1
|
Torres D, Bernal M, Ustarroz J. Deciphering Spatially-Resolved Electrochemical Nucleation and Growth Kinetics by Correlative Multimicroscopy. SMALL METHODS 2024:e2401029. [PMID: 39568290 DOI: 10.1002/smtd.202401029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Indexed: 11/22/2024]
Abstract
The study employs a multimicroscopy approach, combining Scanning Electrochemical Cell Microscopy (SECCM) and Field Emission Scanning Electron Microscopy (FESEM), to investigate electrochemical nucleation and growth (EN&G). Cu nanoparticles (NPs) are meticulously electrodeposited on glassy carbon (GC), to perform co-located characterization, supported by analytical modeling and statistical analysis. The findings reveal clear correlations between electrochemical descriptors (i-t transients) and physical descriptors (NPs size and distribution), offering valuable insights into nucleation kinetics, influenced by varied overpotentials, surface state, and electrode's area. Analysis of the stochasticity of nucleation reveals intriguing temporal distributions, indicating an increased likelihood of nucleation with higher overpotential and larger electrode's area. Notably, the local surface state significantly influences nucleation site number and activity, leading to spatial differences in nucleation rates unaccounted for in macroscopic experiments. The updated analytical model for EN&G current transients, considering SECCM geometry, shows excellent agreement with FESEM measurements, facilitating the calculation of active sites within individual regions. These results deepen the understanding of EN&G phenomena from a new perspective, and lay the groundwork for further theoretical advancements, showcasing the great potential of current experimental methods in advancing precise electrochemical manufacturing of micro- and nanostructures.
Collapse
Affiliation(s)
- Daniel Torres
- ChemSIN - Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050, Belgium
| | - Miguel Bernal
- ChemSIN - Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050, Belgium
| | - Jon Ustarroz
- ChemSIN - Chemistry of Surfaces, Interfaces and Nanomaterials, Université libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe 2, CP 255, Brussels, 1050, Belgium
- SURF - Research Group Electrochemical and Surface Engineering, Department Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
2
|
Afsahi N, Zhang Z, Faez S, Noël JM, Panda MR, Majumder M, Naseri N, Lemineur JF, Kanoufi F. Seeing nanoscale electrocatalytic reactions at individual MoS 2 particles under an optical microscope: probing sub-mM oxygen reduction reaction. Faraday Discuss 2024. [PMID: 39451059 PMCID: PMC11504976 DOI: 10.1039/d4fd00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 10/26/2024]
Abstract
MoS2 is a promising electrocatalytic material for replacing noble metals. Nanoelectrochemistry studies, such as using nanoelectrochemical cell confinement, have particularly helped in demonstrating the preferential electrocatalytic activity of MoS2 edges. These findings have been accompanied by considerable research efforts to synthesize edge-abundant nanomaterials. However, to fully apprehend their electrocatalytic performance, at the single particle level, new instrumental developments are also needed. Here, we feature a highly sensitive refractive index based optical microscopy technique, namely interferometric scattering microscopy (iSCAT), for monitoring local electrochemistry at single MoS2 petal-like sub-microparticles. This work focuses on the oxygen reduction reaction (ORR), which operates at low current densities and thus requires high-sensitivity imaging techniques. By employing a precipitation reaction to reveal the ORR activity and utilizing the high spatial resolution and contrast of iSCAT, we achieve the sensitivity required to evaluate the ORR activity at single MoS2 particles.
Collapse
Affiliation(s)
- Nikan Afsahi
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Zhu Zhang
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Manas Ranjan Panda
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Naimeh Naseri
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
- Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
| | | | | |
Collapse
|
3
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Pandya R, Dorchies F, Romanin D, Lemineur JF, Kanoufi F, Gigan S, Chin AW, de Aguiar HB, Grimaud A. Concurrent oxygen evolution reaction pathways revealed by high-speed compressive Raman imaging. Nat Commun 2024; 15:8362. [PMID: 39333080 PMCID: PMC11437135 DOI: 10.1038/s41467-024-52536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Transition metal oxides are state-of-the-art materials for catalysing the oxygen evolution reaction (OER), whose slow kinetics currently limit the efficiency of water electrolysis. However, microscale physicochemical heterogeneity between particles, dynamic reactions both in the bulk and at the surface, and an interplay between particle reactivity and electrolyte makes probing the OER challenging. Here, we overcome these limitations by applying state-of-the-art compressive Raman imaging to uncover concurrent bias-dependent pathways for the OER in a dense, crystalline electrocatalyst, α-Li2IrO3. By spatially and temporally tracking changes in stretching modes we follow catalytic activation and charge accumulation following ion exchange under various electrolytes and cycling conditions, comparing our observations with other crystalline catalysts (IrO2, LiCoO2). We demonstrate that at low overpotentials the reaction between water and the oxidized catalyst surface is compensated by bulk ion exchange, as usually only found for amorphous, electrolyte permeable, catalysts. At high overpotentials the charge is compensated by surface redox active sites, as in other crystalline catalysts such as IrO2. Hence, our work reveals charge compensation can extend beyond the surface in crystalline catalysts. More generally, the results highlight the power of compressive Raman imaging for chemically specific tracking of microscale reaction dynamics in catalysts, battery materials, or memristors.
Collapse
Affiliation(s)
- Raj Pandya
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, Paris, France.
- Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Florian Dorchies
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, Paris, France
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), Amiens, France
| | - Davide Romanin
- Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR7588, Paris, France
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | | | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, Paris, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR7588, Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, Paris, France.
| | - Alexis Grimaud
- Chimie du Solide et de l'Energie, UMR 8260, Collège de France, Paris, France.
- Réseau sur le stockage Electrochimique de l'Energie (RS2E), Amiens, France.
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA, USA.
