1
|
Liu W, Fang X, Ju X, Gao K, Wang D, Xu H, Wang J. Amino acid-induced synthesis of chiral AgAuPt nanoparticles with branched structure for circularly polarized enantioselective photoelectrocatalytic water splitting. J Colloid Interface Sci 2024; 675:74-83. [PMID: 38964126 DOI: 10.1016/j.jcis.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Chiral Plasmonic nanomaterials have gradually illustrated intriguing circularly polarized light (CPL)-dependent properties in photocatalysis due to their unique chiral optical activity. However, the connection between chiral characteristics and catalytic performance of these materials in cooperative systems is rarely reported and remains a challenge task. In this work, branched AgAuPt nanoparticles induced by L/d-cysteine (Cys) with strong and perfectly symmetric circular dichroism (CD) signals are synthesized. Chiral branched AgAuPt nanoparticles firstly exhibit superior typical electrocatalytic performance. In the photoelectrocatalytic system, chiral branched AgAuPt nanoparticles demonstrate selective catalytic water splitting performance. Specifically, chiral branched AgAuPt with related CPL irradiation exhibits enhanced acidic hydrogen evolution reaction (HER) performance. Under the continuous irradiation of related CPL, the chiral catalyst generates more heat, which further increases the catalytic activity. This contribution of heat is supported by density functional theory (DFT) calculation results. The changes in chiroptical activity during this process are recorded by variable temperature CD spectra. This work provides a novel paradigm for designing chiral catalysis systems and emphasizes the profound promise of chiral plasmonic nanomaterials as chiral catalysts.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiaoyu Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xinfeng Ju
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Kang Gao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
2
|
Jain A, Northfield H, Karimi E, Berini P, Bhardwaj R. Selective and Tunable Absorption of Twisted Light in Achiral and Chiral Plasmonic Metasurfaces. ACS NANO 2024; 18:27383-27392. [PMID: 39344167 DOI: 10.1021/acsnano.4c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The symmetry of achiral metasurfaces suggests selective absorption is nonexistent when irradiated either by circularly polarized Gaussian or twisted light beams carrying orbital angular momentum (OAM). In chiral metasurfaces, the lack of symmetry leads to differential absorption when probed with chiral light either in the form of circular polarization (circular dichroism) or helical phase fronts (helical dichroism). Here, we demonstrate differential absorption of asymmetric twisted light beams, known as helical dichroism, which exist in an array and a single achiral structure and can be controlled. When extended to chiral structures, these asymmetrical chiral light modes enable to enhance and tune chiroptical sensitivity. Our technique offers more control parameters than just changing the OAM value, as presented in previous studies. Selective response to asymmetric helical light beams is qualitatively explained in terms of induced multipole moments. The presence of dichroism in achiral nanostructures offers a significant fabrication advantage over complex chiral structures and enables the development of next-generation plasmonic-based chiroptical spectroscopy and molecular sensing.
Collapse
Affiliation(s)
- Ashish Jain
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| | - Howard Northfield
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| | - Ebrahim Karimi
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| | - Pierre Berini
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ravi Bhardwaj
- Nexus for Quantum Technologies Institute-NEXQT, Department of Physics, University of Ottawa, K1N 6N5 Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Petronijevic E, Cesca T, Scian C, Mattei G, Li Voti R, Sibilia C, Belardini A. Extrinsic chirality tailors Stokes parameters in simple asymmetric metasurfaces. NANOSCALE 2024; 16:16477-16484. [PMID: 39163004 DOI: 10.1039/d3nr06085c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Metasurfaces tailor electromagnetic confinement at the nanoscale and can be appropriately designed for polarization-dependent light-matter interactions. Adding the asymmetry degree to the desing allows for circular polarizations of opposite handedness to be differently absorbed or emitted, which is of interest in fields spanning from chiral sensing to flat optics. Here, we show that simple, low-cost asymmetric metasurfaces can control Stokes parameters in the transmitted far-field. With only 50 nm of asymmetric plasmonic shells on self-assembled polystyrene nanospheres, our metasurfaces allow for great spectral and incident angle tunability. We first investigated broadband extrinsic chirality in metasurfaces with asymmetric plasmonic semishells; we found high extinction circular dichroism (CD) in the near-infrared range. We then excited it with linear polarization and performed hyperspectral Stokes polarimetry on the transmitted field. We showed that the S3 parameter follows the behavior of CD in extinction, and that the output field position on the Poincaré sphere can be widely controlled by using the incidence angle and wavelength. Furthermore, simulations agreed well with the experiments and showed how the near-field chiro-optical response influences the extrinsic chiral behavior in absorption and the polarization state of the transmitted field.
