1
|
Barczyk A, Six P, Rivoal M, Devos C, Dezitter X, Cornu-Choi MJ, Huard K, Pellegrini E, Cusack S, Dubuquoy L, Millet R, Leleu-Chavain N. 4-Anilinoquinazoline Derivatives as the First Potent NOD1-RIPK2 Signaling Pathway Inhibitors at the Nanomolar Range. J Med Chem 2024. [PMID: 39444201 DOI: 10.1021/acs.jmedchem.4c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Inflammation is a defense mechanism that restores tissue damage and eliminates pathogens. Among the pattern recognition receptors that recognize danger or pathogenic signals, nucleotide oligomerization domains 1 and 2 (NOD1/2) have been identified to play an important role in innate immunity responses, and inhibition of NOD1 could be interesting to treat severe infections and inflammatory diseases. In this work, we identified the first selective NOD1 versus NOD2 pathway inhibitors at the nanomolar range based on a 4-anilinoquinazoline scaffold. We demonstrated that NOD1 inhibition occurs through the inhibition of receptor interacting protein kinase 2 (RIPK2), which is involved in its downstream signaling pathways. Compound 37 demonstrates no cytotoxicity, a selectivity for RIPK2 over epithelial and vascular endothelial growth factor receptors (EGFR/VEGFR), and a capacity to reduce pro-inflammatory cytokine IL-8 secretion. The structure of the RIPK2-compound 37 complex was resolved by crystallography. The 4-anilinoquinazoline scaffold offers novel perspectives to design NOD1-RIPK2 signaling inhibitors.
Collapse
Affiliation(s)
- Amclie Barczyk
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Perrine Six
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Morgane Rivoal
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Claire Devos
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Xavier Dezitter
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Min-Jeong Cornu-Choi
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Karine Huard
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Erika Pellegrini
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Régis Millet
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| | - Natascha Leleu-Chavain
- Univ. Lille, Inserm, CHU Lille, U1286─INFINITE─Institute for Translational Research in Inflammation, Lille F-59000, France
| |
Collapse
|
2
|
Misehe M, Šála M, Matoušová M, Hercík K, Kocek H, Chalupská D, Chaloupecká E, Hájek M, Boura E, Mertlíková-Kaiserová H, Nencka R. Design, synthesis and evaluation of novel thieno[2,3d]pyrimidine derivatives as potent and specific RIPK2 inhibitors. Bioorg Med Chem Lett 2024; 97:129567. [PMID: 38008339 DOI: 10.1016/j.bmcl.2023.129567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.
Collapse
Affiliation(s)
- Mbilo Misehe
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Kamil Hercík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Hugo Kocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Ema Chaloupecká
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
3
|
Misehe M, Matoušová M, Dvořáková A, Hercík K, Škach K, Chalupská D, Dejmek M, Šála M, Hájek M, Boura E, Mertlíková-Kaiserová H, Nencka R. Exploring positions 6 and 7 of a quinazoline-based scaffold leads to changes in selectivity and potency towards RIPK2/3 kinases. Eur J Med Chem 2023; 260:115717. [PMID: 37598483 DOI: 10.1016/j.ejmech.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.
Collapse
Affiliation(s)
- Mbilo Misehe
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Alexandra Dvořáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Kamil Hercík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Kryštof Škach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Dominika Chalupská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
4
|
Rivoal M, Dubuquoy L, Millet R, Leleu-Chavain N. Receptor Interacting Ser/Thr-Protein Kinase 2 as a New Therapeutic Target. J Med Chem 2023; 66:14391-14410. [PMID: 37857324 DOI: 10.1021/acs.jmedchem.3c00593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Receptor interacting serine/threonine protein kinase 2 (RIPK2) is a downstream signaling molecule essential for the activation of several innate immune receptors, including the NOD-like receptors (NOD1 and NOD2). Recognition of pathogen-associated molecular pattern proteins by NOD1/2 leads to their interaction with RIPK2, which induces release of pro-inflammatory cytokines through the activation of NF-κB and MAPK pathways, among others. Thus, RIPK2 has emerged as a key mediator of intracellular signal transduction and represents a new potential therapeutic target for the treatment of various conditions, including inflammatory diseases and cancer. In this Perspective, first, an overview of the mechanisms that underlie RIPK2 function will be presented along with its role in several diseases. Then, the existing inhibitors that target RIPK2 and different therapeutic strategies will be reviewed, followed by a discussion on current challenges and outlook.