| |
Collapse
|
5
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Zhao X, Chen H, Cui Y, Zhang X, Hao R. Dual-Mode Imaging of Dynamic Interaction between Bubbles and Single Nanoplates during the Electrocatalytic Hydrogen Evolution Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400273. [PMID: 38552218 DOI: 10.1002/smll.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Indexed: 08/17/2024]
Abstract
Gas bubble formation at electrochemical interfaces can significantly affect the efficiency and durability of electrocatalysts. However, obtaining comprehensive details on bubble evolution dynamics, particularly their dynamic interaction with high-performance structured electrocatalysts, poses a considerable challenge. Herein, dual-mode interference/total internal reflection fluorescence microscopy is introduced, which allows for the simultaneous capture of the evolution pathway of bubbles and the 3D motion of nanoplate electrocatalysts, providing high-resolution and accurate spatiotemporal information. During the hydrogen evolution reaction, the dynamics of hydrogen bubble generation and their interactions with single nanoplate electrocatalysts at the electrochemical interface are observed. The results unveiled that, under constant potential, bubbles initially manifest as fast-moving nanobubbles, transforming into stationary microbubbles subsequently. The morphology of stationary nanoplates regulates the trajectories of these moving nanobubbles while the pinned microbubbles induce the motion of the electrocatalysts. The dual-mode microscopy can be employed to scrutinize numerous multiphase electrochemical interactions with high spatiotemporal resolution, which can facilitate the rational design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Houkai Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Wang SC, Ma J, Wang X, Xie RC, Wang W. Imaging Single Prussian Blue Nanoparticles with Extraordinary Low-Spin Iron Capacity. Anal Chem 2024. [PMID: 39090997 DOI: 10.1021/acs.analchem.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In attempts to obtain high-capacity Prussian blue nanomaterials, current efforts are predominantly focused on the particle-ensemble-level understanding of their structure-activity relationships. Complementarily, it would be insightful to screen out extraordinary individuals from the nanoparticle population. Using a simple and efficient technique of bright-field microscopy, this work enables, for the first time, quantitative characterization of the overall two-redox-center electrochemistry of single Prussian blue nanoparticles many at a time. Quantitative optical voltammograms with little interference from solvent breakdown and non-Faradaic electrode charging/discharging are extracted for each single nanoparticle, revealing clear heterogeneity among them. On this basis, the microscopic method allows a detailed comparative analysis between the two redox-active sites. It is found that while the synthesized nanoparticles show a similar specific capacity of the high-spin (HS-Fe) sites with STD/mean = 30%, most individual nanoparticles exhibit monodispersedly small capacities of the low-spin iron (LS-Fe) sites, only about 1 7 ± 1 of the HS-Fe capacity. Most importantly, it is discovered that there is always a small fraction (∼8%) of the single nanoparticles showing an impressively tripled LS-Fe capacity. Facilitated by optical imaging, the discovery of this easily overlooked extraordinary subpopulation confers alternative opportunities for targeted efforts for material chemists to improve synthesis and material design based on these unusual individuals, which in turn implies the general significance of nanoparticle screening.
Collapse
Affiliation(s)
- Si-Cong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Junjie Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Xinyue Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China
| |
Collapse
|
8
|
Niu B, Xie RC, Ren B, Long YT, Wang W. Radially distributed charging time constants at an electrode-solution interface. Nat Commun 2024; 15:5633. [PMID: 38965237 PMCID: PMC11224254 DOI: 10.1038/s41467-024-50028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
An electrochemically homogeneous electrode-solution interface should be understood as spatially invariant in both terms of intrinsic reactivity for the electrode side and electrical resistance mainly for the solution side. The latter remains presumably assumed in almost all cases. However, by using optical microscopy to spatially resolve the classic redox electrochemistry occurring at the whole surface of a gold macroelectrode, we discover that the electron transfer occurs always significantly sooner (by milliseconds), rather than faster in essence, at the radial coordinates closer to the electrode periphery than the very center. So is the charging process when there is no electron transfer. Based on optical measurements of the interfacial impedance, this spatially unsynchronized electron transfer is attributed to a radially non-uniform distribution of solution resistance. We accordingly manage to eliminate the heterogeneity by engineering the solution resistance distribution. The revealed spatially-dependent charging time 'constant' (to be questioned) would help paint our overall fundamental picture of electrode kinetics.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Wang X, Wang SC, Ma J, Xie RC, Wang W. Near-infrared visualisation of single microparticle electrochemistry for batteries. Chem Sci 2024; 15:8536-8544. [PMID: 38846408 PMCID: PMC11151827 DOI: 10.1039/d4sc00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
While optical microscopy of single particle electrochemistry has proven insightful for future nanoparticle-based batteries, little is explored for micron-sized particles of more practical interest. This is largely hindered by the currently limited methodology. Accordingly, we report transmission optical microscopy using near-infrared light for accessing intra-particle electrochemistry in virtue of strong light penetration as compared to visible light. Using near-infrared (λ > 730 nm) bright-field microscopy, the redox electrochemistry of single LiCoO2 microparticles can be readily measured based on the measurements of optical contrast changes during electrochemical cycling. Further using the established methodology, we discover that the solid-state diffusion inside most single microparticles is distinctly directional, instead of in an isotropic manner from outer to inner as observed for the other particles. This phenomenon is also observed using dark field scattering microscopy with near-infrared light, suggesting non-uniform crystal inner structures responsible for the geometrically asymmetric heterogeneity of charge transfer kinetics within each single particle. These results indicate potential opportunities offered by the near-infrared optical methodology for operando studying practical battery materials.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Si-Cong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Junjie Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| |
Collapse
|
10
|
Lu SM, Chen M, Wen H, Zhong CB, Wang HW, Yu Z, Long YT. Hydrodynamics-Controlled Single-Particle Electrocatalysis. J Am Chem Soc 2024; 146:15053-15060. [PMID: 38776531 DOI: 10.1021/jacs.3c14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Electrocatalysis is considered promising in renewable energy conversion and storage, yet numerous efforts rely on catalyst design to advance catalytic activity. Herein, a hydrodynamic single-particle electrocatalysis methodology is developed by integrating collision electrochemistry and microfluidics to improve the activity of an electrocatalysis system. As a proof-of-concept, hydrogen evolution reaction (HER) is electrocatalyzed by individual palladium nanoparticles (Pd NPs), with the development of microchannel-based ultramicroelectrodes. The controlled laminar flow enables the precise delivery of Pd NPs to the electrode-electrolyte interface one by one. Compared to the diffusion condition, hydrodynamic collision improves the number of active sites on a given electrode by 2 orders of magnitude. Furthermore, forced convection enables the enhancement of proton mass transport, thereby increasing the electrocatalytic activity of each single Pd NP. It turns out that the improvement in mass transport increases the reaction rate of HER at individual Pd NPs, thus a phase transition without requiring a high overpotential. This study provides new avenues for enhancing electrocatalytic activity by altering operating conditions, beyond material design limitations.
Collapse
Affiliation(s)
- Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjie Chen
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huilin Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng-Bing Zhong
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao-Wei Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Aruchamy G, Kim BK. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit Rev Anal Chem 2024:1-17. [PMID: 38829955 DOI: 10.1080/10408347.2024.2358492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H2 energy production, designing innovative electrocatalysts for this purpose remains a challenging task. Stochastic collision electrochemistry is gaining increased attention because it has led to new findings in the SEE field. Importantly, it facilitates establishing structure activity relationships for electrocatalysts by monitoring transient signals. This article reviews the recent achievements related to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using different electrocatalysts at the nanoscale level. In particular, it discusses the electrocatalytic activities of noble metal nanoparticles, including Ag, Au, Pt, and Pd nanoparticles, at the single-particle level. Because heterogeneity is a key factor affecting the catalytic activity of nanostructures, our work focuses on the influence of heterogeneities in catalytic materials on the OER and HER activities. These results may help to achieve a better understanding of the fundamental processes involved in the water splitting reaction.