Collapse
Affiliation(s)
- Emilija Petronijevic
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, I-00161 Rome, Italy.
| | - Tiziana Cesca
- University of Padova, Department of Physics and Astronomy, NanoStructures Group, via Marzolo 8, I-35131 Padova, Italy
| | - Carlo Scian
- University of Padova, Department of Physics and Astronomy, NanoStructures Group, via Marzolo 8, I-35131 Padova, Italy
| | - Giovanni Mattei
- University of Padova, Department of Physics and Astronomy, NanoStructures Group, via Marzolo 8, I-35131 Padova, Italy
| | - Roberto Li Voti
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, I-00161 Rome, Italy.
| | - Concita Sibilia
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, I-00161 Rome, Italy.
| | - Alessandro Belardini
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, I-00161 Rome, Italy.
| |
Collapse
|
4
|
McCarter MR, De Long LE, Todd Hastings J, Roy S. Generation and applications of x-ray and extreme ultraviolet beams carrying orbital angular momentum. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:423003. [PMID: 38830374 DOI: 10.1088/1361-648x/ad53b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
In addition to spin angular momentum, light can carry orbital angular momentum. The orbital angular momentum degree of freedom in the extreme ultraviolet and x-ray regimes enables fundamental studies of light-matter interactions and new methods to study materials. Advances in x-ray optics, as well as undulator radiation and high harmonic generation techniques, lead to the creation of beams with non-trivial phase structure, such as a helical phase structure, creating new possibilities for the use of extreme ultraviolet and x-ray photons with orbital angular momentum in probing complex electronic structures in matter. In this article, we review the generation and applications of orbital angular momentum beams in the x-ray and extreme ultraviolet regime. We discuss several recent works that exploit the orbital angular momentum degree of freedom and showcase the potential advantages of using these beams.
Collapse
Affiliation(s)
- Margaret R McCarter
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Lance E De Long
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, United States of America
| | - J Todd Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, United States of America
| | - Sujoy Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
5
|
Li S, Liu Y, Tang X, Xu Z, Lin L, Xie Z, Huo R, Nan ZA, Guan ZJ, Shen H, Zheng N. Chiroptical Activity Amplification of Chiral Metal Nanoclusters via Surface/Interface Solidification. ACS NANO 2024; 18:13675-13682. [PMID: 38752561 DOI: 10.1021/acsnano.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It remains a grand challenge to amplify the chiroptical activity of chiral metal nanoclusters (NCs) although it is desirable for fundamental research and practical application. Herein, we report a strategy of surface/interface solidification (SIS) for enhancing the chiroptical activity of gold NCs. Structural analysis of [Au19(2R,4R/2S,4S-BDPP)6Cl2]3+ (BDPP is 2,4-bis(diphenylphosphino)pentane) clusters reveals that one of the interfacial gold atoms is flexible between two sites and large space is present on the surface, thus hampering chirality transfer from surface chiral ligands to metal core and leading to low chiroptical activity. Following SIS by filling the flexible sites and replacing chlorides with thiolate ligands affords another pair of [Au20(2R,4R/2S,4S-BDPP)6(4-F-C6H4S)2]4+, which shows a more compact and organized structure and thus an almost 40-fold enhancement of chiroptical activity. This work not only provides an efficient approach for amplifying the chiroptical activity of metal nanoclusters but also highlights the significance of achiral components in shaping chiral nanostructures.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Ying Liu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xiongkai Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Xu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lushan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhenlang Xie
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rong Huo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zi-Ang Nan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
6
|
Ouyang X, Du K, Zeng Y, Song Q, Xiao S. Nanostructure-based orbital angular momentum encryption and multiplexing. NANOSCALE 2024. [PMID: 38616650 DOI: 10.1039/d4nr00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The orthogonality among the OAM modes provides a new degree of freedom for optical multiplexing communications. So far, traditional Dammann gratings and spatial light modulators (SLMs) have been widely used to generate OAM beams by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. With the rapid development of the electromagnetic theory and advanced nanofabrication methods, artificial nanostructures, especially optical metasurfaces, have been introduced which greatly shrink the size of OAM multiplexing devices while increasing the level of integration. This review focuses on the study of encryption, multiplexing and demultiplexing of OAM beams based on nanostructure platforms. After introducing the focusing characteristics of OAM beams, the interaction mechanism between OAM beams and nanostructures is discussed. The physical phenomena of helical dichroism response and spatial separation of OAM beams achieved through nanostructures, setting the stage for OAM encryption and multiplexing, are reviewed. Afterward, the further advancements and potential applications of nanophotonics-based OAM multiplexing are deliberated. Finally, the challenges of conventional design methods and dynamic tunable techniques for nanostructure-based OAM multiplexing technology are addressed.
