1
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Angeli A, Occhini A, Renzi G, Capperucci A, Ferraroni M, Tanini D, Supuran CT. Thia- and Seleno-Michael Reactions for the Synthesis of Carbonic Anhydrases Inhibitors. ChemMedChem 2024; 19:e202400345. [PMID: 39031732 DOI: 10.1002/cmdc.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Novel chalcogen-containing amides and esters bearing the benzenesulfonamide moiety have been synthesised upon nucleophilic conjugate addition of thiols and selenols to suitable electron-deficient alkenes. The activity of the synthesised compounds as Carbonic Anhydrases inhibitors has been investigated in vitro and the inhibition mechanism has been elucidated by X-rays studies.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Alessio Occhini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Gioele Renzi
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| | - Antonella Capperucci
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, I-50019, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Deptartment, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
3
|
Palomba M, Angeli A, Galdini R, Hughineata AJ, Perin G, Lenardão EJ, Marini F, Santi C, Supuran CT, Bagnoli L. Iodine/Oxone® oxidative system for the synthesis of selenylindoles bearing a benzenesulfonamide moiety as carbonic anhydrase I, II, IX, and XII inhibitors. Org Biomol Chem 2024; 22:6532-6542. [PMID: 39072494 DOI: 10.1039/d4ob00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A wide range of 3-selenylindoles were synthesized via an eco-friendly approach that uses Oxone® as the oxidant in the presence of a catalytic amount of iodine. This mild and economical protocol showed broad functional group tolerance and operational simplicity. A series of novel selenylindoles bearing a benzenesulfonamide moiety were also synthesized and evaluated as carbonic anhydrase inhibitors of the human (h) isoforms hCa I, II, IX, and XII, which are involved in pathologies such as glaucoma and cancer. Several derivatives showed excellent inhibitory activity towards these isoforms in the nanomolar range, lower than that shown by acetazolamide.
Collapse
Affiliation(s)
- Martina Palomba
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Riccardo Galdini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Alexandra Joana Hughineata
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, CEP: 96010-900 Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, CEP: 96010-900 Pelotas, RS, Brazil
| | - Francesca Marini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Claudio Santi
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Luana Bagnoli
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| |
Collapse
|
4
|
Carradori S, Angeli A, Sfragano PS, Yzeiri X, Calamante M, Tanini D, Capperucci A, Kunstek H, Varbanov M, Capasso C, Supuran CT. Photoactivatable Heptamethine-Based Carbonic Anhydrase Inhibitors Leading to New Anti-Antibacterial Agents. Int J Mol Sci 2023; 24:ijms24119610. [PMID: 37298561 DOI: 10.3390/ijms24119610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
With the aim to propose innovative antimicrobial agents able to not only selectively inhibit bacterial carbonic anhydrases (CAs) but also to be photoactivated by specific wavelengths, new heptamethine-based compounds decorated with a sulfonamide moiety were synthesized by means of different spacers. The compounds displayed potent CA inhibition and a slight preference for bacterial isoforms. Furthermore, minimal inhibitory and bactericidal concentrations and the cytotoxicity of the compounds were assessed, thus highlighting a promising effect under irradiation against S. epidermidis. The hemolysis activity test showed that these derivatives were not cytotoxic to human red blood cells, further corroborating their favorable selectivity index. This approach led to the discovery of a valuable scaffold for further investigations.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Patrick S Sfragano
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Xheila Yzeiri
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
- CNR-Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Massimo Calamante
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
- CNR-Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Hannah Kunstek
- Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
- L2CM, Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, 54000 Nancy, France
| | - Mihayl Varbanov
- L2CM, Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, 54000 Nancy, France
- Laboratoire de Virologie, Centres Hospitaliers Régionaux Universitaires (CHRU) de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
5
|
Musalov MV, Potapov VA. Click Chemistry of Selenium Dihalides: Novel Bicyclic Organoselenium Compounds Based on Selenenylation/Bis-Functionalization Reactions and Evaluation of Glutathione Peroxidase-like Activity. Int J Mol Sci 2022; 23:ijms232415629. [PMID: 36555274 PMCID: PMC9779772 DOI: 10.3390/ijms232415629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
A number of highly efficient methods for the preparation of novel derivatives of 9-selenabicyclo[3.3.1]nonane in high yields based on selenium dibromide and cis,cis-1,5-cyclooctadiene are reported. The one-pot syntheses of 2,6-diorganyloxy-9-selenabicyclo[3.3.1]nonanes using various O-nucleophiles including alkanols, phenols, benzyl, allyl, and propargyl alcohols were developed. New 2,6-bis(1,2,3-triazol-1-yl)-9-selenabicyclo[3.3.1]nonanes were obtained by the copper-catalyzed 1,3-dipolar cycloaddition of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with unsubstituted gaseous acetylene and propargyl alcohol. The synthesis of 2,6-bis(vinylsulfanyl)-9-selenabicyclo[3.3.1]nonane, based on the generation of corresponding dithiolate anion from bis[amino(iminio)methylsulfanyl]-9-selenabicyclo[3.3.1]nonane dibromide, followed by the nucleophilic addition of the dithiolate anion to unsubstituted acetylene, was developed. The glutathione peroxidase-like activity of the obtained water-soluble products was estimated and compounds with high activity were found. Overall, 2,6-Diazido-9-selenabicyclo[3.3.1]nonane exhibits the highest activity among the obtained compounds.