Collapse
Affiliation(s)
- Gowrisankar Aruchamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
13
|
Zhang Y, Zhu X, Wood JA, Lohse D. Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. Proc Natl Acad Sci U S A 2024; 121:e2321958121. [PMID: 38748584 PMCID: PMC11126992 DOI: 10.1073/pnas.2321958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/27/2024] Open
Abstract
Understanding the stability mechanism of surface micro/nanobubbles adhered to gas-evolving electrodes is essential for improving the efficiency of water electrolysis, which is known to be hindered by the bubble coverage on electrodes. Using molecular simulations, the diffusion-controlled evolution of single electrolytic nanobubbles on wettability-patterned nanoelectrodes is investigated. These nanoelectrodes feature hydrophobic islands as preferential nucleation sites and allow the growth of nanobubbles in the pinning mode. In these simulations, a threshold current density distinguishing stable nanobubbles from unstable nanobubbles is found. When the current density remains below the threshold value, nucleated nanobubbles grow to their equilibrium states, maintaining their nanoscopic size. However, for the current density above the threshold value, nanobubbles undergo unlimited growth and can eventually detach due to buoyancy. Increasing the pinning length of nanobubbles increases the degree of nanobubble instability. By connecting the current density with the local gas oversaturation, an extension of the stability theory for surface nanobubbles [Lohse and Zhang, Phys. Rev. E 91, 031003(R) (2015)] accurately predicts the nanobubble behavior found in molecular simulations, including equilibrium contact angles and the threshold current density. For larger systems that are not accessible to molecular simulations, continuum numerical simulations with the finite difference method combined with the immersed boundary method are performed, again demonstrating good agreement between numerics and theories.
Collapse
Affiliation(s)
- Yixin Zhang
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and Johannes Martinus Burgers Centre for Fluid Dynamics, University of Twente, 7500 AEEnschede, The Netherlands
| | - Xiaojue Zhu
- Max Planck Institute for Solar System Research, 37077Göttingen, Germany
| | - Jeffery A. Wood
- Membrane Science and Technology Cluster, MESA+ Institute for Nanotechnology, University of Twente, 7500 AEEnschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and Johannes Martinus Burgers Centre for Fluid Dynamics, University of Twente, 7500 AEEnschede, The Netherlands
- Max Planck Institute for Dynamics and Self-Organization, 37077Göttingen, Germany
| |
Collapse
|
14
|
Lin CH, Wu JG, Lin HH, Luo SC. Electrified Interactions of Polyzwitterions with Charged Surfaces: Role of Dipole Orientation and Surface Potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7653-7660. [PMID: 38532553 PMCID: PMC11008249 DOI: 10.1021/acs.langmuir.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
The zwitterionic groups possess strong dipole moments, leading to inter- or intrachain interactions among zwitterionic polymers. This study aims to demonstrate the interaction of polyzwitterions poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and poly(carboxybetaine methacrylate) (PCBMA) with electrified surfaces, despite their electrically neutral nature. We studied the adsorption of polyzwitterions and their monomers on electrified surfaces by using an electrochemical quartz crystal microbalance with dissipation (EQCM-D). The interaction between zwitterionic molecules and charged surfaces is explored by adjusting the surface potentials. Interestingly, the adsorption of polyzwitterions can be influenced by external potential, primarily due to the formation of polyzwitterions restricting the mobility of zwitterionic groups, affecting the adsorption behavior of polyzwitterions based on the surface potential. The impact is determined by the arrangement of positive and negative ions within the zwitterionic groups, which are the dipole orientation. Additionally, surface potentials determine the adsorption rate, amount, and chain conformation of the adsorbed thin polyzwitterion layers. The effect of ionic strength was investigated by introducing electrolytes into the aqueous solutions to assess the range of influenced surface potentials.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jhih-Guang Wu
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsun-Hao Lin
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
15
|
Xu B, Meng X, Huang J, Shan Y, Qiu D, Chen Q. Revealing the Heterogeneous Bubble Nucleation at Individual Silica Nanoparticles. Anal Chem 2024. [PMID: 38319065 DOI: 10.1021/acs.analchem.3c04411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Deep understanding of the bubble nucleation process is universally important in systems, from chemical engineering to materials. However, due to its nanoscale and transient nature, effective probing of nucleation behavior with a high spatiotemporal resolution is prohibitively challenging. We previously reported the measurement of a single nanobubble nucleation at a nanoparticle using scanning electrochemical cell microscopy, where the bubble nucleation and formation were inferred from the voltammetric responses. Here, we continue the study of heterogeneous bubble nucleation at interfaces by regulating the local nanostructures using silica nanoparticles with a distinct surface morphology. It is demonstrated that, compared to the smooth spherical silica nanoparticles, the raspberry-like nanoparticles can further significantly reduce the nucleation energy barrier, with a critical peak current about 23% of the bare carbon surfaces. This study advances our understanding of how surface nanostructures direct the heterogeneous nucleation process and may offer a new strategy for surface engineering in gas involved energy conversion systems.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juan Huang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yun Shan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
16
|
Xie RC, Gao J, Wang SC, Li H, Wang W. Optically Imaging In Situ Effects of Electrochemical Cycling on Single Nanoparticle Electrocatalysis. Anal Chem 2024. [PMID: 38285921 DOI: 10.1021/acs.analchem.3c04425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Single-nanoparticle studies often need one or a series of nanoparticle populations that are designed with differences in a nominally particular structural parameter to clarify the structure-activity relationship (SAR). However, the heterogeneity of various properties within any population would make it rather difficult to approach an ideal one-parameter control. In situ modification ensures the same nanoparticle to be investigated and also avoids complicating effects from the otherwise often needed ex situ operations. Herein, we apply electrochemical cycling to single platinum nanoparticles and optically examine their SAR. An electrocatalytic fluorescent microscopic method is established to evaluate the apparent catalytic activity of a number of single nanoparticles toward the oxygen reduction reaction. Meanwhile, dark-field microscopy with the substrate electrode under a cyclic potential control is found to be able to assess the electrochemically active surface area (ECSA) of single nanoparticles via induced chloride redox electrochemistry. Consequently, nanoparticles with drastically increased catalytic activity are discovered to have larger ECSAs upon potential regulation, and interestingly, there are also a few particles with decreased activity, as opposed to the overall trend, that all develop a smaller ECSA in the process. The deactivated nanoparticles against the overall enhancement effects of potential cycling are revealed for the first time. As such, the SAR of single nanoparticles when subjected to an in situ structural control is optically demonstrated.
Collapse
Affiliation(s)
- Ruo-Chen Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Si-Cong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Su H, Sun J, Wang C, Wang H. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation. ULTRASONICS SONOCHEMISTRY 2024; 102:106734. [PMID: 38128391 PMCID: PMC10772823 DOI: 10.1016/j.ultsonch.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
To improve the hydrogen precipitation performance on the surface of the catalytic layer of the proton exchange membrane (PEM) hydrogen cathode, ultrasonic vibration was employed to accelerate the detachment of hydrogen bubbles on the surface of the catalytic layer. Based on the energy and mechanical analyses of nano and microbubbles, the hydrogen bubble generation mechanism and the effect of temperature on bubble parameters during the evolution process when the ultrasonic field is coupled with the electric field are investigated. The nucleation frequency of the hydrogen bubbles, the relationship between the pressure and temperature and the operating temperature during the generation and detachment of bubbles as well as the detachment radius of bubbles under the action of the ultrasonic field are obtained. The effects of ultrasound and temperature on hydrogen production were verified by visual experiments. The results show that the operating temperature affects the nucleation, growth, and detachment processes of hydrogen bubbles. The effect of temperature on the nucleation frequency of bubbles mainly comes from the Gibbs free energy required for the electrolysis reaction. The bubble radius and growth rate are both related to the temperature to the power of one-third. Ultrasonic waves enhance the separation of hydrogen bubbles from the catalyst surface by acoustic cavitation and impact effects. An increase in the working temperature reduces the activation energy barriers to be overcome for the electrolysis reaction of water, which together with a decrease in the Gibbs free energy and the surface tension coefficient, leads to an increase in the nucleation frequency of the catalytic layer and a decrease in the radius of bubble detachment, and thus improves the hydrogen precipitation performance. Visualization experiments show that in actual PEM hydrogen production, ultrasonic intensification can promote the formation of nucleation sites. The ultrasonic induced fine bubble flow not only has a drag effect on the bubble, but also intensifies the polymerization growth of the bubble due to the impact of the fine bubble flow, thus speeding up the detachment of the bubble, shortening the covering time of the hydrogen bubble on the surface of the catalytic electrode, reducing the activation voltage loss and improve the hydrogen production efficiency of PEM. The experimental results show that when the electrolyte is 60°C, the maximum hydrogen production efficiency of ultrasound is increased by 7.34%, and the average hydrogen production efficiency is increased by 5.83%.