Collapse
Affiliation(s)
- Xu Ouyang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Kang Du
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Yixuan Zeng
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
- Pengcheng Laboratory, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
He Y, Huang Z, Zeng Q, Huang H. Harnessing spin and orbital angular momentum light for optimal algae growth. Sci Rep 2024; 14:8564. [PMID: 38609438 PMCID: PMC11014974 DOI: 10.1038/s41598-024-56203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
The present study investigated the difference in transmittance of light carrying opposite spin angular momentum (SAM) and orbital angular momentum (OAM) through chlorella algal fluid with varying concentrations and thicknesses. Our results indicate that, under specific conditions, right-handed light sources exhibit higher transmittance in the algal fluid compared to left-handed light sources. Furthermore, we observed that light with OAM also demonstrated higher transmittance than other types of light sources, leading to faster cell density growth of Chlorella. Interestingly, we also discovered that light with OAM stimulates Chlorella to synthesize more proteins. These findings provide different insights for selecting appropriate light sources for large-scale algae cultivation, and may facilitate the realization of carbon peaking and carbon neutrality in the future.
Collapse
Affiliation(s)
- Yancong He
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ziling Huang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Qiongfang Zeng
- School of Public Administration and Human Geography, Hunan University of Technology and Business, Changsha, 410205, China.
| | - Huihui Huang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| |
Collapse
|
8
|
Shi Y, Zhang W. Characterizing chiroptical properties of 2D/3D structures based on an improved coupled dipole theory. OPTICS EXPRESS 2024; 32:10046-10058. [PMID: 38571225 DOI: 10.1364/oe.517748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
To reveal the difference/connection between two-dimensional and three- dimensional (2D and 3D) chiroptical properties and their relation with 2D/3D symmetry/breaking, we develop an improved coupled dipole theory (ICDT) based on a model system of nanorod (NR) dimer. Our analytical ICDT can overcome the shortcoming of the traditional coupled dipole theory and points out the important role of scattering circular dichroism (SCD) in characterizing 2D chirality. The ICDT, supported by finite-difference time-domain (FDTD) simulation, reveals the physical origin of 2D chiroptical response: the interaction induced asymmetric effective polarizability for two identical NRs in a symmetry broken configuration. By tuning the NR's position/inter-particle distance, we find an optimal structure of maximum SCD due to the competition between geometric symmetry breaking and interaction. In addition, the interplay between 2D in-plane mirror symmetry breaking and three-dimensional (3D) mirror symmetry breaking leads to a symmetry broken system with zero SCD. The relation between chirality and reciprocity has also been addressed.
Collapse
|
9
|
Jain A, Bégin JL, Corkum P, Karimi E, Brabec T, Bhardwaj R. Intrinsic dichroism in amorphous and crystalline solids with helical light. Nat Commun 2024; 15:1350. [PMID: 38355638 PMCID: PMC10867019 DOI: 10.1038/s41467-024-45735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Amorphous solids do not exhibit long-range order due to the disordered arrangement of atoms. They lack translational and rotational symmetry on a macroscopic scale and are therefore isotropic. As a result, differential absorption of polarized light, called dichroism, is not known to exist in amorphous solids. Using helical light beams that carry orbital angular momentum as a probe, we demonstrate that dichroism is intrinsic to both amorphous and crystalline solids. We show that in the nonlinear regime, helical dichroism is responsive to the short-range order and its origin is explained in terms of interband multiphoton assisted tunneling. We also demonstrate that the helical dichroism signal is sensitive to chirality and its strength can be controlled and tuned using a superposition of OAM and Gaussian beams. Our research challenges the conventional knowledge that dichroism does not exist in amorphous solids and enables to manipulate the optical properties of solids.
Collapse
Affiliation(s)
- Ashish Jain
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Jean-Luc Bégin
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Paul Corkum
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ebrahim Karimi
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Thomas Brabec
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Ravi Bhardwaj
- Nexus for Quantum Technologies, Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
10
|
Deng D, Liu X, Yang Z, Li Y. Reconfigurable generation of chiral optical fields with multiple selective degrees of freedom. OPTICS EXPRESS 2023; 31:39546-39556. [PMID: 38041273 DOI: 10.1364/oe.506660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Chiral optical fields caused by vortex beams possessing orbital angular momentum (OAM) can be used to fabricate helically structured materials and identify chiral molecules, in which the materials or molecules are associated with the character of the irradiated light. However, previously reported chiral optical fields can control only some of the parameters including the number of fringes, size, ellipticity, orientation, and local intensity distribution, which may hamper their applications. Thus, in this work, we propose both theoretically and experimentally an approach to fabricate chiral optical fields with five separately controllable degrees of freedom by overlapping two anisotropic vortices whose wavefronts have a nonlinear phase variation with the azimuthal angle. The local intensity distribution, number of fringes, size, orientation, and ellipticity of the chiral optical field can be dynamically controlled by adjusting the nonlinear coefficient, topological charges, axicon parameter, rotation angle, and stretching factor of the anisotropic vortices. Furthermore, the OAM density was investigated and proven to be continuously enhanced with the variation of the field's local intensity distribution, which gives the proposed approach the ability to continuously manipulate the OAM density of chiral optical fields. This work, supporting chiral optical fields by five separately controllable parameters, may make the applications of chiral optical fields in the fields of nanostructure fabrication and optical tweezers more flexible.