Collapse
|
6
|
Galetto FZ, da Silva C, Beche RIM, Balaguez RA, Franco MS, de Assis FF, Frizon TEA, Su X. Decarboxylative ring-opening of 2-oxazolidinones: a facile and modular synthesis of β-chalcogen amines. RSC Adv 2022; 12:34496-34502. [PMID: 36545628 PMCID: PMC9710311 DOI: 10.1039/d2ra06070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
We report herein the synthesis of primary and secondary β-chalcogen amines through the regioselective ring-opening reaction of non-activated 2-oxazolidinones promoted by in situ generated chalcogenolate anions. The developed one-step protocol enabled the preparation of β-selenoamines, β-telluroamines and β-thioamines with appreciable structural diversity and in yields of up to 95%.
Collapse
Affiliation(s)
- Fábio Z Galetto
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Cleiton da Silva
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Ricardo I M Beche
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Renata A Balaguez
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Marcelo S Franco
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Francisco F de Assis
- Department of Chemistry, Federal University of Santa Catarina Florianópolis SC 88040-900 Brazil +554837213649
| | - Tiago E A Frizon
- Department of Energy and Sustainability, Federal University of Santa Catarina Araranguá SC Brazil
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
7
|
Triple-Click Chemistry of Selenium Dihalides: Catalytic Regioselective and Highly Efficient Synthesis of Bis-1,2,3-Triazole Derivatives of 9-Selenabicyclo[3.3.1]nonane. Catalysts 2022. [DOI: 10.3390/catal12091032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The catalytic regioselective and highly efficient synthesis of bis-1,2,3-triazole derivatives of 9-selenabicyclo[3.3.1]nonane was developed. The 1,3-dipolar cycloaddition reaction of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with a variety of terminal acetylenes catalyzed by a copper acetate/sodium ascorbate system proceeded in a regioselective fashion, affording 2,6-bis(4-organyl-1,2,3-triazole)-9-selenabicyclo[3.3.1]nonanes in high yields (93–98%). The reaction of 2,6-diazido-9-selenabicyclo[3.3.1]nonane with dimethyl and diethyl acetylenedicarboxylates was carried out as thermal 1,3-dipolar Huisgen cycloaddition giving the corresponding 4,5-disubstituted 1,2,3-triazole derivatives of 9-selenabicyclo[3.3.1]nonane in high yields. The obtained products are potentially bioactive compounds and first representatives of selenium heterocycles combined with two 1,2,3-triazole moieties. 2.6-Diazido-9-selenabicyclo[3.3.1]nonane was obtained in quantitative yield via the reaction of sodium azide with 2,6-dibromo-9-selenabicyclo[3.3.1]nonane at room temperature. The latter compound was synthesized by stereoselective transannular addition of selenium dibromide to cis, cis-1,5-cyclooctadiene.
Collapse
|
8
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
9
|
Regioselective Synthesis of Novel Functionalized Dihydro-1,4-thiaselenin-2-ylsufanyl Derivatives under Phase Transfer Catalysis. Catalysts 2022. [DOI: 10.3390/catal12080889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The regioselective one-pot synthesis of novel functionalized 2,3-dihydro-1,4-thiaselenin-2-ylsufanyl derivatives in high yields based on 2-bromomethyl-1,3-thiaselenole and activated alkenes was developed under phase transfer catalysis conditions. The reactions proceed under mild conditions at room temperature in a regioselective manner with the addition of sodium dihydro-1,4-thiaselenin-2-ylthiolate exclusively at the terminal carbon atom of the double bond of vinyl methyl ketone, alkylacrylates, acrylamide, acrylonitrile, divinyl sulfone, and divinyl sulfoxide. The sodium dihydro-1,4-thiaselenin-2-ylthiolate was generated from 2-[amino(imino)methyl]sulfanyl-2,3-dihydro-1,4-thiaselenine hydrobromide. The latter compound was obtained by the reaction of 2-bromomethyl-1,3-thiaselenole with thiourea, which was accompanied by a rearrangement with ring expansion to the six-membered heterocycle. The obtained 2,3-dihydro-1,4-thiaselenin-2-ylsufanyl derivatives are a novel family of compounds with putative biological activity. The addition products of sodium dihydro-1,4-thiaselenin-2-ylthiolate at one double bond of divinyl sulfone and divinyl sulfoxide, containing vinylsulfonyl and vinylsulfinyl groups, are capable of further addition reactions. A possibility to obtain corresponding alcohol derivatives was shown in the reaction with vinyl methyl ketone.
