1
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
2
|
Soper N, Yardumian I, Chen E, Yang C, Ciervo S, Oom AL, Desvignes L, Mulligan MJ, Zhang Y, Lupoli TJ. A Repurposed Drug Interferes with Nucleic Acid to Inhibit the Dual Activities of Coronavirus Nsp13. ACS Chem Biol 2024; 19:1593-1603. [PMID: 38980755 PMCID: PMC11267572 DOI: 10.1021/acschembio.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a critical need to discover more effective antivirals. While therapeutics for SARS-CoV-2 exist, its nonstructural protein 13 (Nsp13) remains a clinically untapped target. Nsp13 is a helicase responsible for unwinding double-stranded RNA during viral replication and is essential for propagation. Like other helicases, Nsp13 has two active sites: a nucleotide binding site that hydrolyzes nucleoside triphosphates (NTPs) and a nucleic acid binding channel that unwinds double-stranded RNA or DNA. Targeting viral helicases with small molecules, as well as the identification of ligand binding pockets, have been ongoing challenges, partly due to the flexible nature of these proteins. Here, we use a virtual screen to identify ligands of Nsp13 from a collection of clinically used drugs. We find that a known ion channel inhibitor, IOWH-032, inhibits the dual ATPase and helicase activities of SARS-CoV-2 Nsp13 at low micromolar concentrations. Kinetic and binding assays, along with computational and mutational analyses, indicate that IOWH-032 interacts with the RNA binding interface, leading to displacement of nucleic acid substrate, but not bound ATP. Evaluation of IOWH-032 with microbial helicases from other superfamilies reveals that it is selective for coronavirus Nsp13. Furthermore, it remains active against mutants representative of observed SARS-CoV-2 variants. Overall, this work provides a new inhibitor for Nsp13 and provides a rationale for a recent observation that IOWH-032 lowers SARS-CoV-2 viral loads in human cells, setting the stage for the discovery of other potent viral helicase modulators.
Collapse
Affiliation(s)
- Nathan Soper
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Isabelle Yardumian
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Eric Chen
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Chao Yang
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Samantha Ciervo
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Aaron L. Oom
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Ludovic Desvignes
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
- High
Containment Laboratories, Office of Science and Research, NYU Langone Health, New York, New York 10016, United States
| | - Mark J. Mulligan
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Nazir MS, Ahmad M, Aslam S, Rafiq A, Al-Hussain SA, Zaki MEA. A Comprehensive Update of Anti-COVID-19 Activity of Heterocyclic Compounds. Drug Des Devel Ther 2024; 18:1547-1571. [PMID: 38737333 PMCID: PMC11088867 DOI: 10.2147/dddt.s450499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 05/14/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is one of the most considerable health problems across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major causative agent of COVID-19. The severe symptoms of this deadly disease include shortness of breath, fever, cough, loss of smell, and a broad spectrum of other health issues such as diarrhea, pneumonia, bronchitis, septic shock, and multiple organ failure. Currently, there are no medications available for coronavirus patients, except symptom-relieving drugs. Therefore, SARS-CoV-2 requires the development of effective drugs and specific treatments. Heterocycles are important constituents of more than 85% of the physiologically active pharmaceutical drugs on the market now. Several FDA-approved drugs have been reported including molnupiravir, remdesivir, ritonavir, oseltamivir, favipiravir, chloroquine, and hydroxychloroquine for the cure of COVID-19. In this study, we discuss potent anti-SARS-CoV-2 heterocyclic compounds that have been synthesized over the past few years. These compounds included; indole, piperidine, pyrazine, pyrimidine, pyrrole, piperazine, quinazoline, oxazole, quinoline, isoxazole, thiazole, quinoxaline, pyrazole, azafluorene, imidazole, thiadiazole, triazole, coumarin, chromene, and benzodioxole. Both in vitro and in silico studies were performed to determine the potential of these heterocyclic compounds in the fight against various SARS-CoV-2 proteins.
Collapse
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Inniss NL, Rzhetskaya M, Ling-Hu T, Lorenzo-Redondo R, Bachta KE, Satchell KJF, Hultquist JF. Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100145. [PMID: 38301954 PMCID: PMC11160173 DOI: 10.1016/j.slasd.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.