Collapse
|
11
|
Li C, Wieduwilt T, Wendisch FJ, Márquez A, Menezes LDS, Maier SA, Schmidt MA, Ren H. Metafiber transforming arbitrarily structured light. Nat Commun 2023; 14:7222. [PMID: 37940676 PMCID: PMC10632407 DOI: 10.1038/s41467-023-43068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Structured light has proven useful for numerous photonic applications. However, the current use of structured light in optical fiber science and technology is severely limited by mode mixing or by the lack of optical elements that can be integrated onto fiber end-faces for wavefront engineering, and hence generation of structured light is still handled outside the fiber via bulky optics in free space. We report a metafiber platform capable of creating arbitrarily structured light on the hybrid-order Poincaré sphere. Polymeric metasurfaces, with unleashed height degree of freedom and a greatly expanded 3D meta-atom library, were 3D laser nanoprinted and interfaced with polarization-maintaining single-mode fibers. Multiple metasurfaces were interfaced on the fiber end-faces, transforming the fiber output into different structured-light fields, including cylindrical vector beams, circularly polarized vortex beams, and arbitrary vector field. Our work provides a paradigm for advancing optical fiber science and technology towards fiber-integrated light shaping, which may find important applications in fiber communications, fiber lasers and sensors, endoscopic imaging, fiber lithography, and lab-on-fiber technology.
Collapse
Affiliation(s)
- Chenhao Li
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | | | - Fedja J Wendisch
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Andrés Márquez
- I.U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, P.O. Box 99, 03080, Alicante, Spain
- Dpto. de Física, Ing. de Sistemas y Teoría de la Señal, Universidad de Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany.
- School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria, 3800, Australia.
- Department of Physics, Imperial College London, London, SW7 2AZ, UK.
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745, Jena, Germany.
- Otto Schott Institute of Material Research, FSU Jena, 07745, Jena, Germany.
| | - Haoran Ren
- School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
12
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
13
|
Yang DJ, Liu JC. Selective high-order resonance in asymmetric plasmonic nanostructures stimulated by vortex beams. NANOSCALE 2023. [PMID: 37376924 DOI: 10.1039/d3nr02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Orbital angular momentum (OAM) of light has the potential to induce high-order transitions of electrons in atoms by compensating for the OAM required. However, due to the dark spot situating at the focal center of the OAM beam, high-order transitions are typically weak. In this study, we demonstrate efficient and selective high-order resonances in symmetric and asymmetric plasmonic nanoparticles that are comparable in size to the waist radius of the OAM beam. In a symmetric nanoparticle configured with a complete nanoring lying on the focal center, there is a pure high-order resonance obeying the law of conservation of angular momentum during the interaction between OAM light and the nanosystem. In an asymmetric nanoparticle configured with an complete ring off the beam center or a splitting nanoring, there are multiple resonances whose resonance orders are influenced by the ring's geometry, position, orientation, and photon OAM. Thus, high-order resonances in the symmetric and asymmetric plasmonic nanostructures are selectively stimulated using vortex beams. Our results may help to understand and control OAM-involved light-material interactions of asymmetric nanosystems.
Collapse
Affiliation(s)
- Da-Jie Yang
- School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China.
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071000, China.
| | - Ji-Cai Liu
- School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China.
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071000, China.
| |
Collapse
|
14
|
Liu S, Wang X, Ni J, Cao Y, Li J, Wang C, Hu Y, Chu J, Wu D. Optical Encryption in the Photonic Orbital Angular Momentum Dimension via Direct-Laser-Writing 3D Chiral Metahelices. NANO LETTERS 2023; 23:2304-2311. [PMID: 36880306 DOI: 10.1021/acs.nanolett.2c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vortex beams, which intrinsically possess optical orbital angular momentum (OAM), are considered as one of the promising chiral light waves for classical optical communications and quantum information processing. For a long time, it has been an expectation to utilize artificial three-dimensional (3D) chiral metamaterials to manipulate the transmission of vortex beams for practical optical display applications. Here, we demonstrate the concept of selective transmission management of vortex beams with opposite OAM modes assisted by the designed 3D chiral metahelices. Utilizing the integrated array of the metahelices, a series of optical operations, including display, hiding, and even encryption, can be realized by the parallel processing of multiple vortex beams. The results open up an intriguing route for metamaterial-dominated optical OAM processing, which fosters the development of photonic angular momentum engineering and high-security optical encryption.