Collapse
|
10
|
Sacramento M, Reis AS, Martins CC, Luchese C, Wilhelm EA, Alves D. Synthesis and Evaluation of Antioxidant, Anti-Edematogenic and Antinociceptive Properties of Selenium-Sulfa Compounds. ChemMedChem 2022; 17:e202100507. [PMID: 34854233 DOI: 10.1002/cmdc.202100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Indexed: 01/10/2023]
Abstract
Herein we describe results for the synthesis and synthetic application of 4-amino-3-(arylselenyl)benzenesulfonamides, and preliminary evaluation of antioxidant, anti-edematogenic and antinociceptive properties. This class of compounds was synthesized in good yields by a reaction of commercially available sulfanilamide and diorganyl diselenides in the presence of 10 mol% of I2 . Furthermore, the synthesized compound 4-amino-3-(phenylselenyl)benzenesulfonamide (3 a) was evaluated on complete Freund's adjuvant (CFA)-induced acute inflammatory pain. Dose- and time-response curves of antinociceptive effect of compound 3 a were performed using this experimental model. Also, the effect of compound 3 a was monitored in a hot-plate test to evaluate the acute non-inflammatory antinociception. The open-field test was performed to evaluate the locomotor and exploratory behaviors of mice. Oxidative stress markers, such as glutathione peroxidase activity; reactive species, non-protein thiols, and lipid peroxidation levels were performed to investigate the antioxidant action of compound 3 a. Our findings suggest that the antioxidant effect of compound 3 a may contribute to reducing the nociception and suppress the signaling pathways of inflammation on the local injury induced by CFA. Thus, compound 3 a reduced the paw edema as well as the hyperalgesic behavior in mice, being a promising therapeutic agent for the treatment of painful conditions.
Collapse
Affiliation(s)
- Manoela Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angélica S Reis
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Carolina C Martins
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-Graduacão em Bioquímica e Bioprospeccão, Laboratório de Pesquisa em Farmacologia Bioquimica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Universidade Federal de Pelotas, CEP 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
11
|
Tanini D, Carradori S, Capperucci A, Lupori L, Zara S, Ferraroni M, Ghelardini C, Mannelli L, Micheli L, Lucarini E, Carta F, Angeli A, Supuran CT. Chalcogenides-incorporating carbonic anhydrase inhibitors concomitantly reverted oxaliplatin-induced neuropathy and enhanced antiproliferative action. Eur J Med Chem 2021; 225:113793. [PMID: 34507012 DOI: 10.1016/j.ejmech.2021.113793] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Platinum-based chemotherapy is widely used for the treatment of different tumors but is associated with serious side effects, among which neuropathic pain. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors have recently been validated as therapeutic agents in neuropathic pain and as antitumor agents. We report the synthesis of new organochalcogenides bearing the benzensulfonamide moiety acting as potent inhibitors of several human CA isoforms and, in particular, against hCA II and VII endowed with potent neuropathic pain attenuating effects. Moreover, in combination with cisplatin or doxorubicin, some of the new CA inhibitors enhanced the effects of the anticancer drugs capability in counteracting breast cancer MCF7 cell viability. The concomitant anti-neuropathic pain and antiproliferative effects of the new chalcogenide-based CA inhibitors represent an innovative approach for the counteraction and management of side effects associated with clinically platinum drugs as antitumor agents.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lucrezia Lupori
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Susi Zara
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via Della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Ldc Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Laura Micheli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Elena Lucarini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 707410, Iasi, Romania.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Quantum Chemical and Experimental Studies of an Unprecedented Reaction Pathway of Nucleophilic Substitution of 2-Bromomethyl-1,3-thiaselenole with 1,3-Benzothiazole-2-thiol Proceeding Stepwise at Three Different Centers of Seleniranium Intermediates. Molecules 2021; 26:molecules26216685. [PMID: 34771094 PMCID: PMC8588063 DOI: 10.3390/molecules26216685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The results of quantum chemical and experimental studies of the reaction of 2-bromomethyl-1,3-thiaselenole with 1,3-benzothiazole-2-thiol made it possible to discover the unprecedented pathway of this reaction, which proceeds stepwise at three different centers of seleniranium intermediates. The first stage includes an attack of thiolate anion at the selenium atom of the seleniranium cation accompanied by ring opening with the formation of (Z)-2-[(1,3-benzothiazol-2-ylsulfanyl)selanyl]ethenyl vinyl sulfide, which is converted to six-membered heterocycle, 2-(2,3-dihydro-1,4-thiaselenin-2-ylsulfanyl)-1,3-benzothiazole, in a 99% yield. The latter compound undergoes rearrangement with ring contraction producing five-membered heterocycle, 2-[(1,3-thiaselenol-2-ylmethyl)sulfanyl]-1,3-benzothiazole, in a 99% yield (the thermodynamic product). The formation of 1,2-bis[(Z)-2-(vinylsulfanyl)ethenyl] diselenide is the result of the disproportionation of (Z)-2-[(1,3-benzothiazol-2-ylsulfanyl)selanyl]ethenyl vinyl sulfide. Thus, based on the quantum chemical and experimental studies, a regioselective synthesis of the reaction products in high yields was developed.