Collapse
Affiliation(s)
- Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Margarita Rzhetskaya
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ted Ling-Hu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Kelly E Bachta
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| | - Judd F Hultquist
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| |
Collapse
|
5
|
Talab F, Alam A, Zainab, Ullah S, Elhenawy AA, Shah SAA, Ali M, Halim SA, Khan A, Latif A, Al-Harrasi A, Ahmad M. Novel hydrazone schiff's base derivatives of polyhydroquinoline: synthesis, in vitro prolyl oligopeptidase inhibitory activity and their Molecular docking study. J Biomol Struct Dyn 2024:1-15. [PMID: 38385366 DOI: 10.1080/07391102.2024.2319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz Talab
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science and Art, Al Baha University, Al Bahah, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Selangor D. E, Malaysia
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Corona A, Madia VN, De Santis R, Manelfi C, Emmolo R, Ialongo D, Patacchini E, Messore A, Amatore D, Faggioni G, Artico M, Iaconis D, Talarico C, Di Santo R, Lista F, Costi R, Tramontano E. Diketo acid inhibitors of nsp13 of SARS-CoV-2 block viral replication. Antiviral Res 2023; 217:105697. [PMID: 37562607 DOI: 10.1016/j.antiviral.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
For RNA viruses, RNA helicases have long been recognized to play critical roles during virus replication cycles, facilitating proper folding and replication of viral RNAs, therefore representing an ideal target for drug discovery. SARS-CoV-2 helicase, the non-structural protein 13 (nsp13) is a highly conserved protein among all known coronaviruses, and, at the moment, is one of the most explored viral targets to identify new possible antiviral agents. In the present study, we present six diketo acids (DKAs) as nsp13 inhibitors able to block both SARS-CoV-2 nsp13 enzymatic functions. Among them four compounds were able to inhibit viral replication in the low micromolar range, being active also on other human coronaviruses such as HCoV229E and MERS CoV. The experimental investigation of the binding mode revealed ATP-non-competitive kinetics of inhibition, not affected by substrate-displacement effect, suggesting an allosteric binding mode that was further supported by molecular modelling calculations predicting the binding into an allosteric conserved site located in the RecA2 domain.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Riccardo De Santis
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Candida Manelfi
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberta Emmolo
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Elisa Patacchini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Donatella Amatore
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Giovanni Faggioni
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, "Sapienza" Università di Roma, V.le Regina Elena 324, I-00161, Rome, Italy
| | - Daniela Iaconis
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Carmine Talarico
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy.
| |
Collapse
|
7
|
Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: A systematic review of in vitro studies. J Virus Erad 2023:100327. [PMID: 37363132 PMCID: PMC10214743 DOI: 10.1016/j.jve.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The recent outbreak of SARS-CoV-2 significantly increased the need to find inhibitors that target the essential enzymes for virus replication in the host cells. This systematic review was conducted to identify potential inhibitors of SARS-CoV, MERS-CoV, and SARS-CoV-2 helicases that have been tested by in vitro methods. The inhibition mechanisms of these compounds were discussed in this review, in addition to their cytotoxic and viral infection protection properties. Methods The databases PUBMED/MEDLINE, EMBASE, SCOPUS, and Web of Science were searched using different combinations of the keywords "helicase", "nsp13", "inhibitors", "coronaviridae", "coronaviruses", "virus replication", "replication", and "antagonists and inhibitors". Results By the end of this search, a total of 6854 articles had been identified. Thirty-one articles were included in this review. These studies reported the inhibitory effects of 309 compounds on SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase activities measured by in vitro methods. Helicase inhibitors were categorized according to the type of coronavirus and the type of tested enzymatic activity, nature, approval, inhibition level, cytotoxicity, and viral infection protection effects. These inhibitors are classified according to the site of their interaction with the coronavirus helicases into four types: zinc-binding site inhibitors, nucleic acid binding site inhibitors, nucleotide-binding site inhibitors, and inhibitors with no clear interaction site. Conclusion Evidence from in vitro studies suggests that helicase inhibitors have a high potential as antiviral agents. Several helicase inhibitors tested in vitro showed good antiviral activities while maintaining moderate cytotoxicity. These inhibitors should be clinically investigated to determine their efficiency in treating different coronavirus infections, particularly COVID-19.
Collapse
Affiliation(s)
- Nimer Mehyar
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Iaconis D, Caccuri F, Manelfi C, Talarico C, Bugatti A, Filippini F, Zani A, Novelli R, Kuzikov M, Ellinger B, Gribbon P, Riecken K, Esposito F, Corona A, Tramontano E, Beccari AR, Caruso A, Allegretti M. DHFR Inhibitors Display a Pleiotropic Anti-Viral Activity against SARS-CoV-2: Insights into the Mechanisms of Action. Viruses 2023; 15:v15051128. [PMID: 37243214 DOI: 10.3390/v15051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.