Collapse
Affiliation(s)
- Shunli Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xinghao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jincheng Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yang Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Chaowei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Porfirev AP, Ivliev NA, Fomchenkov SA, Khonina SN. Multi-Spiral Laser Patterning of Azopolymer Thin Films for Generation of Orbital Angular Momentum Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:612. [PMID: 36770573 PMCID: PMC9920135 DOI: 10.3390/nano13030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Recently, the realization of the spiral mass transfer of matter has attracted the attention of many researchers. Nano- and microstructures fabricated with such mass transfer can be used for the generation of light with non-zero orbital angular momentum (OAM) or the sensing of chiral molecules. In the case of metals and semiconductors, the chirality of formed spiral-shaped microstructures depends on the topological charge (TC) of the illuminating optical vortex (OV) beam. The situation is quite different with polarization-sensitive materials such as azopolymers, azobenzene-containing polymers. Azopolymers show polarization-sensitive mass transfer both at the meso and macro levels and have huge potential in diffractive optics and photonics. Previously, only one-spiral patterns formed in thin azopolymer films using circularly polarized OV beams and double-spiral patterns formed using linearly polarized OV beams have been demonstrated. In these cases, the TC of the used OV beams did not affect the number of formed spirals. In this study, we propose to use two-beam (an OV and a Gaussian beam with a spherical wavefront) interference lithography for realization spiral mass transfer with the desired number of formed spirals. The TC of the OV beam allows for controlling the number of formed spirals. We show the microstructures fabricated by the laser processing of thin azopolymer films can be used for the generation of OAM light at the microscale with the desired TC. The experimentally obtained results are in good agreement with the numerically obtained results and demonstrate the potential of the use of such techniques for the laser material processing of polarization-sensitive materials.
Collapse
|
16
|
Dai N, Liu S, Ren Z, Cao Y, Ni J, Wang D, Yang L, Hu Y, Li J, Chu J, Wu D. Robust Helical Dichroism on Microadditively Manufactured Copper Helices via Photonic Orbital Angular Momentum. ACS NANO 2023; 17:1541-1549. [PMID: 36629479 DOI: 10.1021/acsnano.2c10687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Three-dimensional chiral metallic metamaterials have already attracted extensive attention in the wide research fields of chiroptical responses. These artificial chiral micronanostructures, possessing strong chiroptical signals, show huge significance in next-generation photonic devices and chiroptical spectroscopy techniques. However, most of the existing chiral metallic metamaterials are designed for generating chiroptical signals dependent on photonic spin angular momentum (SAM). The chiral metallic metamaterials for generating strong chiroptical responses by photonic orbital angular momentum (OAM) remain unseen. In this work, we fabricate copper microhelices with opposite handedness by additively manufacturing and further examine their OAM-dominated chiroptical response: helical dichroism (HD). The chiral copper microhelices exhibit differential reflection to the opposite OAM states, resulting in a significant HD signal (∼50%). The origin of the HD can be theoretically explained by the difference in photocurrent distribution inside copper microhelices under opposite OAM states. Moreover, the additively manufactured copper microhelices possess an excellent microstructural stability under varying annealing temperatures for robust HD responses. Lower material cost and noble-metal-similar optical properties, accompanied with well thermal stability, render the copper microhelices promising metamaterials in advanced chiroptical spectroscopy and photonic OAM engineering.
Collapse
Affiliation(s)
- Nianwei Dai
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Shunli Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Zhongguo Ren
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Yang Cao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Jincheng Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Dawei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Liang Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe76128, Germany
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, China
| |
Collapse
|
17
|
Zhou N, Huang Z, Xu Z, Yin Y, He Y, Huang L, Dai L, Li X, Fu S, Huang H. Enhanced hair growth effects through low-level vortex beams radiation: An experimental animal study. JOURNAL OF BIOPHOTONICS 2022; 15:e202200103. [PMID: 36054290 DOI: 10.1002/jbio.202200103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Photobiomodulation therapy (PBMT) is a non-invasive and pain-less treatment for hair loss. Researches on PBMT rarely considered the impact of different light structures. In this study, we irradiated shaven rats with both 650 nm, m = 32 vortex beams and ordinary Gaussian beams. The laser treatment was performed at 24-hour intervals for 20 days. The energy density was set to 4.25 J/cm2 . The results indicated that low-level vortex beam irradiation led to better stimulation of hair growth than the Gaussian beams, which might be related to deeper penetration. The underlying biological mechanisms are discussed in terms of the activation of Wnt/β-catenin/sonic hedgehog pathway. Our results suggest that low-level vortex beam irradiation is advantageous to the treatment of hair loss because it is technically feasible, convenient and effective.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziling Huang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zhenyu Xu
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yancong He
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | | | - Linmao Dai
- Shenzhen LUBON Technology Co. Ltd., Shenzhen, China
| | - Xiaochun Li
- Shenzhen LUBON Technology Co. Ltd., Shenzhen, China
| | - Siqi Fu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huihui Huang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| |
Collapse
|
18
|