Collapse
|
13
|
Kostić MD, Divac VM. Diselenides and Selenocyanates as Versatile Precursors for the Synthesis of Pharmaceutically Relevant Compounds. Curr Org Synth 2021; 19:317-330. [PMID: 33655868 DOI: 10.2174/1570179418666210303113723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.) is a way for the development of compounds with promising pharmaceutical potential. Therefore, the aim of this review is to highlight the recent achievements in the use of diselenides or selenocyanates as precursors for the synthesis of pharmaceutically relevant compounds, preferentially compounds with antitumor and antimicrobial activities.
Collapse
Affiliation(s)
- Marina D Kostić
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Vera M Divac
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| |
Collapse
|
14
|
Lu L, Bi K, Huang X, Liu M, Zhou Y, Wu H. Catalyst and Additive‐Free Selective Ring‐Opening Selenocyanation of Heterocycles with Elemental Selenium and TMSCN. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Li‐Guo Lu
- College of chemistry and materials engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Kang Bi
- College of chemistry and materials engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Xiao‐Bo Huang
- College of chemistry and materials engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Miao‐Chang Liu
- College of chemistry and materials engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Yun‐Bing Zhou
- College of chemistry and materials engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Hua‐Yue Wu
- College of chemistry and materials engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
15
|
Abstract
Metalloenzymes such as the carbonic anhydrases (CAs, EC 4.2.1.1) possess highly specialized active sites that promote fast reaction rates and high substrate selectivity for the physiologic reaction that they catalyze, hydration of CO2 to bicarbonate and a proton. Among the eight genetic CA macrofamilies, α-CAs possess rather spacious active sites and show catalytic promiscuity, being esterases with many types of esters, but also acting on diverse small molecules such as cyanamide, carbonyl sulfide (COS), CS2, etc. Although artificial CAs have been developed with the intent to efficiently catalyse non-biologically related chemical transformations with high control of stereoselectivity, the activities of these enzymes were much lower when compared to natural CAs. Here, we report an overview on the catalytic activities of α-CAs as well as of enzymes which were mutated or artificially designed by incorporation of transition metal ions. In particular, the distinct catalytic mechanisms of the reductase, oxidase and metatheses-ase such as de novo designed CAs are discussed.
Collapse
|
16
|
Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020; 40:2485-2565. [PMID: 32691504 DOI: 10.1002/med.21713] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widely distributed metalloenzymes in both prokaryotes and eukaryotes. They efficiently catalyze the reversible hydration of carbon dioxide to bicarbonate and H+ ions and play a crucial role in regulating many physiological processes. CAs are well-studied drug target for various disorders such as glaucoma, epilepsy, sleep apnea, and high altitude sickness. In the past decades, a large category of diverse families of CA inhibitors (CAIs) have been developed and many of them showed effective inhibition toward specific isoforms, and effectiveness in pathological conditions in preclinical and clinical settings. The discovery of isoform-selective CAIs in the last decade led to diminished side effects associated with off-target isoforms inhibition. The many new classes of such compounds will be discussed in the review, together with strategies for their development. Pharmacological advances of the newly emerged CAIs in diseases not usually associated with CA inhibition (neuropathic pain, arthritis, cerebral ischemia, and cancer) will also be discussed.
Collapse
Affiliation(s)
- Chandra B Mishra
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.,Department of Pharmaceutical Chemistry, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Manisha Tiwari
- Department of Bioorganic Chemistry, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
17
|
Mikulová MB, Kružlicová D, Pecher D, Supuran CT, Mikuš P. Synthetic Strategies and Computational Inhibition Activity Study for Triazinyl-Substituted Benzenesulfonamide Conjugates with Polar and Hydrophobic Amino Acids as Inhibitors of Carbonic Anhydrases. Int J Mol Sci 2020; 21:E3661. [PMID: 32456080 PMCID: PMC7279466 DOI: 10.3390/ijms21103661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Various sulfonamide derivatives are intensively studied as anticancer agents owing to their inhibitory activity against human tumor-associated carbonic anhydrase isoforms. In this work, different synthetic procedures for the series of 1,3,5-triazinyl-aminobenzenesulfonamide conjugates with amino acids, possessing polar uncharged, negatively charged, and hydrophobic side chain, were studied and optimized with respect to the yield/purity of the synthesis/product as well as the time of synthetic reaction. These procedures were compared to each other via characteristic HPLC-ESI-DAD/QTOF/MS analytical product profiles, and their benefits as well as limitations were discussed. For new sulfonamide derivatives, incorporating s-triazine with a symmetric pair of polar and some less-polar proteinogenic amino acids, inhibition constants (KIs) against four human carboanhydrases (hCAs), namely cytosolic hCA I, II, transmembrane hCA IV, and the tumor-associated, membrane-bound hCA IX isoforms, were computationally predicted applying various methods of the advanced statistical analysis. Quantitative structure-activity relationship (QSAR) analysis indicated an impressive KI ratio (hCA II/hCA IX) 139.1 and hCA IX inhibition constant very similar to acetazolamide (KI = 29.6 nM) for the sulfonamide derivative disubstituted with Gln. The derivatives disubstituted with Ser, Thr, and Ala showed even lower KIs (8.7, 13.1, and 8.4 nM, respectively).