Collapse
Affiliation(s)
- Daniela Iaconis
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Francesca Caccuri
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Candida Manelfi
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Carmine Talarico
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Antonella Bugatti
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Rubina Novelli
- Dompè Famaceutici SpA, Via Campo di Pile snc, 67100 L'Aquila, Italy
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | | | - Arnaldo Caruso
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | |
Collapse
|
9
|
Cao M, Fan J, Guo C, Chen M, Lv J, Sun W, Xi B, Xu J. Comprehensive investigation and risk assessment of organic contaminants in Yellow River Estuary using suspect and nontarget screening strategies. ENVIRONMENT INTERNATIONAL 2023; 173:107843. [PMID: 36822001 DOI: 10.1016/j.envint.2023.107843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Contaminants of emerging concerns (CECs) include numerous chemicals that may pose known and unknown risks to the ecosystem, and identification and risk ranking of these compounds is essential for the environmental management. In this study, liquid and gas chromatography time-of-flight mass spectrometry (LC-QTOF-MS and GC-QTOF-MS) were used to characterize the occurrence of CECs in the surface water of the Yellow River Estuary (YRE). A total of 295 and 315 chemicals were identified by LC-QTOF-MS and GC-QTOF-MS, respectively. The occurrence of two compounds, erucamide and 2-phenylquinoline, was for the first time reported in the aquatic environment in YRE. The concentrations of 121 CECs, including 35 antibiotics, 49 pesticides and veterinary, 16 polycyclic aromatic hydrocarbons and 21 phthalic acid esters were further quantified by target analysis, which showed the detection of 99 compounds in the surface water in the range of 7.07-4611.26 ng/L. Ecological risks of pollutants based on the risk quotient (RQ) method revealed that 13 pollutants posed ecological risks to the aquatic ecosystem (RQ > 1), and pesticides (n = 12) were the main risk contributors. Here, all CECs data sets were finally transformed and ranked in the framework of the toxicological priority index (ToxPi), and a total of 81 priority control pollutants were identified in the surface water of YRE. This study highlighted the necessity of suspect and nontarget screening for CECs in estuaries, and revealed the importance of localized contamination sources in urban and agricultural environment.
Collapse
Affiliation(s)
- Miao Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jingpu Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjun Sun
- Waters Technologies Shanghai Limited, Shanghai 201206, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
New s-Triazine/Tetrazole conjugates as potent antifungal and antibacterial agents: Design, molecular docking and mechanistic study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Ding Y, Guo T, Li Z, Zhang B, Kühn FE, Liu C, Zhang J, Xu D, Lei M, Zhang T, Li C. Transition‐Metal‐Free Synthesis of Functionalized Quinolines by Direct Conversion of β‐O‐4 Model Compounds. Angew Chem Int Ed Engl 2022; 61:e202206284. [DOI: 10.1002/anie.202206284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Fritz E. Kühn
- Molecular Catalysis Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Chang Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
12
|
Ding Y, Guo T, Li Z, Zhang B, Kühn FE, Liu C, Zhang J, Xu D, Lei M, Zhang T, Li C. Transition‐Metal‐Free Synthesis of Functionalized Quinolines by Direct Conversion of β‐O‐4 Linkages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yangming Ding
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Tenglong Guo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Zhewei Li
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering CHINA
| | - Bo Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Fritz E. Kühn
- Technical University of Munich: Technische Universitat Munchen Catalysis Research Center and Department of Chemistry GERMANY
| | - Chang Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Jian Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Dezhu Xu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Ming Lei
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering CHINA
| | - Tao Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Changzhi Li
- Dalian Institute of Chemical Physics 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
13
|
Piplani S, Singh P, Winkler DA, Petrovsky N. Potential COVID-19 Therapies from Computational Repurposing of Drugs and Natural Products against the SARS-CoV-2 Helicase. Int J Mol Sci 2022; 23:7704. [PMID: 35887049 PMCID: PMC9322913 DOI: 10.3390/ijms23147704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Repurposing of existing drugs is a rapid way to find potential new treatments for SARS-CoV-2. Here, we applied a virtual screening approach using Autodock Vina and molecular dynamic simulation in tandem to screen and calculate binding energies of repurposed drugs against the SARS-CoV-2 helicase protein (non-structural protein nsp13). Amongst the top hits from our study were antivirals, antihistamines, and antipsychotics, plus a range of other drugs. Approximately 30% of our top 87 hits had published evidence indicating in vivo or in vitro SARS-CoV-2 activity. Top hits not previously reported to have SARS-CoV-2 activity included the antiviral agents, cabotegravir and RSV-604; the NK1 antagonist, aprepitant; the trypanocidal drug, aminoquinuride; the analgesic, antrafenine; the anticancer intercalator, epirubicin; the antihistamine, fexofenadine; and the anticoagulant, dicoumarol. These hits from our in silico SARS-CoV-2 helicase screen warrant further testing as potential COVID-19 treatments.
Collapse
Affiliation(s)
- Sakshi Piplani
- Vaxine Pty Ltd., 11 Walkley Avenue, Adelaide 5046, Australia; (S.P.); (P.S.)
| | - Puneet Singh
- Vaxine Pty Ltd., 11 Walkley Avenue, Adelaide 5046, Australia; (S.P.); (P.S.)
| | - David A. Winkler
- Biochemistry and Chemistry Department, La Trobe University, Kingsbury Drive, Melbourne 3086, Australia;
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., 11 Walkley Avenue, Adelaide 5046, Australia; (S.P.); (P.S.)
- Department of Diabetes and Endocrinology, Flinders Medical Centre, Flinders University, 1 Flinders Drive, Adelaide 5042, Australia
| |
Collapse
|