Li BL, Luo JJ, Zou HL, Zhang QM, Zhao LB, Qian H, Luo HQ, Leong DT, Li NB. Chiral nanocrystals grown from MoS 2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs. Nat Commun 2022; 13:7289. [PMID: 36435865 PMCID: PMC9701227 DOI: 10.1038/s41467-022-35016-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The transfer of the concept of chirality from molecules to synthesized nanomaterials has attracted attention amongst multidisciplinary teams. Here we demonstrate heterogeneous nucleation and anisotropic accumulation of Au nanoparticles on multilayer MoS2 planes to form chiroptically functional nanomaterials. Thiol amino acids with chiral conformations modulate asymmetric growth of gold nanoarchitectures on seeds of highly faceted Au/MoS2 heterostructures. Consequently, dendritic plasmonic nanocrystals with partial chiral morphologies are synthesized. The chirality of dendritic nanocrystals inherited from cysteine molecules refers to the structural characteristics and includes specific recognition of enantiomeric molecules. With integration of the intrinsic photothermal properties and inherited enantioselective characteristics, dendritic Au/MoS2 heterostructures exhibit chirality-dependent release of antimicrobial drugs from hydrogel substrates when activated by exogenous infrared irradiation. A three-in-one strategy involving synthesis of chiral dendritic heterostructures, enantioselective recognition, and controlled drug release system is presented, which improves nanomaterial synthetic technology and enhances our understanding of crucial chirality information.
Collapse
Affiliation(s)
- Bang Lin Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Jun Jiang Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hao Lin Zou
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Qing-Meng Zhang
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Liu-Bin Zhao
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - Hang Qian
- grid.410570.70000 0004 1760 6682Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing, 400037 P. R. China
| | - Hong Qun Luo
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| | - David Tai Leong
- grid.4280.e0000 0001 2180 6431Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585 Singapore
| | - Nian Bing Li
- grid.263906.80000 0001 0362 4044Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
19
|
Ni J, Liu S, Chen Y, Hu G, Hu Y, Chen W, Li J, Chu J, Qiu CW, Wu D. Direct Observation of Spin-Orbit Interaction of Light via Chiroptical Responses. NANO LETTERS 2022; 22:9013-9019. [PMID: 36326581 DOI: 10.1021/acs.nanolett.2c03266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The spin-orbit interaction of light is a fundamental manifestation of controlling its angular momenta with numerous applications in photonic spin Hall effects and chiral quantum optics. However, observation of an optical spin Hall effect, which is normally very weak with subwavelength displacements, needs quantum weak measurements or sophisticated metasurfaces. Here, we theoretically and experimentally demonstrate the spin-orbit interaction of light in the form of strong chiroptical responses by breaking the in-plane inversion symmetry of a dielectric substrate. The chiroptical signal is observed at the boundary of a microdisk illuminated by circularly polarized vortex beams at normal incidence. The generated chiroptical spectra are tunable for different photonic orbital angular momenta and microdisk diameters. Our findings, correlating photonic spin-orbit interaction with chiroptical responses, may provide a route for exploiting optical information processing, enantioselective sensing, and chiral metrology.
Collapse
Affiliation(s)
- Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Shunli Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, People's Republic of China
| | - Yang Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, People's Republic of China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, People's Republic of China
| | - Weijin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, People's Republic of China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, People's Republic of China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui230027, People's Republic of China
| |
Collapse
|
20
|
Abstract
Major advances in X-ray sources including the development of circularly polarized and orbital angular momentum pulses make it possible to probe matter chirality at unprecedented energy regimes and with Ångström and femtosecond spatiotemporal resolutions. We survey the theory of stationary and time-resolved nonlinear chiral measurements that can be carried out in the X-ray regime using tabletop X-ray sources or large scale (XFEL, synchrotron) facilities. A variety of possible signals and their information content are discussed.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, Saint-Etienne F-42023, France
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
21
|
Abstract
Inspired by insect compound eyes (CEs) that feature unique optical schemes for imaging, there has recently been growing interest in developing optoelectronic CE cameras with comparable size and functions. However, considering the mismatch between the complex 3D configuration of CEs and the planar nature of available imaging sensors, it is currently challenging to reach this end. Here, we report a paradigm in miniature optoelectronic integrated CE camera by manufacturing polymer CEs with 19~160 logarithmic profile ommatidia via femtosecond laser two-photon polymerization. In contrast to μ-CEs with spherical ommatidia that suffer from defocusing problems, the as-obtained μ-CEs with logarithmic ommatidia permit direct integration with a commercial CMOS detector, because the depth-of-field and focus range of all the logarithmic ommatidia are significantly increased. The optoelectronic integrated μ-CE camera enables large field-of-view imaging (90°), spatial position identification and sensitive trajectory monitoring of moving targets. Moreover, the miniature μ-CE camera can be integrated with a microfluidic chip and serves as an on-chip camera for real-time microorganisms monitoring. The insect-scale optoelectronic μ-CE camera provides a practical route for integrating well-developed planar imaging sensors with complex micro-optics elements, holding great promise for cutting-edge applications in endoscopy and robot vision.