Collapse
Affiliation(s)
- Hongqian Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jindong Sun
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Caizhu Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haofeng Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Building Environment and Energy Power Engineering Experimental Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
18
|
Kim J, Jung SM, Lee N, Kim KS, Kim YT, Kim JK. Efficient Alkaline Hydrogen Evolution Reaction Using Superaerophobic Ni Nanoarrays with Accelerated H 2 Bubble Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305844. [PMID: 37641945 DOI: 10.1002/adma.202305844] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Despite the adverse effects of H2 bubbles adhering to catalyst's surface on the performance of water electrolysis, the mechanisms by which H2 bubbles are effectively released during the alkaline hydrogen evolution reaction (HER) remain elusive. In this study, a systematic investigation on the effect of nanoscale surface morphologies on H2 bubble release behaviors and HER performance by employing earth-abundant Ni catalysts consisting of an array of Ni nanorods (NRs) with controlled surface porosities is performed. Both aerophobicity and hydrophilicity of the catalyst's surface vary according to the surface porosity of catalysts. The Ni catalyst with the highest porosity of ≈52% exhibits superaerophobic nature as well as the best HER performance among the Ni catalysts. It is found that the Ni catalyst's superaerophobicity combined with the effective open pore channels enables the accelerated release of H2 bubbles from the surface, leading to a significant improvement in geometric activities, particularly at high current densities, as well as intrinsic activities including both specific and mass activities. It is also demonstrated that the superaerophobicity enabled by highly porous Ni NRs can be combined with Pt and Cr having optimal binding abilities to further optimize electrocatalytic performance.
Collapse
Affiliation(s)
- Jaerim Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Sang-Mun Jung
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Noho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Kyu-Su Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yong-Tae Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jong Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
19
|
Kang M, Bentley CL, Mefford JT, Chueh WC, Unwin PR. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS NANO 2023; 17:21493-21505. [PMID: 37883688 PMCID: PMC10655184 DOI: 10.1021/acsnano.3c06335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Nanostructured electrocatalysts exhibit variations in electrochemical properties across different length scales, and the intrinsic catalytic characteristics measured at the nanoscale often differ from those at the macro-level due to complexity in electrode structure and/or composition. This aspect of electrocatalysis is addressed herein, where the oxygen evolution reaction (OER) activity of β-Co(OH)2 platelet particles of well-defined structure is investigated in alkaline media using multiscale scanning electrochemical cell microscopy (SECCM). Microscale SECCM probes of ∼50 μm diameter provide voltammograms from small particle ensembles (ca. 40-250 particles) and reveal increasing dispersion in the OER rates for samples of the same size as the particle population within the sample decreases. This suggests the underlying significance of heterogeneous activity at the single-particle level that is confirmed through single-particle measurements with SECCM probes of ∼5 μm diameter. These measurements of multiple individual particles directly reveal significant variability in the OER activity at the single-particle level that do not simply correlate with the particle size, basal plane roughness, or exposed edge plane area. In combination, these measurements demarcate a transition from an "individual particle" to an "ensemble average" response at a population size of ca. 130 particles, above which the OER current density closely reflects that measured in bulk at conventional macroscopic particle-modified electrodes. Nanoscale SECCM probes (ca. 120 and 440 nm in diameter) enable measurements at the subparticle level, revealing that there is selective OER activity at the edges of particles and highlighting the importance of the three-phase boundary where the catalyst, electrolyte, and supporting carbon electrode meet, for efficient electrocatalysis. Furthermore, subparticle measurements unveil heterogeneity in the OER activity among particles that appear superficially similar, attributable to differences in defect density within the individual particles, as well as to variations in electrical and physical contact with the support material. Overall this study provides a roadmap for the multiscale analysis of nanostructured electrocatalysts, directly demonstrating the importance of multilength scale factors, including particle structure, particle-support interaction, presence of defects, etc., in governing the electrochemical activities of β-Co(OH)2 platelet particles and ultimately guiding the rational design and optimization of these materials for alkaline water electrolysis.
Collapse
Affiliation(s)
- Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown 2006 NSW, Australia
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - J. Tyler Mefford
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - William C. Chueh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Patrick R. Unwin
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
20
|
Fan Y, Walls M, Salzemann C, Noël JM, Kanoufi F, Courty A, Lemineur JF. Metal Core-Shell Nanoparticle Supercrystals: From Photoactivation of Hydrogen Evolution to Photocorrosion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305402. [PMID: 37492940 DOI: 10.1002/adma.202305402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Gas nanobubbles are directly linked to many important chemical reactions. While they can be detrimental to operational devices, they also reflect the local activity at the nanoscale. Here, supercrystals made of highly monodisperse Ag@Pt core-shell nanoparticles are first grown onto a solid support and fully characterized by electron microscopies and X-ray scattering. Supercrystals are then used as a plasmonic photocatalytic platform for triggering the hydrogen evolution reaction. The catalytic activity is measured operando at the single supercrystal level by high-resolution optical microscopy, which allows gas nanobubble nucleation to be probed at the early stage with high temporal resolution and the amount of gas molecules trapped inside them to be quantified. Finally, a correlative microscopy approach and high-resolution electron energy loss spectroscopy help to decipher the mechanisms at the origin of the local degradation of the supercrystals during catalysis, namely nanoscale erosion and corrosion.