Collapse
Affiliation(s)
- Morgane Rivoal
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| | - Laurent Dubuquoy
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| | - Régis Millet
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Tian E, Zhou C, Quan S, Su C, Zhang G, Yu Q, Li J, Zhang J. RIPK2 inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2023; 259:115683. [PMID: 37531744 DOI: 10.1016/j.ejmech.2023.115683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Receptor-interacting protein kinase 2 (RIPK2) belongs to the receptor-interacting protein family (RIPs), which is mainly distributed in the cytoplasm. RIPK2 is widely expressed in human tissues, and its mRNA level is highly expressed in the spleen, leukocytes, placenta, testis, and heart. RIPK2 is a dual-specificity kinase with multiple domains, which can interact with tumor necrosis factor receptor (TNFR), and participate in the Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) signaling pathways. It is considered as a vital adapter molecule involved in the innate immunity, adaptive immunity, and apoptosis. Functionally, RIPK2 and its targeted small molecules are of great significance in inflammatory responses, autoimmune diseases and tumors. The present study reviews the molecule structure and biological functions of RIPK2, and its correlation between human diseases. In addition, we focus on the structure-activity relationship of small molecule inhibitors of RIPK2 and their therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guanning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Quanwei Yu
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Lethier M, Huard K, Hons M, Favier A, Brutscher B, Boeri Erba E, Abbott DW, Cusack S, Pellegrini E. Structure shows that the BIR2 domain of E3 ligase XIAP binds across the RIPK2 kinase dimer interface. Life Sci Alliance 2023; 6:e202201784. [PMID: 37673444 PMCID: PMC10485824 DOI: 10.26508/lsa.202201784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
RIPK2 is an essential adaptor for NOD signalling and its kinase domain is a drug target for NOD-related diseases, such as inflammatory bowel disease. However, recent work indicates that the phosphorylation activity of RIPK2 is dispensable for signalling and that inhibitors of both RIPK2 activity and RIPK2 ubiquitination prevent the essential interaction between RIPK2 and the BIR2 domain of XIAP, the key RIPK2 ubiquitin E3 ligase. Moreover, XIAP BIR2 antagonists also block this interaction. To reveal the molecular mechanisms involved, we combined native mass spectrometry, NMR, and cryo-electron microscopy to determine the structure of the RIPK2 kinase BIR2 domain complex and validated the interface with in cellulo assays. The structure shows that BIR2 binds across the RIPK2 kinase antiparallel dimer and provides an explanation for both inhibitory mechanisms. It also highlights why phosphorylation of the kinase activation loop is dispensable for signalling while revealing the structural role of RIPK2-K209 residue in the RIPK2-XIAP BIR2 interaction. Our results clarify the features of the RIPK2 conformation essential for its role as a scaffold protein for ubiquitination.
Collapse
Affiliation(s)
- Mathilde Lethier
- https://ror.org/01zjc6908 European Molecular Biology Laboratory, Grenoble, France
| | - Karine Huard
- https://ror.org/01zjc6908 European Molecular Biology Laboratory, Grenoble, France
| | - Michael Hons
- https://ror.org/01zjc6908 European Molecular Biology Laboratory, Grenoble, France
| | - Adrien Favier
- University Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Bernhard Brutscher
- University Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Elisabetta Boeri Erba
- University Grenoble Alpes, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen Cusack
- https://ror.org/01zjc6908 European Molecular Biology Laboratory, Grenoble, France
| | - Erika Pellegrini
- https://ror.org/01zjc6908 European Molecular Biology Laboratory, Grenoble, France
| |
Collapse
|
7
|
You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14:1192970. [PMID: 37324457 PMCID: PMC10266216 DOI: 10.3389/fphar.2023.1192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.
Collapse
Affiliation(s)
- Jieqiong You
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Jin
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| |
Collapse
|
8
|
Zhao W, Leng RX, Ye DQ. RIPK2 as a promising druggable target for autoimmune diseases. Int Immunopharmacol 2023; 118:110128. [PMID: 37023697 DOI: 10.1016/j.intimp.2023.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Receptor Interacting Serine/Threonine Kinase 2 (RIPK2) is an essential regulator of the inflammatory process and immune response. In innate immunity, the NOD-RIPK2 signaling axis is an important pathway that directly mediates inflammation and immune response. In adaptive immunity, RIPK2 may affect T cell proliferation, differentiation and cellular homeostasis thereby involving T cell-driven autoimmunity, but the exact mechanism remains unclear. Recent advances suggest a key role of RIPK2 in diverse autoimmune diseases (ADs) such as inflammatory bowel diseases, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and Behcet's disease. This review aims to provide valuable therapeutic direction for ADs by focusing on the function and modulation of RIPK2 in innate and adaptive immunity, its involvement with various ADs and the application of RIPK2-related drugs in ADs. We raise the notion that drug targeting RIPK2 could be a promising therapeutic strategy for the treatment of ADs, though much work remains to be done for clinical application.
Collapse
|
9
|
Salla M, Guo J, Joshi H, Gordon M, Dooky H, Lai J, Capicio S, Armstrong H, Valcheva R, Dyck JRB, Thiesen A, Wine E, Dieleman LA, Baksh S. Novel Biomarkers for Inflammatory Bowel Disease and Colorectal Cancer: An Interplay between Metabolic Dysregulation and Excessive Inflammation. Int J Mol Sci 2023; 24:ijms24065967. [PMID: 36983040 PMCID: PMC10055751 DOI: 10.3390/ijms24065967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Persistent inflammation can trigger altered epigenetic, inflammatory, and bioenergetic states. Inflammatory bowel disease (IBD) is an idiopathic disease characterized by chronic inflammation of the gastrointestinal tract, with evidence of subsequent metabolic syndrome disorder. Studies have demonstrated that as many as 42% of patients with ulcerative colitis (UC) who are found to have high-grade dysplasia, either already had colorectal cancer (CRC) or develop it within a short time. The presence of low-grade dysplasia is also predictive of CRC. Many signaling pathways are shared among IBD and CRC, including cell survival, cell proliferation, angiogenesis, and inflammatory signaling pathways. Current IBD therapeutics target a small subset of molecular drivers of IBD, with many focused on the inflammatory aspect of the pathways. Thus, there is a great need to identify biomarkers of both IBD and CRC, that can be predictive of therapeutic efficacy, disease severity, and predisposition to CRC. In this study, we explored the changes in biomarkers specific for inflammatory, metabolic, and proliferative pathways, to help determine the relevance to both IBD and CRC. Our analysis demonstrated, for the first time in IBD, the loss of the tumor suppressor protein Ras associated family protein 1A (RASSF1A), via epigenetic changes, the hyperactivation of the obligate kinase of the NOD2 pathogen recognition receptor (receptor interacting protein kinase 2 [RIPK2]), the loss of activation of the metabolic kinase, AMP activated protein kinase (AMPKα1), and, lastly, the activation of the transcription factor and kinase Yes associated protein (YAP) kinase, that is involved in proliferation of cells. The expression and activation status of these four elements are mirrored in IBD, CRC, and IBD-CRC patients and, importantly, in matched blood and biopsy samples. The latter would suggest that biomarker analysis can be performed non-invasively, to understand IBD and CRC, without the need for invasive and costly endoscopic analysis. This study, for the first time, illustrates the need to understand IBD or CRC beyond an inflammatory perspective and the value of therapeutics directed to reset altered proliferative and metabolic states within the colon. The use of such therapeutics may truly drive patients into remission.