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Dáša Kružlicová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Daniel Pecher
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, 50139 Florence, Italy;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| |
Collapse
|
18
|
Tanini D, D'Esopo V, Tatini D, Ambrosi M, Lo Nostro P, Capperucci A. Selenated and Sulfurated Analogues of Triacyl Glycerols: Selective Synthesis and Structural Characterization. Chemistry 2020; 26:2719-2725. [DOI: 10.1002/chem.201904686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Damiano Tanini
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Veronica D'Esopo
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Duccio Tatini
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Moira Ambrosi
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”University of Florence Via Della Lastruccia 3–13 Sesto Fiorentino Firenze Italy
| |
Collapse
|
19
|
Angeli A, Pinteala M, Maier SS, Simionescu BC, Milaneschi A, Abbas G, del Prete S, Capasso C, Capperucci A, Tanini D, Carta F, Supuran CT. Evaluation of Thio- and Seleno-Acetamides Bearing Benzenesulfonamide as Inhibitor of Carbonic Anhydrases from Different Pathogenic Bacteria. Int J Mol Sci 2020; 21:E598. [PMID: 31963423 PMCID: PMC7014678 DOI: 10.3390/ijms21020598] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
A series of 2-thio- and 2-seleno-acetamides bearing the benzenesulfonamide moiety were evaluated as Carbonic Anhydrase (CA, EC 4.2.1.1) inhibitors against different pathogenic bacteria such as the Vibrio cholerae (VchCA-α and VchCA-β), Burkholderia pseudomallei (BpsCA-β and BpsCA-γ), Mycobacterium tuberculosis (Rv3723-β) and the Salmonella enterica serovar Typhimurium (StCA2-β). The molecules represent interesting leads worth developing as innovative antibacterial agents since they possess new mechanism of action and isoform selectivity preferentially against the bacterial expressed CAs. The identification of potent and selective inhibitors of bacterial CAs may lead to tools also useful for deciphering the physiological role(s) of such proteins.
Collapse
Affiliation(s)
- Andrea Angeli
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
- Polymeric Release Systems Research Group, Polymers Research Center, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.P.); (S.S.M.); (B.C.S.)
| | - Andrea Milaneschi
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| | - Ghulam Abbas
- Department of Biological Sciences and Chemistry, University of Nizwa, Birkat Al-Mauz, P.O.Box 33, Nizwa-616, Sultanate of Oman;
| | - Sonia del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.d.P.); (C.C.)
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.d.P.); (C.C.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, I-50019 Sesto Fiorentino (Florence), Italy; (A.C.); (D.T.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 13, I-50019 Sesto Fiorentino (Florence), Italy; (A.C.); (D.T.)
| | - Fabrizio Carta
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| | - Claudiu T. Supuran
- Sezione di Scienze Farmaceutiche, NEUROFARBA Dept., Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (A.M.); (F.C.)