Collapse
Affiliation(s)
- Yinan Fan
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | - Michael Walls
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay, 91405, France
| | - Caroline Salzemann
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | - Jean-Marc Noël
- ITODYS, Université Paris Cité, CNRS, Paris, F-75013, France
| | | | - Alexa Courty
- MONARIS, Sorbonne Université, CNRS, UMR 8233, 4 Place Jussieu, Paris, 75005, France
| | | |
Collapse
|
21
|
Suvira M, Ahuja A, Lovre P, Singh M, Draher GW, Zhang B. Imaging Single H 2 Nanobubbles Using Off-Axis Dark-Field Microscopy. Anal Chem 2023; 95:15893-15899. [PMID: 37851536 DOI: 10.1021/acs.analchem.3c02132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A robust and detailed physicochemical description of electrochemically generated surface nanobubbles and their effects on electrochemical systems remains at large. Herein, we report the development and utilization of an off-axis, dark-field microscopy imaging tool for probing the dynamic process of generating single H2 nanobubbles at the surface of a carbon nanoelectrode. A change in the direction of the incident light is made to significantly reduce the intensity of the background light, which enables us to image both the nanoelectrode and nanobubble on the electrode surface or the metal nanoparticles in the vicinity of the electrode. The correlated electrochemical and optical response provides novel insights regarding bubble nucleation and dissolution on a nanoelectrode previously unattainable solely from its current-voltage response.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ananya Ahuja
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Pascal Lovre
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mantak Singh
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gracious Wyatt Draher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
22
|
Godeffroy L, Shkirskiy V, Noël JM, Lemineur JF, Kanoufi F. Fuelling electrocatalysis at a single nanoparticle by ion flow in a nanoconfined electrolyte layer. Faraday Discuss 2023; 246:441-465. [PMID: 37427498 DOI: 10.1039/d3fd00032j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We explore the possibility of coupling the transport of ions and water in a nanochannel with the chemical transformation of a reactant at an individual catalytic nanoparticle (NP). Such configuration could be interesting for constructing artificial photosynthesis devices coupling the asymmetric production of ions at the catalytic NP, with the ion selectivity of the nanochannels acting as ion pumps. Herein we propose to observe how such ion pumping can be coupled to an electrochemical reaction operated at the level of an individual electrocatalytic Pt NP. This is achieved by confining a (reservoir) droplet of electrolyte to within a few micrometres away from an electrocatalytic Pt NP on an electrode. While the region of the electrode confined by the reservoir and the NP are cathodically polarised, operando optical microscopy reveals the growth of an electrolyte nanodroplet on top of the NP. This suggests that the electrocatalysis of the oxygen reduction reaction operates at the NP and that an electrolyte nanochannel is formed - acting as an ion pump - between the reservoir and the NP. We have described here the optically imaged phenomena and their relevance to the characterization of the electrolyte nanochannel linking the NPs to the electrolyte microreservoir. Additionally, we have addressed the capacity of the nanochannel to transport ions and solvent flow to the NP.
Collapse
Affiliation(s)
| | | | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | | | | |
Collapse
|
23
|
Zhang Z, Faez S. Iontronic microscopy of a tungsten microelectrode: "seeing" ionic currents under an optical microscope. Faraday Discuss 2023; 246:426-440. [PMID: 37404127 PMCID: PMC10568260 DOI: 10.1039/d3fd00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 07/06/2023]
Abstract
Optical methods for monitoring electrochemical reactions at an interface are advantageous because of their table-top setup and ease of integration into reactors. Here we apply EDL-modulation microscopy to one of the main components of amperometric measurement devices: a microelectrode. We present experimental measurements of the EDL-modulation contrast from the tip of a tungsten microelectrode at various electrochemical potentials inside a ferrocene-dimethanol Fe(MeOH)2 solution. Using the combination of the dark-field scattering microscope and the lock-in detection technique, we measure the phase and amplitude of local ion-concentration oscillations in response to an AC potential as the electrode potential is scanned through the redox-activity window of the dissolved species. We present the amplitude and phase map of this response, as such this method can be used to study the spatial and temporal variations of the ion-flux due to an electrochemical reaction close to metallic and semiconducting objects of general geometry. We discuss the advantages and possible extensions of using this microscopy method for wide-field imaging of ionic currents.
Collapse
Affiliation(s)
- Zhu Zhang
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands.
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands.
| |
Collapse
|
24
|
Li R, Makogon A, Galochkina T, Lemineur JF, Kanoufi F, Shkirskiy V. Unsupervised Analysis of Optical Imaging Data for the Discovery of Reactivity Patterns in Metal Alloy. SMALL METHODS 2023; 7:e2300214. [PMID: 37382395 DOI: 10.1002/smtd.202300214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Operando wide-field optical microscopy imaging yields a wealth of information about the reactivity of metal interfaces, yet the data are often unstructured and challenging to process. In this study, the power of unsupervised machine learning (ML) algorithms is harnessed to analyze chemical reactivity images obtained dynamically by reflectivity microscopy in combination with ex situ scanning electron microscopy to identify and cluster the chemical reactivity of particles in Al alloy. The ML analysis uncovers three distinct clusters of reactivity from unlabeled datasets. A detailed examination of representative reactivity patterns confirms the chemical communication of generated OH- fluxes within particles, as supported by statistical analysis of size distribution and finite element modelling (FEM). The ML procedures also reveal statistically significant patterns of reactivity under dynamic conditions, such as pH acidification. The results align well with a numerical model of chemical communication, underscoring the synergy between data-driven ML and physics-driven FEM approaches.
Collapse
Affiliation(s)
- Rui Li
- Université Paris Cité, ITODYS, CNRS, Paris, 75013, France
| | | | | | | | | | | |
Collapse
|
25
|
Gadea ED, Molinero V, Scherlis DA. Nanobubble Stability and Formation on Solid-Liquid Interfaces in Open Environments. NANO LETTERS 2023; 23:7206-7212. [PMID: 37490518 DOI: 10.1021/acs.nanolett.3c02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Are surface nanobubbles transient or thermodynamically stable structures? This question remained controversial until recently, when the stability of gas nanobubbles at solid-liquid interfaces was demonstrated from thermodynamic arguments in closed systems, establishing that bubbles with radii of hundreds of nanometers can be stable at modest supersaturations if the gas amount is finite. Here we develop a grand-canonical description of bubble formation that predicts that nanobubbles can nucleate and remain thermodynamically stable in open boundaries at high supersaturations when pinned to hydrophobic supports as small as a few nanometers. While larger bubbles can also be stable at lower supersaturations, the corresponding barriers are orders of magnitude above kT, meaning that their formation cannot proceed via heterogeneous nucleation on a uniform solid interface but must follow some alternative path. Moreover, we conclude that a source of growth-limiting mechanism, such as pinning or gas availability, is necessary for the thermodynamic stabilization of surface bubbles.
Collapse
Affiliation(s)
- Esteban D Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0580, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0580, United States
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
26
|
Zhu Y, Droguet L, Deng J, Wang X, Li L, Dufil Y, Deschannels M, Jommongkol R, Pareseecharoen C, Grimaud A, Tarascon JM, Fontaine O. Visualizing Water Reduction with Diazonium Grafting on a Glassy Carbon Electrode Surface in a Water-in-Salt Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23899-23907. [PMID: 37129997 DOI: 10.1021/acsami.3c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aqueous batteries are regaining interest, thanks to the extended working stability voltage window in a highly concentrated electrolyte, namely the water-in-salt electrolyte. A solid-electrolyte interphase (SEI) forms on the negative electrode to prevent water access to the electrode surface. However, we further reported that the formed SEI layer was not uniform on the surface of the glassy carbon electrode. The SEI after passivation will also show degradation during the remaining time of open-circuit voltage (OCV); hence, it calls for a more stable passivation layer to cover the electrode surface. Here, a surface modification was successfully achieved via artificial diazonium grafting using monomers, such as poly(ethylene glycol), α-methoxy, ω-allyloxy (PEG), and allyl glycidyl cyclocarbonate (AGC), on glassy carbon. Physical and electrochemical measurements indicated that the hydrophobic layer composed of PEG or AGC species was well grafted on the electrode surface. The grafted hydrophobic coatings could protect the electrode surface from the water molecules in the bulk electrolyte and then suppress the free water decomposition (from LSV) but still migrating lithium ions. Furthermore, multiple cycles of CV with one-hour resting OCV identified the good stability of the hydrophobic grafting layer, which is a highlight compared with our precious work. These findings relying on the diazonium grafting design may offer a new strategy to construct a stable artificial SEI layer that can well protect the electrode surface from the free water molecule.