Collapse
|
10
|
Fan T, Ji Y, Chen D, Peng X, Ai J, Xiong B. Design, synthesis and biological evaluation of 4-aminoquinoline derivatives as receptor-interacting protein kinase 2 (RIPK2) inhibitors. J Enzyme Inhib Med Chem 2023; 38:282-293. [DOI: 10.1080/14756366.2022.2148317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tiantian Fan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jing Ai
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- Hangzhou Institute for Advanced Study (UCAS), Hangzhou, P. R. China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
11
|
Pham AT, Ghilardi AF, Sun L. Recent advances in the development of RIPK2 modulators for the treatment of inflammatory diseases. Front Pharmacol 2023; 14:1127722. [PMID: 36959850 PMCID: PMC10028200 DOI: 10.3389/fphar.2023.1127722] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Receptor-interacting serine/threonine kinase 2 (RIPK2) is a vital immunomodulator that plays critical roles in nucleotide-binding oligomerization domain 1 (NOD1), NOD2, and Toll-like receptors (TLRs) signaling. Stimulated NOD1 and NOD2 interact with RIPK2 and lead to the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK), followed by the production of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-12/23. Defects in NOD/RIPK2 signaling are associated with numerous inflammatory diseases, including asthma, sarcoidosis, inflammatory bowel disease (Crohn's disease and ulcerative colitis), multiple sclerosis, and Blau syndrome. As RIPK2 is a crucial element of innate immunity, small molecules regulating RIPK2 functions are attractive to establish novel immunotherapies. The increased interest in developing RIPK2 inhibitors has led to the clinical investigations of novel drug candidates. In this review, we attempt to summarize recent advances in the development of RIPK2 inhibitors and degraders.
Collapse
|
12
|
Design, synthesis, and structure-activity relationship of novel RIPK2 inhibitors. Bioorg Med Chem Lett 2022; 75:128968. [PMID: 36058467 DOI: 10.1016/j.bmcl.2022.128968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
The NOD1/2 (nucleotide-binding oligomerization domain-containing protein 1/2) signaling pathways are involved in innate immune control and host defense. NOD dysfunction can result in a variety of autoimmune disorders. NOD-induced generation of inflammatory cytokines is mediated by receptor-interacting protein kinase 2 (RIPK2), which has been considered as a promising therapeutic target. Herein, we disclose the design, synthesis, and SAR study of a series of RIPK2 inhibitors. The lead compound 17 displayed a high affinity for RIPK2 (Kd = 5.9 nM) and was capable of inhibiting RIPK2 kinase function in an ADP-Glo assay. In vitro DMPK studies showed that compound 17 had good metabolic stability and no CYP inhibition. Compound 17 effectively suppressed inflammatory cytokine production in both cells and animal model.