| |
Collapse
|
20
|
Structure-activity relationship of human carbonic anhydrase-II inhibitors: Detailed insight for future development as anti-glaucoma agents. Bioorg Chem 2020; 95:103557. [DOI: 10.1016/j.bioorg.2019.103557] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023]
|
21
|
Direct and straightforward access to substituted alkyl selenols as novel carbonic anhydrase inhibitors. Eur J Med Chem 2020; 185:111811. [DOI: 10.1016/j.ejmech.2019.111811] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022]
|
22
|
Tanini D, Ricci L, Capperucci A, Di Cesare Mannelli L, Ghelardini C, Peat TS, Carta F, Angeli A, Supuran CT. Synthesis of novel tellurides bearing benzensulfonamide moiety as carbonic anhydrase inhibitors with antitumor activity. Eur J Med Chem 2019; 181:111586. [PMID: 31401537 DOI: 10.1016/j.ejmech.2019.111586] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
We have synthetized a novel series of β-hydroxy tellurides bearing the benzenesulfonamide group as potent inhibitors of carbonic anhydrase enzymes. In a one pot procedure, we discovered both the ring opening reaction of the three-membered ring and the cleavage of the sulfonamide protecting moiety at the same time. Moreover, the first X-ray co-crystallographic structure of a β-hydroxy telluride derivative with hCA II is reported. The potent effects of these compounds against the tumor-associated hCA IX with low nanomolar constant inhibition values give the possibility to evaluate their activity in vitro using a breast cancer cell line (MDA-MB-231). Compounds 7e and 7g induced significant toxic effects against tumor cells after 48 h incubation in normoxic conditions killing over 50% of tumor cells at 3 μM, but their efficacy decreased in hypoxic conditions reaching the 50% of the tumor cell viability only at 30 μM. These unusual features make them interesting lead compounds to act as antitumor agents, not only as Carbonic Anhydrase IX inhibitors, but reasonably in different pathways, where hCA IX is not overexpressed.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Ricci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Lorenzo Di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Thomas S Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Fabrizio Carta
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Claudiu T Supuran
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
23
|
Zhang Y, Niu P, Wen Q, Sun L, Wang W, Xu S, Liu G. Design, synthesis, and anticancer activities of sodium quinazolin‐4‐diselenide compounds. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yuchun Zhang
- School of Chemistry and Materials ScienceLudong University Yantai China
| | - Pengpeng Niu
- School of Chemistry and Materials ScienceLudong University Yantai China
| | - Quanwu Wen
- School of Chemistry and Materials ScienceLudong University Yantai China
| | - Lin Sun
- School of Chemistry and Materials ScienceLudong University Yantai China
| | - Weili Wang
- School of Chemistry and Materials ScienceLudong University Yantai China
| | - Shengguang Xu
- School of Chemistry and Materials ScienceLudong University Yantai China
| | - Gang Liu
- School of Chemistry and Materials ScienceLudong University Yantai China
| |
Collapse
|
24
|
Krasowska D, Iraci N, Santi C, Drabowicz J, Cieslak M, Kaźmierczak-Barańska J, Palomba M, Królewska-Golińska K, Magiera J, Sancineto L. Diselenides and Benzisoselenazolones as Antiproliferative Agents and Glutathione-S-Transferase Inhibitors. Molecules 2019; 24:E2914. [PMID: 31405214 PMCID: PMC6721112 DOI: 10.3390/molecules24162914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023] Open
Abstract
A series of variously functionalized selenium-containing compounds were purposely synthesized and evaluated against a panel of cancer cell lines. Most of the compounds showed an interesting cytotoxicity profile with compound 5 showing a potent activity on MCF7 cells. The ethyl amino derivative 5 acts synergistically with cis-platin and inhibits the GST enzyme with a potency that well correlates with the cytotoxicity observed in MCF7 cells. A computational analysis suggests a possible binding mode on the GST enzyme. As the main outcome of the present study, the ethyl amino derivative 5 emerged as a valid lead compound for further, future developments.
Collapse
Affiliation(s)
- Dorota Krasowska
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Józef Drabowicz
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
- Institute of Chemistry Jan Długosz University in Częstochowa Częstochowa, 42-200 Armii Krajowej 13/15, Poland
| | - Marcin Cieslak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Julia Kaźmierczak-Barańska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Martina Palomba
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Karolina Królewska-Golińska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Jakub Magiera
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland
| | - Luca Sancineto
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Science, Sienkiewicza, 112, 90-363 Lodz, Poland.
| |
Collapse
|
25
|
Tanini D, Ermini E, Capperucci A. Thio- and Seleno-Michael addition: An efficient tool for the delivery of sulfur and selenium functionalities. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1603229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Damiano Tanini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Elena Ermini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
26
|
Sulfur, selenium and tellurium containing amines act as effective carbonic anhydrase activators. Bioorg Chem 2019; 87:516-522. [DOI: 10.1016/j.bioorg.2019.03.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
|
27
|
Al-Tamimi AMS, Etxebeste-Mitxeltorena M, Sanmartín C, Jiménez-Ruiz A, Syrjänen L, Parkkila S, Selleri S, Carta F, Angeli A, Supuran CT. Discovery of new organoselenium compounds as antileishmanial agents. Bioorg Chem 2019; 86:339-345. [DOI: 10.1016/j.bioorg.2019.01.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022]
|
28
|
Tanini D, Scarpelli S, Ermini E, Capperucci A. Seleno‐Michael Reaction of Stable Functionalised Alkyl Selenols: A Versatile Tool for the Synthesis of Acyclic and Cyclic Unsymmetrical Alkyl and Vinyl Selenides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900168] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Simone Scarpelli
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Elena Ermini
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- Dipartimento di Chimica ”Ugo Schiff”Università di Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino Italy
| |
Collapse
|
29
|
Angeli A, Tanini D, Nocentini A, Capperucci A, Ferraroni M, Gratteri P, Supuran CT. Selenols: a new class of carbonic anhydrase inhibitors. Chem Commun (Camb) 2019; 55:648-651. [PMID: 30560259 DOI: 10.1039/c8cc08562e] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable aryl selenols were obtained through a convenient procedure. Selenols represent a new chemotype acting as carbonic anhydrase inhibitors (CAIs), inhibiting four human isoforms, CAs I, II, VII and the tumor-associated CA IX. X-ray crystallographic, physical and computational studies provided insights into the binding mode of this conceptually new class of CAIs.