Collapse
Affiliation(s)
- Yachao Zhu
- ICGM, Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Lea Droguet
- College de France, 75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Jie Deng
- Institute for Advanced Study & College of Food and Biological Engineering, Chengdu University, 610106 Chengdu, China
| | - Xuanze Wang
- Molecular Electrochemistry for Energy Laboratory, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210 Rayong, Thailand
| | - Luming Li
- Institute for Advanced Study & College of Food and Biological Engineering, Chengdu University, 610106 Chengdu, China
| | - Yannick Dufil
- ICGM, Université de Montpellier, CNRS, 34293 Montpellier, France
| | | | - Rossukon Jommongkol
- Molecular Electrochemistry for Energy Laboratory, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210 Rayong, Thailand
| | - Chayaporn Pareseecharoen
- Molecular Electrochemistry for Energy Laboratory, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210 Rayong, Thailand
| | - Alexis Grimaud
- College de France, 75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Jean-Marie Tarascon
- College de France, 75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, 80039 Amiens Cedex, France
| | - Olivier Fontaine
- Molecular Electrochemistry for Energy Laboratory, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210 Rayong, Thailand
| |
Collapse
|
27
|
Ciocci P, Valavanis D, Meloni GN, Lemineur J, Unwin PR, Kanoufi F. Optical Super‐Localisation of Single Nanoparticle Nucleation and Growth in Nanodroplets. ChemElectroChem 2023. [DOI: 10.1002/celc.202201162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Paolo Ciocci
- Université Paris Cité ITODYS, CNRS F-75013 Paris France
| | - Dimitrios Valavanis
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| | - Gabriel N. Meloni
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
- Institute of Chemistry Department of Fundamental Chemistry University of São Paulo 05508-000 São Paulo, SP Brazil
| | | | - Patrick R. Unwin
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
| | | |
Collapse
|
28
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
29
|
Li G, Mao J, Saqib M, Hao R. Operando Optoelectrochemical Analysis of Single Zinc Dendrites with a Reflective Nanopore Electrode. Chem Asian J 2022; 17:e202200824. [DOI: 10.1002/asia.202200824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Guopeng Li
- Southern University of Science and Technology Chemistry CHINA
| | - Jiaxin Mao
- Southern University of Science and Technology Chemistry CHINA
| | - Muhammad Saqib
- Southern University of Science and Technology CHemistry CHINA
| | - Rui Hao
- Southern University of Science and Technology Department of Chemistry 1088 Xueyuan Ave. 518055 Shenzhen CHINA
| |
Collapse
|
30
|
Godeffroy L, Lemineur JF, Shkirskiy V, Miranda Vieira M, Noël JM, Kanoufi F. Bridging the Gap between Single Nanoparticle Imaging and Global Electrochemical Response by Correlative Microscopy Assisted By Machine Vision. SMALL METHODS 2022; 6:e2200659. [PMID: 35789075 DOI: 10.1002/smtd.202200659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The nanostructuration of an electrochemical interface dictates its micro- and macroscopic behavior. It is generally highly complex and often evolves under operating conditions. Electrochemistry at these nanostructurations can be imaged both operando and/or ex situ at the single nanoobject or nanoparticle (NP) level by diverse optical, electron, and local probe microscopy techniques. However, they only probe a tiny random fraction of interfaces that are by essence highly heterogeneous. Given the above background, correlative multimicroscopy strategy coupled to electrochemistry in a droplet cell provides a unique solution to gain mechanistic insights in electrocatalysis. To do so, a general machine-vision methodology is depicted enabling the automated local identification of various physical and chemical descriptors of NPs (size, composition, activity) obtained from multiple complementary operando and ex situ microscopy imaging of the electrode. These multifarious microscopically probed descriptors for each and all individual NPs are used to reconstruct the global electrochemical response. Herein the methodology unveils the competing processes involved in the electrocatalysis of hydrogen evolution reaction at nickel based NPs, showing that Ni metal activity is comparable to that of platinum.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Marc Noël
- Université Paris Cité, ITODYS, CNRS, 75013, Paris, France
| | | |
Collapse
|
31
|
Direct measuring of single-heterogeneous bubble nucleation mediated by surface topology. Proc Natl Acad Sci U S A 2022; 119:e2205827119. [PMID: 35858338 PMCID: PMC9303989 DOI: 10.1073/pnas.2205827119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.
Collapse
|
32
|
Wang JG, Zhang L, Xie J, Weizmann Y, Li D, Li J. Single Particle Hopping as an Indicator for Evaluating Electrocatalysts. NANO LETTERS 2022; 22:5495-5502. [PMID: 35727011 DOI: 10.1021/acs.nanolett.2c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design and screening of electrocatalysts for gas evolution reactions suffer from little understanding of multiphase processes at the electrode-electrolyte interface. Due to the complexity of the multiphase interface, it is still a great challenge to capture gas evolution dynamics under operando conditions to precisely portray the intrinsic catalytic performance of the interface. Here, we establish a single particle imaging method to real-time monitor a potential-dependent vertical motion or hopping of electrocatalysts induced by electrogenerated gas nanobubbles. The hopping feature of a single particle is closely correlated with intrinsic activities of electrocatalysts and thus is developed as an indicator to evaluate gas evolution performance of various electrocatalysts. This optical indicator diminishes interference from heterogeneous morphologies, non-Faradaic processes, and parasitic side reactions that are unavoidable in conventional electrochemical measurements, therefore enabling precise evaluation and high-throughput screening of catalysts for gas evolution systems.
Collapse
Affiliation(s)
- Jun-Gang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jing Xie
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yossi Weizmann
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Jinghong Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
33
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
34
|
Lemineur JF, Wang H, Wang W, Kanoufi F. Emerging Optical Microscopy Techniques for Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:57-82. [PMID: 35216529 DOI: 10.1146/annurev-anchem-061020-015943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An optical microscope is probably the most intuitive, simple, and commonly used instrument to observe objects and discuss behaviors through images. Although the idea of imaging electrochemical processes operando by optical microscopy was initiated 40 years ago, it was not until significant progress was made in the last two decades in advanced optical microscopy or plasmonics that it could become a mainstream electroanalytical strategy. This review illustrates the potential of different optical microscopies to visualize and quantify local electrochemical processes with unprecedented temporal and spatial resolution (below the diffraction limit), up to the single object level with subnanoparticle or single-molecule sensitivity. Developed through optically and electrochemically active model systems, optical microscopy is now shifting to materials and configurations focused on real-world electrochemical applications.