Collapse
|
22
|
Abstract
Ultracompact sources of circularly polarized light are important for classical and quantum optical information processing. Conventional approaches for generating chiral emission are restricted to excitation power ranges and fail to provide high-quality radiation with perfect polarization conversion. We used the physics of chiral quasi-bound states in the continuum to demonstrate the efficient and controllable emission of circularly polarized light from resonant metasurfaces. Exploiting intrinsic chirality and giant field enhancement, we revealed how to simultaneously modify and control spectra, radiation patterns, and spin angular momentum of photoluminescence and lasing without any spin injection. The superior characteristics of chiral emission and lasing promise multiple applications in nanophotonics and quantum optics.
Collapse
Affiliation(s)
- Xudong Zhang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yilin Liu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, P. R. China.,Pengcheng Laboratory, Shenzhen 518055, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
23
|
Cen M, Wang J, Liu J, He H, Li K, Cai W, Cao T, Liu YJ. Ultrathin Suspended Chiral Metasurfaces for Enantiodiscrimination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203956. [PMID: 35905504 DOI: 10.1002/adma.202203956] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Chiral metasurfaces can exhibit a strong circular dichroism, but it is limited by the complicated fabrication procedure and alignment errors. Here, a new type of self-aligned suspended chiral bilayer metasurface with only one-step electron beam lithography exposure is demonstrated. A significant optical chirality of 221° µm-1 can be realized using suspended metasurfaces with a thickness of 100 nm. Furthermore, this study experimentally demonstrates that such a structure is capable of label-free discrimination of the chiral molecules at zeptomole level, exhibiting a much higher sensitivity (orders of magnitude) compared to the conventional circular dichroism spectroscopy. The fundamental principles for chiral sensing using molecules-metasurfaces interactions are explored. Benefiting from the giant chiroptical response, the proposed metadevice may offer promising applications for ultrathin circular polarizers, chiral molecular detectors, and asymmetry information processing.
Collapse
Affiliation(s)
- Mengjia Cen
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huilin He
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ke Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenfeng Cai
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tun Cao
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| |
Collapse
|
24
|
Wu F, Cui Z, Guo S, Ma W, Wang J. Chirality of optical vortex beams reflected from an air-chiral medium interface. OPTICS EXPRESS 2022; 30:21687-21697. [PMID: 36224882 DOI: 10.1364/oe.459024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/22/2022] [Indexed: 06/16/2023]
Abstract
Chirality plays an important role in understanding of the chiral light-matter interaction. In this work, we study theoretically and numerically the chirality of optical vortex beams reflected from an air-chiral medium interface. A theoretical model that takes into full account the vectorial nature of electromagnetic fields is developed to describe the reflection of optical vortex beams at an interface between air and a chiral medium. Some numerical simulations are performed and discussed. The results show that the chirality of the reflected vortex beams can be well controlled by the relative chiral parameter of the medium and is significantly affected by the incidence angle, topological charge, and polarization state of the incident beam. Our results provide new, to the best of our knowledge, insights into the interactions between optical vortex beams with chiral matter, and may have potential application in optical chirality manipulation.
Collapse
|
25
|
Kim Y, Kim H, Yang Y, Badloe T, Jeon N, Rho J. Three-dimensional artificial chirality towards low-cost and ultra-sensitive enantioselective sensing. NANOSCALE 2022; 14:3720-3730. [PMID: 35230363 DOI: 10.1039/d1nr05805c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Artificial chiral structures have potential applications in the field of enantioselective signal sensing. Advanced nanofabrication methods enable a large diversity in geometric structures and broad selectivity of materials, which can be exploited to manufacture artificial three-dimensional chiral structures. Various chiroptical phenomena exploiting spin and orbital angular momentum at the nanoscale have been continuously exploited as a way to effectively detect enantiomers. This review introduces precisely controlled bottom-up and large-area top-down metamaterial fabrication methods to solve the limitations of high manufacturing cost and low production speed. Particle synthesis, self-assembly, glanced angled vapor deposition, and three-dimensional plasmonic nanostructure printing are introduced. Furthermore, emerging sensitive chiral sensing methods such as cavity-enhanced chirality, photothermal circular dichroism, and helical dichroism of single particles are discussed. The continuous progress of nanofabrication technology presents the strong potential for developing artificial chiral structures for applications in biomedical, pharmaceutical, nanophotonic systems.