Collapse
Affiliation(s)
- Andrea Angeli
- University of Florence, NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Tanini D, Lupori B, Malevolti G, Ambrosi M, Nostro PL, Capperucci A. Direct biocatalysed synthesis of first sulfur-, selenium- and tellurium- containing l-ascorbyl hybrid derivatives with radical trapping and GPx-like properties. Chem Commun (Camb) 2019; 55:5705-5708. [DOI: 10.1039/c9cc02427a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
6-O-l-Ascorbyl selenoesters, thioesters and telluroesters can be efficiently and directly prepared from l-ascorbic acid and suitable functionalised chalcogenoesters through lipase-catalysed transesterification reactions.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence
- Department of Chemistry “Ugo Schiff”
- I-50019 Sesto Fiorentino
- Italy
| | - Beatrice Lupori
- University of Florence
- Department of Chemistry “Ugo Schiff”
- I-50019 Sesto Fiorentino
- Italy
| | - Gianni Malevolti
- University of Florence
- Department of Chemistry “Ugo Schiff”
- I-50019 Sesto Fiorentino
- Italy
| | - Moira Ambrosi
- University of Florence
- Department of Chemistry “Ugo Schiff”
- I-50019 Sesto Fiorentino
- Italy
| | - Pierandrea Lo Nostro
- University of Florence
- Department of Chemistry “Ugo Schiff”
- I-50019 Sesto Fiorentino
- Italy
| | - Antonella Capperucci
- University of Florence
- Department of Chemistry “Ugo Schiff”
- I-50019 Sesto Fiorentino
- Italy
| |
Collapse
|
31
|
Tanini D, Borgogni C, Capperucci A. Mild and selective silicon-mediated access to enantioenriched 1,2-mercaptoamines and β-amino arylchalcogenides. NEW J CHEM 2019. [DOI: 10.1039/c9nj00657e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Metal-free ring opening reactions of activated and unactivated aziridines with different silyl chalcogenides are described.
Collapse
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- Via della Lastruccia 3-13
- 50019 Sesto Fiorentino
- Italy
| | - Cosimo Borgogni
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- Via della Lastruccia 3-13
- 50019 Sesto Fiorentino
- Italy
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- Via della Lastruccia 3-13
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
32
|
Chen S, Pan X, Zhu J, Zhu X. Synthesis of selenide-containing polymers by multicomponent polymerization based on γ-butyroselenolactone. Polym Chem 2019. [DOI: 10.1039/c9py01644a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile protocol for the synthesis of various multiresponsive selenide-containing polymeric architectures was developed by multicomponent polymerization (MCP) of primary diamines, γ-butyroselenolactone and electrophilic reagents.
Collapse
Affiliation(s)
- Sisi Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Global Institute of Software Technology
- Suzhou 215163
- China
| |
Collapse
|
33
|
Tanini D, Capperucci A. Ring opening reactions of heterocycles with selenium and tellurium nucleophiles. NEW J CHEM 2019. [DOI: 10.1039/c9nj02320h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of the preparation and synthetic potentialities of functionalized organoselenium and organotellurium compounds is presented.
Collapse
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
34
|
Penteado F, Monti B, Sancineto L, Perin G, Jacob RG, Santi C, Lenardão EJ. Ultrasound‐Assisted Multicomponent Reactions, Organometallic and Organochalcogen Chemistry. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800477] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Filipe Penteado
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| | - Bonifacio Monti
- Department of Pharmaceutical Sciences –University of Perugia - Via del Liceo, 1 Perugia (PG) Italy
| | - Luca Sancineto
- Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences, Sienkiewicza 112 90-363 Łódź Poland
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| | - Raquel G. Jacob
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| | - Claudio Santi
- Department of Pharmaceutical Sciences –University of Perugia - Via del Liceo, 1 Perugia (PG) Italy
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa – LASOL –Universidade Federal de Pelotas – UFPel – P.O. Box 354 96010-900 Pelotas (RS) Brazil
| |
Collapse
|
35
|
Angeli A, Tanini D, Capperucci A, Malevolti G, Turco F, Ferraroni M, Supuran CT. Synthesis of different thio-scaffolds bearing sulfonamide with subnanomolar carbonic anhydrase II and IX inhibitory properties and X-ray investigations for their inhibitory mechanism. Bioorg Chem 2018; 81:642-648. [PMID: 30253337 DOI: 10.1016/j.bioorg.2018.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 11/28/2022]
Abstract
Several new molecules with different thio-scaffolds were designed, synthesised, and evaluated biologically as inhibitors of Carbonic Anhydrases (CAIs). The structure-activity relationship analysis identified thioether derivatives, here reported, as a potent and selective CAIs against hCA II and hCA IX. High resolution X-ray structure of inhibitor bound hCA II revealed extensive interactions with the hydrophobic pocket of active site and provided molecular insight into the binding properties of these new inhibitors.