Collapse
|
13
|
Yuan X, Chen Y, Tang M, Wei Y, Shi M, Yang Y, Zhou Y, Yang T, Liu J, Liu K, Deng D, Zhang C, Chen L. Discovery of Potent and Selective Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) Inhibitors for the Treatment of Inflammatory Bowel Diseases (IBDs). J Med Chem 2022; 65:9312-9327. [PMID: 35709396 DOI: 10.1021/acs.jmedchem.2c00604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) has been demonstrated to be a promising target for treating inflammatory diseases. Herein, we describe the discovery and optimization of a series of RIPK2 inhibitors derived from an FLT3 inhibitor, CHMFL-FLT3-165. Compound 10w was identified to possess an IC50 value of 0.6 nM for RIPK2 and greater than 50,000-fold selectivity over its family homologous kinase RIPK1 (IC50 > 30 μM). It exhibited high kinase selectivity and inhibited RIPK2 to prevent NOD-induced cytokine production following muramyl dipeptide (MDP) stimulation. In an acute colitis model, compound 10w exerted better therapeutic effects than the JAK inhibitor filgotinib and the RIPK2 inhibitor WEHI-345. These robust results of in vitro and in vivo pharmacodynamic experiments demonstrate that RIPK2 as a therapeutic target shows potential abilities for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xue Yuan
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuhan Wei
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingxue Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanting Zhou
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiang Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kongjun Liu
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexin Deng
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chufeng Zhang
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Laboratory of Natural and Targeted Small Molecule Drugs, State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.,Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
14
|
Ermann J, Matmusaev M, Haley EK, Braun C, Jost F, Mayer-Wrangowski S, Hsiao P, Ting N, Li L, Terenzio D, Chime J, Lukas S, Patnaude L, Panzenbeck M, Csordas D, Zheng J, Mierz D, Simpson T, King FJ, Klimowicz AP, Mbow ML, Fine JS, Miller CA, Fogal SE, Byrne FR. The potent and selective RIPK2 inhibitor BI 706039 improves intestinal inflammation in the TRUC mouse model of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2021; 321:G500-G512. [PMID: 34494462 DOI: 10.1152/ajpgi.00163.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023]
Abstract
Mouse and human data implicate the NOD1 and NOD2 sensors of the intestinal microbiome and the associated signal transduction via the receptor interacting protein kinase 2 (RIPK2) as a potential key signaling node for the development of inflammatory bowel disease (IBD) and an attractive target for pharmacological intervention. The TRUC mouse model of IBD was strongly indicated for evaluating RIPK2 antagonism for its effect on intestinal inflammation based on previous knockout studies with NOD1, NOD2, and RIPK2. We identified and profiled the BI 706039 molecule as a potent and specific functional inhibitor of both human and mouse RIPK2 and with favorable pharmacokinetic properties. We dosed BI 706039 in the spontaneous TRUC mouse model from age 28 to 56 days. Oral, daily administration of BI 706039 caused dose-responsive and significant improvement in colonic histopathological inflammation, colon weight, and terminal levels of protein-normalized fecal lipocalin (all P values <0.001). These observations correlated with dose responsively increasing systemic levels of the BI 706039 compound, splenic molecular target engagement of RIPK2, and modulation of inflammatory genes in the colon. This demonstrates that a relatively low oral dose of a potent and selective RIPK2 inhibitor can modulate signaling in the intestinal immune system and significantly improve disease associated intestinal inflammation.NEW & NOTEWORTHY The RIPK2 kinase at the apex of microbiome immunosensing is an attractive target for pharmacological intervention. A low oral dose of a RIPK2 inhibitor leads to significantly improved intestinal inflammation in the murine TRUC model of colitis. A selective and potent inhibitor of the RIPK2 kinase may represent a new class of therapeutics that target microbiome-driven signaling for the treatment of IBD.
Collapse
Affiliation(s)
- Joerg Ermann
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mederbek Matmusaev
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Emma K Haley
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts
| | - Clemens Braun
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Felix Jost
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Svenja Mayer-Wrangowski
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Peng Hsiao
- Department of Drug Discovery Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Biberach, Germany
| | - Naitee Ting
- Department of Global Computational Biology and Data Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Li Li
- Department of Global Computational Biology and Data Sciences, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Donna Terenzio
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Jane Chime
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Susan Lukas
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Lori Patnaude
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Mark Panzenbeck
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - David Csordas
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Jie Zheng
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Diane Mierz
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Tom Simpson
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - F James King
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Alex P Klimowicz
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - M Lamine Mbow
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Jay S Fine
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Craig A Miller
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Steve E Fogal
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| | - Fergus R Byrne
- Department of Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Incorporated, Ridgefield, Connecticut
| |
Collapse
|
15
|
Inborn Errors in the LRR Domain of Nod2 and Their Potential Consequences on the Function of the Receptor. Cells 2021; 10:cells10082031. [PMID: 34440800 PMCID: PMC8392326 DOI: 10.3390/cells10082031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
The innate immune system plays a critical role in the early detection of pathogens, primarily by relying on pattern-recognition receptor (PRR) signaling molecules. Nucleotide-binding oligomerization domain 2 (NOD2) is a cytoplasmic receptor that recognizes invading molecules and danger signals inside the cells. Recent studies highlight the importance of NOD2′s function in maintaining the homeostasis of human body microbiota and innate immune responses, including induction of proinflammatory cytokines, regulation of autophagy, modulation of endoplasmic reticulum (ER) stress, etc. In addition, there is extensive cross-talk between NOD2 and the Toll-like receptors that are so important in the induction and tuning of adaptive immunity. Polymorphisms of NOD2′s encoding gene are associated with several pathological conditions, highlighting NOD2′s functional importance. In this study, we summarize NOD2′s role in cellular signaling pathways and take a look at the possible consequences of common NOD2 polymorphisms on the structure and function of this receptor.
Collapse
|
16
|
Alabi SB, Crews CM. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J Biol Chem 2021; 296:100647. [PMID: 33839157 PMCID: PMC8131913 DOI: 10.1016/j.jbc.2021.100647] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Of late, targeted protein degradation (TPD) has surfaced as a novel and innovative chemical tool and therapeutic modality. By co-opting protein degradation pathways, TPD facilitates complete removal of the protein molecules from within or outside the cell. While the pioneering Proteolysis-Targeting Chimera (PROTAC) technology and molecular glues hijack the ubiquitin-proteasome system, newer modalities co-opt autophagy or the endo-lysosomal pathway. Using this mechanism, TPD is posited to largely expand the druggable space far beyond small-molecule inhibitors. In this review, we discuss the major advances in TPD, highlight our current understanding, and explore outstanding questions in the field.
