1
|
Qian R, Xue J, Xu Y, Huang J. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. J Chem Inf Model 2024; 64:7214-7237. [PMID: 39360948 DOI: 10.1021/acs.jcim.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.
Collapse
Affiliation(s)
- Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Xue
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - You Xu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Gao Y, Luo Y, Ji G, Wu T. Functional and pathological roles of adenylyl cyclases in various diseases. Int J Biol Macromol 2024; 281:136198. [PMID: 39366614 DOI: 10.1016/j.ijbiomac.2024.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Adenylyl cyclases (ADCYs) produce the second messengers cAMP, which is crucial for a number of cellular activities. There are ten isoforms in the mammalian ADCY family including nine transmembrane adenylyl cyclases (tmAC) and one soluble adenylyl cyclase (sAC/ADCY10). There have been numerous studies demonstrating the importance of ADCYs in the development of a wide range of diseases, including cardiovascular disease, neurological disease, liver disease, and tumors. The classification, structure and regulation of ADCYs are discussed in this overview, which is followed by an analysis of how ADCYs are involved in various disorders and how they are used as a therapeutic tool. Our objective is to get a more thorough understanding of ADCYs to aid future study and provide novel ideas for the treatment of particular diseases.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Baumann HM, Mobley DL. Impact of protein conformations on binding free energy calculations in the beta-secretase 1 system. J Comput Chem 2024; 45:2024-2033. [PMID: 38725239 PMCID: PMC11236511 DOI: 10.1002/jcc.27365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/13/2024] [Accepted: 03/24/2024] [Indexed: 07/11/2024]
Abstract
In binding free energy calculations, simulations must sample all relevant conformations of the system in order to obtain unbiased results. For instance, different ligands can bind to different metastable states of a protein, and if these protein conformational changes are not sampled in relative binding free energy calculations, the contribution of these states to binding is not accounted for and thus calculated binding free energies are inaccurate. In this work, we investigate the impact of different beta-sectretase 1 (BACE1) protein conformations obtained from x-ray crystallography on the binding of BACE1 inhibitors. We highlight how these conformational changes are not adequately sampled in typical molecular dynamics simulations. Furthermore, we show that insufficient sampling of relevant conformations induces substantial error in relative binding free energy calculations, as judged by a variation in calculated relative binding free energies up to 2 kcal/mol depending on the starting protein conformation. These results emphasize the importance of protein conformational sampling and pose this BACE1 system as a challenge case for further method development in the area of enhanced protein conformational sampling, either in combination with binding calculations or as an endpoint correction.
Collapse
Affiliation(s)
- Hannah M Baumann
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - David L Mobley
- Department of Chemistry, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Kim J, So B, Heo Y, So H, Jo JK. Advances in Male Contraception: When Will the Novel Male Contraception be Available? World J Mens Health 2024; 42:487-501. [PMID: 38164023 PMCID: PMC11216971 DOI: 10.5534/wjmh.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 01/03/2024] Open
Abstract
Many contraceptive methods have been developed over the years due to high demand. However, female contraceptive pills and devices do not work for all females due to health conditions and side effects. Also, the number of males who want to actively participate in family planning is gradually increasing. However, the only contraceptive options currently available to males are condoms and vasectomy. Therefore, many male contraceptive methods, including medication (hormonal and non-hormonal therapy) and mechanical methods, are under development. Reversibility, safety, persistence, degree of invasion, promptness, and the suppression of anti-sperm antibody formation are essential factors in the development of male contraceptive methods. In this paper, male contraceptive methods under development are reviewed according to those essential factors. Furthermore, the timeline for the availability of a new male contraception is discussed.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Yongki Heo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea.
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
5
|
Li HL, Go S, Chang JC, Verhoeven A, Elferink RO. Soluble adenylyl cyclase, the cell-autonomous member of the family. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166936. [PMID: 37951509 DOI: 10.1016/j.bbadis.2023.166936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Soluble adenylyl cyclase (sAC) is the evolutionarily most ancient of a set of 10 adenylyl cyclases (Adcys). While Adcy1 to Adcy9 are cAMP-producing enzymes that are activated by G-protein coupled receptors (GPCRs), Adcy10 (sAC) is an intracellular adenylyl cyclase. sAC plays a pivotal role in numerous cellular processes, ranging from basic physiological functions to complex signaling cascades. As a distinct member of the adenylyl cyclase family, sAC is not activated by GPCRs and stands apart due to its unique characteristics, regulation, and localization within cells. This minireview aims to honour Ulli Brandt, the outgoing Executive Editor of our journal, Biochimica Biophysica Acta (BBA), and longstanding Executive Editor of the BBA section Bioenergetics. We will therefore focus this review on bioenergetic aspects of sAC and, in addition, review some important recent general developments in the field of research on sAC.
