCIs. Although TCIs clinically approved to date largely rely on Michael acceptor-type electrophiles for cysteine targeting, a wide array of novel warheads have been devised and tested in TCI development in recent years. In this short review, we provide an overview of recent progress in chemistry for selective covalent targeting of proteins and their applications in TCI designs.
Collapse
Affiliation(s)
- Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku Fukuoka, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku Fukuoka, Japan.
| |
Collapse
|
14
|
Sand P, Schmidt B. Pd‐Catalyzed Oxidative Sulfoalkenylation of Acetanilides and Traceless Removal of the Catalyst Directing Group. ChemistrySelect 2021. [DOI: 10.1002/slct.202101009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Patrick Sand
- Institut für Chemie Universtität Potsdam Karl-Liebknecht-Straße 24–25 D-14476 Potsdam-Golm Germany
| | - Bernd Schmidt
- Institut für Chemie Universtität Potsdam Karl-Liebknecht-Straße 24–25 D-14476 Potsdam-Golm Germany
| |
Collapse
|
15
|
Zhu G, Lai X, Wang S, Lin C, Yuan Y. Synthesis of 2-Imino-1,2-dihydroquinolines via Copper Catalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|