Collapse
Affiliation(s)
- Shanique B Alabi
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Craig M Crews
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA; Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
17
|
Design of pyrido[2,3-d]pyrimidin-7-one inhibitors of receptor interacting protein kinase-2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling. Eur J Med Chem 2021; 215:113252. [PMID: 33601309 DOI: 10.1016/j.ejmech.2021.113252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Receptor interacting protein kinase-2 (RIPK2) is an enzyme involved in the transduction of pro-inflammatory nucleotide-binding oligomerization domain (NOD) cell signaling, a pathway implicated in numerous chronic inflammatory conditions. Herein, a pyrido[2,3-d]pyrimidin-7-one based class of RIPK2 kinase and NOD2 cell signaling inhibitors is described. For example, 33 (e.g. UH15-15) inhibited RIPK2 kinase (IC50 = 8 ± 4 nM) and displayed > 300-fold selectivity versus structurally related activin receptor-like kinase 2 (ALK2). This molecule blocked NOD2-dependent HEKBlue NF-κB activation (IC50 = 20 ± 5 nM) and CXCL8 production (at concentrations > 10 nM). Molecular docking suggests that engagement of Ser25 in the glycine-rich loop may provide increased selectivity versus ALK2 and optimal occupancy of the region between the gatekeeper and the αC-helix may contribute to potent NOD2 cell signaling inhibition. Finally, this compound also demonstrated favorable in vitro ADME and pharmacokinetic properties (e.g. Cmax = 5.7 μM, Tmax = 15 min, t1/2 = 3.4 h and Cl = 45 mL/min/kg following single 10 mg/kg intraperitoneal administration) further supporting the use of pyrido[2,3-d]pyrimidin-7-ones as a new structure class of RIPK2 kinase and NOD cell signaling inhibitors.
Collapse
|
18
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
19
|
Topal Y, Gyrd-Hansen M. RIPK2 NODs to XIAP and IBD. Semin Cell Dev Biol 2021; 109:144-150. [DOI: 10.1016/j.semcdb.2020.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
|
20
|
Lin JZ, Lin N. A risk signature of three autophagy-related genes for predicting lower grade glioma survival is associated with tumor immune microenvironment. Genomics 2021; 113:767-777. [PMID: 33069830 DOI: 10.1016/j.ygeno.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023]
Abstract
Treatment for lower-grade gliomas (LGG) has been challenging. Though emerging approaches such as immunotherapy is promising, it is still faced with immune tolerance, an obstacle that may be overcome by targeting autophagy-related (ATG) genes. After identifying three differentially expressed ATG genes (RIPK2, MUL1 and CXCR4), we constructed an ATG gene risk signature by Kaplan-Meier, univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression, followed by internal and external validation using K-M and ROC analysis. Since gene set enrichment analysis (GSEA) suggested that the signature was strongly associated with immune cell functions, CIBERSORT, LM22 matrix and Pearson correlation were further performed, showing that the risk signature was significantly correlated with immune cell infiltration and immune checkpoint genes. In conclusion, we identified and independently validated an ATG gene risk signature for LGG patients, as well as discovering its significant association with LGG immune microenvironment.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Nuan Lin
- Obstetrics & Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
21
|
Cuny GD, Degterev A. RIPK protein kinase family: Atypical lives of typical kinases. Semin Cell Dev Biol 2020; 109:96-105. [PMID: 32732131 DOI: 10.1016/j.semcdb.2020.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
Receptor Interacting Protein Kinases (RIPKs) are a family of Ser/Thr/Tyr kinases whose functions, regulation and pathophysiologic roles have remained an enigma for a long time. In recent years, these proteins garnered significant interest due to their roles in regulating a variety of host defense functions including control of inflammatory gene expression, different forms of cell death, and cutaneous and intestinal barrier functions. In addition, there is accumulating evidence that while these kinases seemingly follow typical kinase blueprints, their functioning in cells can take forms that are atypical for protein kinases. Lastly, while these kinases generally belong to distinct areas of innate immune regulation, there are emerging overarching themes that may unify the functions of this kinase family. Our review seeks to discuss the biology of RIPKs, and how typical and atypical features of this family informs the activity of a rapidly growing repertoire of RIPK inhibitors.
Collapse
Affiliation(s)
- Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
22
|
Suebsuwong C, Dai B, Pinkas DM, Duddupudi AL, Li L, Bufton JC, Schlicher L, Gyrd-Hansen M, Hu M, Bullock AN, Degterev A, Cuny GD. Receptor-interacting protein kinase 2 (RIPK2) and nucleotide-binding oligomerization domain (NOD) cell signaling inhibitors based on a 3,5-diphenyl-2-aminopyridine scaffold. Eur J Med Chem 2020; 200:112417. [PMID: 32505849 DOI: 10.1016/j.ejmech.2020.112417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023]
Abstract
Receptor-interacting protein kinase 2 (RIPK2) is a key mediator of nucleotide-binding oligomerization domain (NOD) cell signaling that has been implicated in various chronic inflammatory conditions. A new class of RIPK2 kinase/NOD signaling inhibitors based on a 3,5-diphenyl-2-aminopyridine scaffold was developed. Several co-crystal structures of RIPK2•inhibitor complexes were analyzed to provide insights into inhibitor selectivity versus the structurally related activin receptor-like kinase 2 (ALK2) demonstrating that the inhibitor sits deeper in the hydrophobic binding pocket of RIPK2 perturbing the orientation of the DFG motif. In addition, the structure-activity relationship study revealed that in addition to anchoring to the hinge and DFG via the 2-aminopyridine and 3-phenylsulfonamide, respectively, appropriate occupancy of the region between the gatekeeper and the αC-helix provided by substituents in the 4- and 5-positions of the 3-phenylsulfonamide were necessary to achieve potent NOD cell signaling inhibition. For example, compound 18t (e.g. CSLP37) displayed potent biochemical RIPK2 kinase inhibition (IC50 = 16 ± 5 nM), >20-fold selectivity versus ALK2 and potent NOD cell signaling inhibition (IC50 = 26 ± 4 nM) in the HEKBlue assay. Finally, in vitro ADME and pharmacokinetic characterization of 18t further supports the prospects of the 3,5-diphenyl-2-aminopyridine scaffold for the generation of in vivo pharmacology probes of RIPK2 kinase and NOD cell signaling functions.