Collapse
Affiliation(s)
- Hang Lam Li
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Arthur Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands
| | - Ronald Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Research Institute AGEM, Amsterdam UMC, the Netherlands.
| |
Collapse
|
6
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
7
|
You J, Reilly MD, Eljalby M, Bareja R, Yusupova M, Vyas NS, Bang J, Ding W, Desman G, Miller LS, Elemento O, Granstein RD, Zippin JH. Soluble adenylyl cyclase contributes to imiquimod-mediated inflammation and is a potential therapeutic target in psoriasis. Exp Dermatol 2023; 32:1051-1062. [PMID: 37039485 PMCID: PMC10523866 DOI: 10.1111/exd.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023]
Abstract
Cyclic AMP (cAMP) has a key role in psoriasis pathogenesis, as indicated by the therapeutic efficacy of phosphodiesterase inhibitors that prevent the degradation of cAMP. However, whether soluble adenylate cyclase (sAC) (encoded by the ADCY10 gene), which is an important source for cAMP, is involved in Th17 cell-mediated inflammation or could be an alternative therapeutic target in psoriasis is unknown. We have utilized the imiquimod model of murine psoriasiform dermatitis to address this question. Adcy10-/- mice had reduced erythema, scaling and swelling in the skin and reduced CD4+ IL17+ cell numbers in the draining lymph nodes, compared with wild-type mice after induction of psoriasiform dermatitis with imiquimod. Keratinocyte-specific knock out of Adcy10 had no effect on imiquimod-induced ear swelling suggesting keratinocyte sAC has no role in imiquimod-induced inflammation. During Th17 polarization in vitro, naive T cells from Adcy10-/- mice exhibited reduced IL17 secretion and IL-17+ T-cell proliferation suggesting that differentiation into Th17 cells is suppressed without sAC activity. Interestingly, loss of sAC did not impact the expression of Th17 lineage-defining transcription factors (such as Rorc and cMaf) but rather was required for CREB-dependent gene expression, which is known to support Th17 cell gene expression. Finally, topical application of small molecule sAC inhibitors (sACi) reduced imiquimod-induced psoriasiform dermatitis and Il17 gene expression in the skin. Collectively, these findings demonstrate that sAC is important for psoriasiform dermatitis in mouse skin. sACi may provide an alternative class of topical therapeutics for Th17-mediated skin diseases.
Collapse
Affiliation(s)
- Jaewon You
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | | | | | - Rohan Bareja
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
| | | | - Nikki S. Vyas
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, NY NY
| | - Jakyung Bang
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | - Wanhong Ding
- Department of Dermatology, Weill Cornell Medicine, NY NY
| | - Garrett Desman
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, NY NY
- ProHEALTH Care Associates, OptumCare, New Hyde Park, NY
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD
- Immunology, Janssen Research and Development, Spring House, PA
| | - Olivier Elemento
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
| | | | - Jonathan H. Zippin
- Department of Dermatology, Weill Cornell Medicine, NY NY
- Englander Institute of Precision Medicine, Weill Cornell Medicine, NY NY
- Department of Pharmacology, Weill Cornell Medicine, NY NY
| |
Collapse
|
8
|
Wiggins SV, Schreiner R, Ferreira J, Marmorstein AD, Levin LR, Buck J. Carbonic Anhydrase Inhibitor Modulation of Intraocular Pressure Is Independent of Soluble Adenylyl Cyclase. J Ocul Pharmacol Ther 2023; 39:317-323. [PMID: 37097314 PMCID: PMC10398745 DOI: 10.1089/jop.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Purpose: We investigated whether a clinically used carbonic anhydrase inhibitor (CAIs) can modulate intraocular pressure (IOP) through soluble adenylyl cyclase (sAC) signaling. Methods: IOP was measured 1 h after topical treatment with brinzolamide, a topically applied and clinically used CAIs, using direct cannulation of the anterior chamber in sAC knockout (KO) mice or C57BL/6J mice in the presence or absence of the sAC inhibitor (TDI-10229). Results: Mice treated with the sAC inhibitor TDI-10229 had elevated IOP. CAIs treatment significantly decreased increased intraocular pressure (IOP) in wild-type, sAC KO mice, as well as TDI-10229-treated mice. Conclusions: Inhibiting carbonic anhydrase reduces IOP independently from sAC in mice. Our studies suggest that the signaling cascade by which brinzolamide regulates IOP does not involve sAC.