Collapse
Affiliation(s)
- Andrea Angeli
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Damiano Tanini
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Antonella Capperucci
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Gianni Malevolti
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Francesca Turco
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Marta Ferraroni
- Department of University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
36
|
Discovery of new 2, 5-disubstituted 1,3-selenazoles as selective human carbonic anhydrase IX inhibitors with potent anti-tumor activity. Eur J Med Chem 2018; 157:1214-1222. [DOI: 10.1016/j.ejmech.2018.08.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 11/18/2022]
|
37
|
Angeli A, Abbas G, Del Prete S, Capasso C, Supuran CT. Selenides bearing benzenesulfonamide show potent inhibition activity against carbonic anhydrases from pathogenic bacteria Vibrio cholerae and Burkholderia pseudomallei. Bioorg Chem 2018; 79:319-322. [PMID: 29803078 DOI: 10.1016/j.bioorg.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
A series of selenides bearing benzenesulfonamide moieties was evaluated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors against the pathogenic bacteria Vibrio cholerae (VchCAα and VchCAβ) and Burkholderia pseudomallei (BpsCAβ) enzymes. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action showing excellent inhibitory action and selectivity for inhibiting VchCAα and BpsCAβ over the human (h) off-target isoforms hCA I and II. Identification of potent and possibly selective inhibitors of bacteria CAs over the human counterparts may lead to pharmacological tools useful for understanding the physiological role(s) of these under-investigated proteins.
Collapse
Affiliation(s)
- Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Ghulam Abbas
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; Department of Biological Sciences and Chemistry, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
38
|
Angeli A, di Cesare Mannelli L, Lucarini E, Peat TS, Ghelardini C, Supuran CT. Design, synthesis and X-ray crystallography of selenides bearing benzenesulfonamide moiety with neuropathic pain modulating effects. Eur J Med Chem 2018; 154:210-219. [PMID: 29803994 DOI: 10.1016/j.ejmech.2018.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022]
Abstract
A series of selenides bearing benzensulfonamide were investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Potent inhibitory action, in the low nanomolar range, was detected against isoforms hCA II and VII, which are known to be involved in neuropathic pain modulation. These selenides showed on the other hand moderate inhibition against the cytosolic isoforms hCA I and transmembrane hCA IX. X-ray crystallographic data of two derivatives bound to hCA II allowed us to rationalize the excellent inhibitory data. In a mice model of neuropathic pain induced by oxaliplatin, some of the strong CA II/VII inhibitors induced a long lasting pain relieving effect.
Collapse
Affiliation(s)
- Andrea Angeli
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Lorenzo di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Elena Lucarini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Thomas S Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139, Florence, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
39
|
Angeli A, di Cesare Mannelli L, Trallori E, Peat TS, Ghelardini C, Carta F, Supuran CT. Design, Synthesis, and X-ray of Selenides as New Class of Agents for Prevention of Diabetic Cerebrovascular Pathology. ACS Med Chem Lett 2018; 9:462-467. [PMID: 29795760 DOI: 10.1021/acsmedchemlett.8b00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
A series of novel selenides bearing benzenesulfonamide moieties was synthesized and investigated for their inhibition on six human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms such as the physiologically relevant hCA I, II, VA, VB, VII, and IX and the X-ray complex in adduct with hCA II for some of them investigated. These enzymes are involved in a variety of diseases including glaucoma, retinitis pigmentosa, epilepsy, arthritis, metabolic disorders, and cancer. The investigated compounds showed potent inhibitory action against hCA VA, VII, and IX, in the low nanomolar range, thus making them of interest for the development of isoform-selective inhibitors and as candidates for various biomedical applications.
Collapse
Affiliation(s)
- Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo di Cesare Mannelli
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Elena Trallori
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Thomas S. Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Carla Ghelardini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
40
|
Tanini D, Grechi A, Ricci L, Dei S, Teodori E, Capperucci A. Novel functionalized organotellurides with enhanced thiol peroxidase catalytic activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00700d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel tellurium-containing small molecules exhibited remarkable GPx-like activity. Their catalytic properties are strongly influenced by the nature of the β-substituent.
Collapse
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Anna Grechi
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Lorenzo Ricci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| | - Silvia Dei
- NEUROFARBA – Dipartimento di Neuroscienze
- Psicologia
- Area del Farmaco e Salute del Bambino
- Sezione Scienze Farmaceutiche e Nutraceutiche
- Università di Firenze
| | - Elisabetta Teodori
- NEUROFARBA – Dipartimento di Neuroscienze
- Psicologia
- Area del Farmaco e Salute del Bambino
- Sezione Scienze Farmaceutiche e Nutraceutiche
- Università di Firenze
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- 50019 Sesto Fiorentino
- Italy
| |
Collapse
|
41
|
|