Collapse
Affiliation(s)
- Chalada Suebsuwong
- Department of Chemistry, University of Houston, Health Building 2, Houston, TX, 77204, USA
| | - Bing Dai
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Daniel M Pinkas
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Anantha Lakshmi Duddupudi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX, 77204, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX, 77204, USA
| | - Joshua C Bufton
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lisa Schlicher
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, UK
| | - Mads Gyrd-Hansen
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, UK
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX, 77204, USA
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX, 77204, USA.
| |
Collapse
|
23
|
Laman JD, 't Hart BA, Power C, Dziarski R. Bacterial Peptidoglycan as a Driver of Chronic Brain Inflammation. Trends Mol Med 2020; 26:670-682. [PMID: 32589935 DOI: 10.1016/j.molmed.2019.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
Peptidoglycan (PGN) is a cell wall component of both Gram-positive and Gram-negative bacteria. Signature fragments of PGN are proinflammatory through engagement of pattern recognition receptors (PRR) on resident tissue cells and circulating leukocytes. Despite its abundance in the gut microbiota, there is limited recognition that PGN could contribute to chronic neuroinflammation. This review highlights current insights into the roles of PGN as a determinant of brain inflammation, notably in multiple sclerosis (MS) and its experimental autoimmune encephalomyelitis (EAE) models. Recent studies demonstrate PGN in blood of healthy adult humans. PGN amplifies autoimmune pathology via activation of innate immune cells. Novel uptake routes through (altered) gut mucosa by myeloid leukocyte subsets promote PGN transport to the brain.
Collapse
Affiliation(s)
- Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Anatomy and Neuroscience, Free University Amsterdam, Amsterdam, The Netherlands
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN, USA
| |
Collapse
|
24
|
Jensen S, Seidelin JB, LaCasse EC, Nielsen OH. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 2020; 13:13/619/eaax8295. [PMID: 32071170 DOI: 10.1126/scisignal.aax8295] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis, and psoriasis are needed because current treatments are often suboptimal in terms of both efficacy and the risks of serious adverse events. Inhibitor of apoptosis proteins (IAPs) are E3 ubiquitin ligases that inhibit cell death pathways and are themselves inhibited by second mitochondria-derived activator of caspases (SMAC). SMAC mimetics (SMs), small-molecule antagonists of IAPs, are being evaluated as cancer therapies in clinical trials. IAPs are also crucial regulators of inflammatory pathways because they influence both the activation of inflammatory genes and the induction of cell death through the receptor-interacting serine-threonine protein kinases (RIPKs), nuclear factor κB (NF-κB)-inducing kinase, and mitogen-activated protein kinases (MAPKs). Furthermore, there is an increasing interest in specifically targeting the substrates of IAP-mediated ubiquitylation, especially RIPK1, RIPK2, and RIPK3, as druggable nodes in inflammation control. Several studies have revealed an anti-inflammatory potential of RIPK inhibitors that either block inflammatory signaling or block the form of inflammatory cell death known as necroptosis. Expanding research on innate immune signaling through pattern recognition receptors that stimulate proinflammatory NF-κB and MAPK signaling may further contribute to uncovering the complex molecular roles used by IAPs and downstream RIPKs in inflammatory signaling. This may benefit and guide the development of SMs or selective RIPK inhibitors as anti-inflammatory therapeutics for various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark.
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| |
Collapse
|
25
|
Haffner CD, Charnley AK, Aquino CJ, Casillas L, Convery MA, Cox JA, Elban MA, Goodwin NC, Gough PJ, Haile PA, Hughes TV, Knapp-Reed B, Kreatsoulas C, Lakdawala AS, Li H, Lian Y, Lipshutz D, Mehlmann JF, Ouellette M, Romano J, Shewchuk L, Shu A, Votta BJ, Zhou H, Bertin J, Marquis RW. Discovery of Pyrazolocarboxamides as Potent and Selective Receptor Interacting Protein 2 (RIP2) Kinase Inhibitors. ACS Med Chem Lett 2019; 10:1518-1523. [PMID: 31749904 DOI: 10.1021/acsmedchemlett.9b00141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/26/2019] [Indexed: 12/30/2022] Open
Abstract
Herein we report the discovery of pyrazolocarboxamides as novel, potent, and kinase selective inhibitors of receptor interacting protein 2 kinase (RIP2). Fragment based screening and design principles led to the identification of the inhibitor series, and X-ray crystallography was used to inform key structural changes. Through key substitutions about the N1 and C5 N positions on the pyrazole ring significant kinase selectivity and potency were achieved. Bridged bicyclic pyrazolocarboxamide 11 represents a selective and potent inhibitor of RIP2 and will allow for a more detailed investigation of RIP2 inhibition as a therapeutic target for autoinflammatory disorders.