Collapse
Affiliation(s)
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | | |
Collapse
|
35
|
Mita M, Matsushima H, Ueda M, Ito H. In-situ high-speed atomic force microscopy observation of dynamic nanobubbles during water electrolysis. J Colloid Interface Sci 2022; 614:389-395. [DOI: 10.1016/j.jcis.2022.01.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
36
|
Sikes JC, Wonner K, Nicholson A, Cignoni P, Fritsch I, Tschulik K. Characterization of Nanoparticles in Diverse Mixtures Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrodynamics Microfluidics. ACS PHYSICAL CHEMISTRY AU 2022; 2:289-298. [PMID: 35915589 PMCID: PMC9335947 DOI: 10.1021/acsphyschemau.1c00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Redox magnetohydrodynamics
(RMHD) microfluidics is coupled with
dark-field microscopy (DFM) to offer high-throughput single-nanoparticle
(NP) differentiation in situ and operando in a flowing mixture by localized surface plasmon resonance (LSPR)
and tracking of NPs. The color of the scattered light allows visualization
of the NPs below the diffraction limit. Their Brownian motion in 1-D
superimposed on and perpendicular to the RMHD trajectory yields their
diffusion coefficients. LSPR and diffusion coefficients provide two
orthogonal modalities for characterization where each depends on a
particle’s material composition, shape, size, and interactions
with the surrounding medium. RMHD coupled with DFM was demonstrated
on a mixture of 82 ± 9 nm silver and 140 ± 10 nm gold-coated
silica nanospheres. The two populations of NPs in the mixture were
identified by blue/green and orange/red LSPR and their scattering
intensity, respectively, and their sizes were further evaluated based
on their diffusion coefficients. RMHD microfluidics facilitates high-throughput
analysis by moving the sample solution across the wide field of view
absent of physical vibrations within the experimental cell. The well-controlled
pumping allows for a continuous, reversible, and uniform flow for
precise and simultaneous NP tracking of the Brownian motion. Additionally,
the amounts of nanomaterials required for the analysis are minimized
due to the elimination of an inlet and outlet. Several hundred individual
NPs were differentiated from each other in the mixture flowing in
forward and reverse directions. The ability to immediately reverse
the flow direction also facilitates re-analysis of the NPs, enabling
more precise sizing.
Collapse
Affiliation(s)
- Jazlynn C. Sikes
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Kevin Wonner
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| | - Aaron Nicholson
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Paolo Cignoni
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| | - Ingrid Fritsch
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Kristina Tschulik
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| |
Collapse
|
37
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|
38
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
39
|
Suvira M, Zhang B. Single-Molecule Interactions at a Surfactant-Modified H 2 Surface Nanobubble. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13816-13823. [PMID: 34788049 DOI: 10.1021/acs.langmuir.1c01686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In schematics and cartoons, the gas-liquid interface is often drawn as solid lines that aid in distinguishing the separation of the two phases. However, on the molecular level, the structure, shape, and size of the gas-liquid interface remain elusive. Furthermore, the interactions of molecules at gas-liquid interfaces must be considered in various contexts, including atmospheric chemical reactions, wettability of surfaces, and numerous other relevant phenomena. Hence, understanding the structure and interactions of molecules at the gas-liquid interface is critical for further improving technologies that operate between the two phases. Electrochemically generated surface nanobubbles provide a stable, reproducible, and high-throughput platform for the generation of a nanoscale gas-liquid boundary. We use total internal reflection fluorescence microscopy to image single-fluorophore labeling of surface nanobubbles in the presence of a surfactant. The accumulation of a surfactant on the nanobubble surface changes the interfacial properties of the gas-liquid interface. The single-molecule approach reveals that the fluorophore adsorption and residence lifetime at the interface is greatly impacted by the charge of the surfactant layer at the bubble surface. We demonstrate that the fluorescence readout is either short- or long-lived depending on the repulsive or attractive environment, respectively, between fluorophores and surfactants. Additionally, we investigated the effect of surfactant chain length and salt type and concentration on the fluorophore lifetime at the nanobubble surface.
Collapse
Affiliation(s)
- Milomir Suvira
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
40
|
Li F, Ma K, Liu L, Xi J, Qiu X. Characterizing the Onset Potential Distribution of Pt/C Catalyst Deposition by a Total Internal Reflection Imaging Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102407. [PMID: 34610208 DOI: 10.1002/smll.202102407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
A catalytic electrode with extraordinary performances for hydrogen evolution reaction (HER) should achieve a low onset potential of the bulk electrode, as well as its uniform distribution. Herein, a total internal reflection imaging (TIRi) method to characterize the onset potential distribution of the catalytic electrode surface is presented. When the potential scans toward negative in a linear sweep voltammetry, the equivalent refractive index of the electrolyte on the electrode surface will decrease due to H2 microbubbles generation, leading to the increase in optical intensity. Analysis of the relationship between the optical intensity and potential in each region results in the onset potential distribution. The TIRi method reveals poor uniformity and repeatability in the catalytic electrodes which are fabricated by depositing Pt/C catalysts on a porous carbon support with polymer binders (e.g., Nafion). Further electrochemical stability test also shows poor durability, whose HER onset potential deteriorates from the edge to the middle of these catalytic electrodes. The present TIRi method realizes direct visualization of the activity distribution on the bulk electrode surface, which provides a powerful tool for better fabrication and evaluation of large-area HER electrodes in industrial energy devices.
Collapse
Affiliation(s)
- Fuying Li
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Kaijie Ma
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Le Liu
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingyu Xi
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xinping Qiu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
41
|
Accessing the spatiotemporal heterogeneities of single nanocatalysts by optically imaging gas nanobubbles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Zhang Z, Qiang J, Wang S, Xu M, Gan M, Rao Z, Tian T, Ke S, Zhou Y, Hu Y, Leung CW, Mak CL, Fei L. Visualization of Bubble Nucleation and Growth Confined in 2D Flakes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103301. [PMID: 34473395 DOI: 10.1002/smll.202103301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jun Qiang
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Shensong Wang
- Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, School of Microelectronics, Hubei University, Wuhan, Hubei, 430062, China
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Min Gan
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenggang Rao
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Tingfang Tian
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shanming Ke
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yangbo Zhou
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yongming Hu
- Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, School of Microelectronics, Hubei University, Wuhan, Hubei, 430062, China
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Linfeng Fei
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
43
|
Deng Z, Renault C. Unravelling the last milliseconds of an individual graphene nanoplatelet before impact with a Pt surface by bipolar electrochemistry. Chem Sci 2021; 12:12494-12500. [PMID: 34603681 PMCID: PMC8480341 DOI: 10.1039/d1sc03646g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Contactless interactions of micro/nano-particles near electrochemically or chemically active interfaces are ubiquitous in chemistry and biochemistry. Forces arising from a convective field, an electric field or chemical gradients act on different scales ranging from few microns down to few nanometers making their study difficult. Here, we correlated optical microscopy and electrochemical measurements to track at the millisecond timescale the dynamics of individual two-dimensional particles, graphene nanoplatelets (GNPs), when approaching an electrified Pt micro-interface. Our original approach takes advantage of the bipolar feedback current recorded when a conducting particle approaches an electrified surface without electrical contact and numerical simulations to access the velocity of individual GNPs. We evidenced a strong deceleration of GNPs from few tens of μm s-1 down to few μm s-1 within the last μm above the surface. This observation reveals the existence of strongly non-uniform forces between tens of and a thousand nanometers from the surface.