Collapse
Affiliation(s)
- Shakarr V. Wiggins
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, New York, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, USA
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | | | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
9
|
Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Cell Rep 2023; 42:112529. [PMID: 37200193 PMCID: PMC10312392 DOI: 10.1016/j.celrep.2023.112529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/20/2022] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Male mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells. Testosterone cooperates with GLP-1 to enhance cAMP production at the plasma membrane and endosomes via: (1) increased mitochondrial production of CO2, activating the HCO3--sensitive soluble adenylate cyclase; and (2) increased Gαs recruitment to GLP-1 receptor and AR complexes, activating transmembrane adenylate cyclase. Additionally, testosterone enhances GSIS in human islets via a focal adhesion kinase/SRC/phosphatidylinositol 3-kinase/mammalian target of rapamycin complex 2 actin remodeling cascade. We describe the testosterone-stimulated AR interactome, transcriptome, proteome, and metabolome that contribute to these effects. This study identifies AR genomic and non-genomic actions that enhance GLP-1-stimulated insulin exocytosis in male β cells.
Collapse
Affiliation(s)
- Weiwei Xu
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - M M Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Paula Mota de Sa
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles R Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thuong Ho
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgeniy Potapenko
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Stavroula Bitsi
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Manika Bhondeley
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lina Schiffer
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Wandy Beatty
- Molecular Imaging Facility, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachael Wyatt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Daniel E Frigo
- Departments of Cancer Systems Imaging and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaowen Liu
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK; National Institute for Health Research Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TH, UK
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Department of Molecular & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Tomas
- Division of Diabetes, Endocrinology & Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London SW7 2AZ, UK
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division Endocrinology, Metabolism and Diabetes, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre for Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
10
|
Sun S, Fushimi M, Rossetti T, Kaur N, Ferreira J, Miller M, Quast J, van den Heuvel J, Steegborn C, Levin LR, Buck J, Myers RW, Kargman S, Liverton N, Meinke PT, Huggins DJ. Scaffold Hopping and Optimization of Small Molecule Soluble Adenyl Cyclase Inhibitors Led by Free Energy Perturbation. J Chem Inf Model 2023; 63:2828-2841. [PMID: 37060320 DOI: 10.1021/acs.jcim.2c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Free energy perturbation is a computational technique that can be used to predict how small changes to an inhibitor structure will affect the binding free energy to its target. In this paper, we describe the utility of free energy perturbation with FEP+ in the hit-to-lead stage of a drug discovery project targeting soluble adenyl cyclase. The project was structurally enabled by X-ray crystallography throughout. We employed free energy perturbation to first scaffold hop to a preferable chemotype and then optimize the binding affinity to sub-nanomolar levels while retaining druglike properties. The results illustrate that effective use of free energy perturbation can enable a drug discovery campaign to progress rapidly from hit to lead, facilitating proof-of-concept studies that enable target validation.
Collapse
Affiliation(s)
- Shan Sun
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Navpreet Kaur
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Michael Miller
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Jonathan Quast
- Department of Biochemistry, University of Bayreuth, Bayreuth 95440, Germany
| | | | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth 95440, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - Robert W Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Stacia Kargman
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Nigel Liverton
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Peter T Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
- Department of Pharmacology, Weill Cornell Medicine, New York City, New York 10056, United States
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
11
|
Xu H. The slow but steady rise of binding free energy calculations in drug discovery. J Comput Aided Mol Des 2023; 37:67-74. [PMID: 36469232 DOI: 10.1007/s10822-022-00494-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Binding free energy calculations are increasingly used in drug discovery research to predict protein-ligand binding affinities and to prioritize candidate drug molecules accordingly. It has taken decades of collective effort to transform this academic concept into a technology adopted by the pharmaceutical and biotech industry. Having personally witnessed and taken part in this transformation, here I recount the (incomplete) list of problems that had to be solved to make this computational tool practical and suggest areas of future development.
Collapse
Affiliation(s)
- Huafeng Xu
- Roivant Discovery, 151 West 42nd Street, New York, NY, 10036, USA.