Collapse
Affiliation(s)
- Curt D. Haffner
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Adam K. Charnley
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | - Linda Casillas
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Máire A. Convery
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Julie A. Cox
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mark A. Elban
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Nicole C. Goodwin
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Peter J. Gough
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Pamela A. Haile
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | - Beth Knapp-Reed
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Constantine Kreatsoulas
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ami S. Lakdawala
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Huijie Li
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Yiqian Lian
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - David Lipshutz
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John F. Mehlmann
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael Ouellette
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Joseph Romano
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lisa Shewchuk
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Arthur Shu
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Bartholomew J. Votta
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Huiqiang Zhou
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John Bertin
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Robert W. Marquis
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
26
|
Heim VJ, Stafford CA, Nachbur U. NOD Signaling and Cell Death. Front Cell Dev Biol 2019; 7:208. [PMID: 31632962 PMCID: PMC6783575 DOI: 10.3389/fcell.2019.00208] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023] Open
Abstract
Innate immune signaling and programmed cell death are intimately linked, and many signaling pathways can regulate and induce both, transcription of inflammatory mediators or autonomous cell death. The best-characterized examples for these dual outcomes are members of the TNF superfamily, the inflammasome receptors, and the toll-like receptors. Signaling via the intracellular peptidoglycan receptors NOD1 and NOD2, however, does not appear to follow this trend, despite involving signaling proteins, or proteins with domains that are linked to programmed cell death, such as RIP kinases, inhibitors of apoptosis (IAP) proteins or the CARD domains on NOD1/2. To better understand the connections between NOD signaling and cell death induction, we here review the latest findings on the molecular regulation of signaling downstream of the NOD receptors and explore the links between this immune signaling pathway and the regulation of cell death.
Collapse
Affiliation(s)
- Valentin J Heim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Che A Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Kingsley LJ, Brunet V, Lelais G, McCloskey S, Milliken K, Leija E, Fuhs SR, Wang K, Zhou E, Spraggon G. Development of a virtual reality platform for effective communication of structural data in drug discovery. J Mol Graph Model 2019; 89:234-241. [DOI: 10.1016/j.jmgm.2019.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
|
28
|
Li S, Qiu J, Qin L, Peng P, Li C, Mao J, Fang G, Chen Z, Lin S, Fu Y, Cai W, Ding Y. NOD2 negatively regulated titanium particle-induced osteolysis in mice. Biomater Sci 2019; 7:2702-2715. [PMID: 31065630 DOI: 10.1039/c9bm00306a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For patients undergoing total joint replacement (TJR), one of the complications, aseptic loosening, could cause serious consequences, such as revision surgery. In early research, pattern recognition receptors (PRRs) were reported to play vital roles in recognizing wear particles from the prosthesis and initiating an inflammation response. In this research, we aimed to clarify the role of nucleotide-binding and oligomerization domain containing protein 2 (NOD2), one of the PRRs, in macrophage-induced aseptic loosening in vivo and in vitro. High expressions of NOD2 and TNFα were observed from twenty patients who underwent primary or revision total hip replacements (THR). The effect of NOD2 on the activation of inflammation pathways was observed in RAW264.7 cells and CRISPR-Cas9 NOD2-knockout mice. The expressions of NOD2, the NF-κB pathway, the MAPK pathway and proinflammatory cytokine TNF-α in macrophages stimulated by wear particles were up-regulated. Otherwise, inhibition of NOD2 further up-regulated the expressions of NOD2, the NF-κB pathway, the MAPK pathway and TNF-α. Knockdown of the NOD2 gene enhanced the cranial osteolysis induced by titanium particles in a mouse model. In conclusion, our study demonstrated that NOD2 plays a negative role in osteolysis induced by titanium particles in vitro and in vivo.
Collapse
Affiliation(s)
- Shixun Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Junxiong Qiu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory Department of Orthopaedics & Taumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory of Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, SAR, PR China
| | - Peng Peng
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Changchuan Li
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jiaji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Guibin Fang
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Zhong Chen
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Sipeng Lin
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Yuan Fu
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center and Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yue Ding
- Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
29
|
Abstract
The inhibitor of apoptosis proteins (IAPs) are a family of proteins that were chiefly known for their ability to inhibit apoptosis by blocking caspase activation or activity. Recent research has shown that cellular IAP1 (cIAP1), cIAP2, and X-linked IAP (XIAP) also regulate signaling by receptors of the innate immune system by ubiquitylating their substrates. These IAPs thereby act at the intersection of pathways leading to cell death and inflammation. Mutation of IAP genes can impair tissue homeostasis and is linked to several human diseases. Small-molecule IAP antagonists have been developed to treat certain malignant, infectious, and inflammatory diseases. Here, we will discuss recent advances in our understanding of the functions of cIAP1, cIAP2, and XIAP; the consequences of their mutation or dysregulation; and the therapeutic potential of IAP antagonist drugs.