Collapse
Affiliation(s)
- Zejun Deng
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris Route de Saclay 91128 Palaiseau France
| | - Christophe Renault
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris Route de Saclay 91128 Palaiseau France
| |
Collapse
|
44
|
Liu Y, Lu X, Peng Y, Chen Q. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Anal Chem 2021; 93:12337-12345. [PMID: 34460230 DOI: 10.1021/acs.analchem.1c02099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic gas evolution reactions, where gaseous molecules are electrogenerated by reduction or oxidation of a species, play a central role in many energy conversion systems. Superaerophobic electrodes, usually constructed by their surface microstructures, have demonstrated excellent performance for electrochemical gas evolution reactions due to their bubble-repellent properties. Understanding and quantification of the gas bubble behavior including nucleation and dynamics on such microstructured electrodes is an important but underexplored issue. In this study, we reported a scanning electrochemical cell microscopy (SECCM) investigation of individual gas bubble nucleation and dynamics on nanoscale electrodes. A classic Pt film and a nonconventional transition-metal dichalcogenide MoS2 film with different surface topologies were employed as model substrates for both H2 and N2 bubble electrochemical studies. Interestingly, the nanostructured catalyst surface exhibit significantly less supersaturation for gas bubble nucleation and a notable increase of bubble detachment compared to its flat counterpart. Electrochemical mapping results reveal that there is no clear correlation between bubble nucleation and hydrogen evolution reaction (HER) activity, regardless of local electrode surface microstructures. Our results also indicate that while the hydrophobicity of the nanostructured MoS2 surface promotes bubble nucleation, it has little effect on bubble dynamics. This work introduces a new method for nanobubble electrochemistry on broadly interesting catalysts and suggests that the deliberate microstructure on a catalyst surface is a promising strategy for improving electrocatalytic gas evolution both in terms of bubble nucleation and elimination.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoxi Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
45
|
Su H, Wang W. Dynamically Monitoring the Photodeposition of Single Cocatalyst Nanoparticles on Semiconductors via Fluorescence Imaging. Anal Chem 2021; 93:11915-11919. [PMID: 34424667 DOI: 10.1021/acs.analchem.1c01908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Loading of cocatalysts through photodeposition has been considered as one of the most promising methods to improve the photocatalytic activities of semiconductors, because of the advantages of intimate contact, easy preparation, and site-directed loading. While extensive efforts have been made to characterize the cocatalysts after synthesis, the growth kinetics of cocatalysts during photodeposition is largely a black box, thus leading to relatively empirical optimizations on the loading strategies of cocatalysts to date. Herein, we dynamically imaged the photodeposition of single cocatalysts on semiconductors via a wide-field fluorescence (FL) microscope, utilizing g-C3N4 sheets and CdS nanowires as models. This capability was based on the quenching effect of cocatalysts on the intrinsic FL emission of semiconductors. Single cocatalyst study revealed that FL emission of photocatalysts decayed monoexponentially during photodeposition, and cocatalysts possessed a self-limited growth. The significant heterogeneities (differences) of cocatalysts during photodeposition were also uncovered, regarding the apparent induction time, deposition rate and FL quenching amplitude. These informations were difficult to be accessed using the ex situ characterization. Programmable photodeposition and dissolution of CoxP were also realized, utilizing a focused laser beam with a spot size of <1 μm. This work explored the hidden details of the growth of cocatalysts during photodeposition, opening up a new avenue to optimize photodeposition for rationally designing more efficient photocatalysts.
Collapse
Affiliation(s)
- Hua Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Gao J, Shi N, Guo X, Li Y, Bi X, Qi Y, Guan J, Jiang B. Electrochemically Selective Ammonia Extraction from Nitrate by Coupling Electron- and Phase-Transfer Reactions at a Three-Phase Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10684-10694. [PMID: 34259503 DOI: 10.1021/acs.est.0c08552] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an attractive alternative to the Haber-Bosch process, an electrochemical process for nitrate (NO3-) reduction to ammonia (NH3) has made great strides in the development of advanced electrocatalysts to suppress the unavoidable H2 evolution reaction (HER) and side production of N2. However, isochronous NH3 separation and recovery from the mother liquor, especially wastewaters, are awfully neglected in state-of-the-art electrochemical systems. Here, we designed electrochemical three-phase interfaces constructed by a CoP cathode and a flat-sheet gas membrane to achieve NO3- reduction to ammonia and simultaneous NH3 recovery in the form of (NH4)2SO4 from wastewaters. The partial current density for ammonia yield and its recovery rate were 37.3 mA cm-2 and 306 g NH3-N m-2 day-1, respectively, accompanying 100% NO3- removal and 99.7% NH3 extraction. By favoring the originally unfavored side reaction HER, it served as the driving force for NH3 separation from the wastewater through gas stripping and membrane separation at the three-phase interfaces. Unexpectedly, the timely NH3 separation could also promote the reduction of NO3- to ammonia due to the release of much more active sites. From these, we envision that the present electrochemical process can be routinely employed as an effective strategy to address energy and environmental issues with NH3 recovery from NO3- wastewater.
Collapse
Affiliation(s)
- Jianan Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Ning Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
| | - Xiaobin Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
| | - Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
| | - Jing Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, P. R. China
| |
Collapse
|
47
|
Ciocci P, Lemineur JF, Noël JM, Combellas C, Kanoufi F. Differentiating electrochemically active regions of indium tin oxide electrodes for hydrogen evolution and reductive decomposition reactions. An in situ optical microscopy approach. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
48
|
Godeffroy L, Ciocci P, Nsabimana A, Miranda Vieira M, Noël JM, Combellas C, Lemineur JF, Kanoufi F. Deciphering Competitive Routes for Nickel-Based Nanoparticle Electrodeposition by an Operando Optical Monitoring. Angew Chem Int Ed Engl 2021; 60:16980-16983. [PMID: 34101324 DOI: 10.1002/anie.202106420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/09/2022]
Abstract
Electrodeposition of earth-abundant iron group metals such as nickel is difficult to characterize by simple electrochemical analyses since the reduction of their metal salts often competes with inhibiting reactions. This makes the mechanistic interpretation sometimes contradictory, preventing unambiguous predictions about the nature and structure of the electrodeposited material. Herein, the complexity of Ni nanoparticles (NPs) electrodeposition on indium tin oxide (ITO) is unraveled operando and at a single entity NP level by optical microscopy correlated to ex situ SEM imaging. Our correlative approach allows differentiating the dynamics of formation of two different NP populations, metallic Ni and Ni(OH)2 with a <25 nm limit of detection, their formation being ruled by the competition between Ni2+ and water reduction. At the single NP level this results in a self-terminated growth, an information which is most often hidden in ensemble averaged measurements.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Unviersité de Paris, ITODYS, CNRS, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Deciphering Competitive Routes for Nickel‐Based Nanoparticle Electrodeposition by an Operando Optical Monitoring. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
JIN C, LIU YL, SHAN Y, CHEN QJ. Scanning Electrochemical Cell Microscope Study of Individual H2 Gas Bubble Nucleation on Platinum: Effect of Surfactants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|