| |
Collapse
|
12
|
Miller M, Rossetti T, Ferreira J, Ghanem L, Balbach M, Kaur N, Levin LR, Buck J, Kehr M, Coquille S, van den Heuvel J, Steegborn C, Fushimi M, Finkin-Groner E, Myers RW, Kargman S, Liverton NJ, Huggins DJ, Meinke PT. Design, Synthesis, and Pharmacological Evaluation of Second-Generation Soluble Adenylyl Cyclase (sAC, ADCY10) Inhibitors with Slow Dissociation Rates. J Med Chem 2022; 65:15208-15226. [PMID: 36346696 PMCID: PMC9866367 DOI: 10.1021/acs.jmedchem.2c01133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soluble adenylyl cyclase (sAC: ADCY10) is an enzyme involved in intracellular signaling. Inhibition of sAC has potential therapeutic utility in a number of areas. For example, sAC is integral to successful male fertility: sAC activation is required for sperm motility and ability to undergo the acrosome reaction, two processes central to oocyte fertilization. Pharmacologic evaluation of existing sAC inhibitors for utility as on-demand, nonhormonal male contraceptives suggested that both high intrinsic potency, fast on and slow dissociation rates are essential design elements for successful male contraceptive applications. During the course of the medicinal chemistry campaign described here, we identified sAC inhibitors that fulfill these criteria and are suitable for in vivo evaluation of diverse sAC pharmacology.
Collapse
Affiliation(s)
- Michael Miller
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Navpreet Kaur
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Maria Kehr
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sandrine Coquille
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research, Recombinant Protein Expression, 38124 Braunschweig, Germany
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Efrat Finkin-Groner
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Robert W. Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Stacia Kargman
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Nigel J. Liverton
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States
| | - David J. Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10021, United States
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States; Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
13
|
Rossetti T, Ferreira J, Ghanem L, Buck H, Steegborn C, Myers RW, Meinke PT, Levin LR, Buck J. Assessing potency and binding kinetics of soluble adenylyl cyclase (sAC) inhibitors to maximize therapeutic potential. Front Physiol 2022; 13:1013845. [PMID: 36246105 PMCID: PMC9554468 DOI: 10.3389/fphys.2022.1013845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, 10 different adenylyl cyclases produce the ubiquitous second messenger, cyclic adenosine monophosphate (cAMP). Amongst these cAMP-generating enzymes, bicarbonate (HCO3 -)-regulated soluble adenylyl cyclase (sAC; ADCY10) is uniquely essential in sperm for reproduction. For this reason, sAC has been proposed as a potential therapeutic target for non-hormonal contraceptives for men. Here, we describe key sAC-focused in vitro assays to identify and characterize sAC inhibitors for therapeutic use. The affinity and binding kinetics of an inhibitor can greatly influence in vivo efficacy, therefore, we developed improved assays for assessing these efficacy defining features.
Collapse
Affiliation(s)
- Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Hannes Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Robert W. Myers
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, United States
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
14
|
Ferreira J, Levin LR, Buck J. Strategies to safely target widely expressed soluble adenylyl cyclase for contraception. Front Pharmacol 2022; 13:953903. [PMID: 36091839 PMCID: PMC9452739 DOI: 10.3389/fphar.2022.953903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, the prototypical second messenger cyclic AMP is produced by 10 adenylyl cyclase isoforms, which are divided into two classes. Nine isoforms are G protein coupled transmembrane adenylyl cyclases (tmACs; ADCY1-9) and the 10th is the bicarbonate regulated soluble adenylyl cyclase (sAC; ADCY10). This review details why sAC is uniquely druggable and outlines ways to target sAC for novel forms of male and female contraception.
Collapse
|
15
|
Male contraceptive development: A medicinal chemistry perspective. Eur J Med Chem 2022; 243:114709. [DOI: 10.1016/j.ejmech.2022.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
16
|
Meinke PT. Transforming Academic Drug Discovery. Chembiochem 2022; 23:e202100671. [PMID: 35181980 DOI: 10.1002/cbic.202100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Indexed: 12/30/2022]
Abstract
A drug accelerator that partners the creative power of academic scientists with drug discovery professionals to consistently advance groundbreaking biological discoveries towards patients in need would be transformational. One such model, the Tri-Institutional Therapeutics Discovery Institute, evolved a series of best practices for identifying, selecting, executing, and completing academic-initiated drug discovery projects, as evidenced by licensing successes, is described.
Collapse
Affiliation(s)
- Peter T Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, NY 10021, USA
| |
Collapse
|
17
|
Balbach M, Ghanem L, Rossetti T, Kaur N, Ritagliati C, Ferreira J, Krapf D, Puga Molina LC, Santi CM, Hansen JN, Wachten D, Fushimi M, Meinke PT, Buck J, Levin LR. Soluble adenylyl cyclase inhibition prevents human sperm functions essential for fertilization. Mol Hum Reprod 2021; 27:6360468. [PMID: 34463764 DOI: 10.1093/molehr/gaab054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Navpreet Kaur
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Carla Ritagliati
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA.,Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Lis C Puga Molina
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, USA
| | - Celia Maria Santi
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jan Niklas Hansen
- Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York City, NY, USA
| | - Peter T Meinke
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA.,Tri-Institutional Therapeutics Discovery Institute, New York City, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|