Collapse
Affiliation(s)
- Najoua Lalaoui
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - David Lawrence Vaux
- Cell Signalling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, 3050, Australia
| |
Collapse
|
30
|
Haile PA, Casillas LN, Bury MJ, Mehlmann JF, Singhaus R, Charnley AK, Hughes TV, DeMartino MP, Wang GZ, Romano JJ, Dong X, Plotnikov NV, Lakdawala AS, Convery MA, Votta BJ, Lipshutz DB, Desai BM, Swift B, Capriotti CA, Berger SB, Mahajan MK, Reilly MA, Rivera EJ, Sun HH, Nagilla R, LePage C, Ouellette MT, Totoritis RD, Donovan BT, Brown BS, Chaudhary KW, Gough PJ, Bertin J, Marquis RW. Identification of Quinoline-Based RIP2 Kinase Inhibitors with an Improved Therapeutic Index to the hERG Ion Channel. ACS Med Chem Lett 2018; 9:1039-1044. [PMID: 30344914 DOI: 10.1021/acsmedchemlett.8b00344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 μM).
Collapse
Affiliation(s)
- Pamela A. Haile
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Linda N. Casillas
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael J. Bury
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John F. Mehlmann
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Robert Singhaus
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Adam K. Charnley
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Terry V. Hughes
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael P. DeMartino
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Gren Z. Wang
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Joseph J. Romano
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Xiaoyang Dong
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Nikolay V. Plotnikov
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ami S. Lakdawala
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Maire A. Convery
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Bartholomew J. Votta
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - David B. Lipshutz
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Biva M. Desai
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Barbara Swift
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Carol A. Capriotti
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Scott B. Berger
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mukesh K. Mahajan
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael A. Reilly
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Elizabeth J. Rivera
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Helen H. Sun
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rakesh Nagilla
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Carol LePage
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Michael T. Ouellette
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rachel D. Totoritis
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Brian T. Donovan
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Barry S. Brown
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Khuram W. Chaudhary
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Peter J. Gough
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John Bertin
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Robert W. Marquis
- GlaxoSmithKline, Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
31
|
Hrdinka M, Schlicher L, Dai B, Pinkas DM, Bufton JC, Picaud S, Ward JA, Rogers C, Suebsuwong C, Nikhar S, Cuny GD, Huber KV, Filippakopoulos P, Bullock AN, Degterev A, Gyrd-Hansen M. Small molecule inhibitors reveal an indispensable scaffolding role of RIPK2 in NOD2 signaling. EMBO J 2018; 37:embj.201899372. [PMID: 30026309 PMCID: PMC6120666 DOI: 10.15252/embj.201899372] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/06/2023] Open
Abstract
RIPK2 mediates inflammatory signaling by the bacteria‐sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD‐mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP‐binding and XIAP‐mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between β2 and β3 of the N‐lobe of the kinase, which is in close proximity to the ATP‐binding pocket. Through characterization of a new series of ATP pocket‐binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2‐XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP‐binding pocket in RIPK2 can be exploited to interfere with the RIPK2‐XIAP interaction for modulation of NOD signaling.
Collapse
Affiliation(s)
- Matous Hrdinka
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Lisa Schlicher
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Bing Dai
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Daniel M Pinkas
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Joshua C Bufton
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Jennifer A Ward
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Catherine Rogers
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Sameer Nikhar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Kilian Vm Huber
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mads Gyrd-Hansen
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Bryan MC, Rajapaksa NS. Kinase Inhibitors for the Treatment of Immunological Disorders: Recent Advances. J Med Chem 2018; 61:9030-9058. [DOI: 10.1021/acs.jmedchem.8b00667] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marian C. Bryan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Naomi S. Rajapaksa
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
33
|
Salla M, Aguayo-Ortiz R, Danmaliki GI, Zare A, Said A, Moore J, Pandya V, Manaloor R, Fong S, Blankstein AR, Gibson SB, Garcia LR, Meier P, Bhullar KS, Hubbard BP, Fiteh Y, Vliagoftis H, Goping IS, Brocks D, Hwang P, Velázquez-Martínez CA, Baksh S. Identification and Characterization of Novel Receptor-Interacting Serine/Threonine-Protein Kinase 2 Inhibitors Using Structural Similarity Analysis. J Pharmacol Exp Ther 2018; 365:354-367. [PMID: 29555876 DOI: 10.1124/jpet.117.247163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein kinase 2 (RIP2 or RICK, herein referred to as RIPK2) is linked to the pathogen pathway that activates nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) and autophagic activation. Using molecular modeling (docking) and chemoinformatics analyses, we used the RIPK2/ponatinib crystal structure and searched in chemical databases for small molecules exerting binding interactions similar to those exerted by ponatinib. The identified RIPK2 inhibitors potently inhibited the proliferation of cancer cells by > 70% and also inhibited NFκB activity. More importantly, in vivo inhibition of intestinal and lung inflammation rodent models suggests effectiveness to resolve inflammation with low toxicity to the animals. Thus, our identified RIPK2 inhibitor may offer possible therapeutic control of inflammation in diseases such as inflammatory bowel disease, asthma, cystic fibrosis, primary sclerosing cholangitis, and pancreatitis.
Collapse
Affiliation(s)
- Mohamed Salla
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Rodrigo Aguayo-Ortiz
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Gaddafi I Danmaliki
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Alaa Zare
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Ahmed Said
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Jack Moore
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Vrajeshkumar Pandya
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Robin Manaloor
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Sunny Fong
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Anna R Blankstein
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Spencer B Gibson
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Laura Ramos Garcia
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Pascal Meier
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Khushwant S Bhullar
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Basil P Hubbard
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Yahya Fiteh
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Harissios Vliagoftis
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Ing Swie Goping
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Dion Brocks
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Peter Hwang
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Carlos A Velázquez-Martínez
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Shairaz Baksh
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| |
Collapse
|