Collapse
Affiliation(s)
- Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
26
|
Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič PR, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu IL, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T. Observation of Magnetic Helicoidal Dichroism with Extreme Ultraviolet Light Vortices. PHYSICAL REVIEW LETTERS 2022; 128:077401. [PMID: 35244431 DOI: 10.1103/physrevlett.128.077401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
We report on the experimental evidence of magnetic helicoidal dichroism, observed in the interaction of an extreme ultraviolet vortex beam carrying orbital angular momentum with a magnetic vortex. Numerical simulations based on classical electromagnetic theory show that this dichroism is based on the interference of light modes with different orbital angular momenta, which are populated after the interaction between light and the magnetic topology. This observation gives insight into the interplay between orbital angular momentum and magnetism and sets the framework for the development of new analytical tools to investigate ultrafast magnetization dynamics.
Collapse
Affiliation(s)
- Mauro Fanciulli
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
| | - Matteo Pancaldi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | | | - Mekha Vimal
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - David Bresteau
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Martin Luttmann
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Dario De Angelis
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | | | | | | | - Carlo Spezzani
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Manfredda
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Ricardo Sousa
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Ioan-Lucian Prejbeanu
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Laurent Vila
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Bernard Dieny
- Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000 Grenoble, France
| | - Giovanni De Ninno
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
- Laboratory of Quantum Optics, University of Nova Gorica, 5001 Nova Gorica, Slovenia
| | - Flavio Capotondi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Maurizio Sacchi
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B. P. 48, 91192 Gif-sur-Yvette, France
| | - Thierry Ruchon
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| |
Collapse
|
27
|
He C, Shen Y, Forbes A, Booth MJ. Shrinking multiplexed orbital angular momentum to the nanoscale. LIGHT, SCIENCE & APPLICATIONS 2021; 10:220. [PMID: 34711803 PMCID: PMC8553840 DOI: 10.1038/s41377-021-00668-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Orbital angular momentum interactions at the nanoscale have remained elusive because the phase structure becomes unresolved. Now researchers have shown how to overcome this with tightly focused beams, demonstrating a record-high six-dimensional encoding in an ultra-dense nanoscale volume.
Collapse
Affiliation(s)
- Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Yijie Shen
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
28
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
29
|
Ni J, Huang C, Zhou LM, Gu M, Song Q, Kivshar Y, Qiu CW. Multidimensional phase singularities in nanophotonics. Science 2021; 374:eabj0039. [PMID: 34672745 DOI: 10.1126/science.abj0039] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Can Huang
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lei-Ming Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Min Gu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China.,Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qinghai Song
- State Key Laboratory on Tunable Laser Technology, Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi, China
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
30
|
Shen H, Xu Z, Wang L, Han Y, Liu X, Malola S, Teo BK, Häkkinen H, Zheng N. Tertiary Chiral Nanostructures from C−H⋅⋅⋅F Directed Assembly of Chiroptical Superatoms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lingzheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ying‐Zi Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sami Malola
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Boon K. Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry Nanoscience Center University of Jyväskylä 40014 Jyväskylä Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
31
|
Shen H, Xu Z, Wang L, Han YZ, Liu X, Malola S, Teo BK, Häkkinen H, Zheng N. Tertiary Chiral Nanostructures from C-H⋅⋅⋅F Directed Assembly of Chiroptical Superatoms. Angew Chem Int Ed Engl 2021; 60:22411-22416. [PMID: 34347339 DOI: 10.1002/anie.202108141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Indexed: 12/26/2022]
Abstract
We report the synthesis and structure of tertiary chiral nanostructures with 100 % optical purity. A novel synthetic strategy, using chiral reducing agent, R and S-BINAPCuBH4 (BINAP is 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl), is developed to access to atomically precise, intrinsically chiral [Au7 Ag6 Cu2 (R- or S-BINAP)3 (SCH2 Ph)6 ]SbF6 nanoclusters in one-pot synthesis. The clusters represent the first tri-metallic superatoms with inherent chirality and fair stability. Both metal distribution (primary) and ligand arrangement (secondary) of the enantiomers exhibited perfect mirror images, and unprecedentedly, the self-assembly driven by the C-H⋅⋅⋅F interaction between the phenyl groups of the superatom moieties and SbF6 - anions induced the formation of bio-mimic left- and right-handed helices, achieving the tertiary chiral nanostructures. DFT calculations revealed the connections between the molecular details and chiral optical activity.
Collapse
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingzheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ying-Zi Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xianhu Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Boon K Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
32
|
Kim J, Rana AS, Kim Y, Kim I, Badloe T, Zubair M, Mehmood MQ, Rho J. Chiroptical Metasurfaces: Principles, Classification, and Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:4381. [PMID: 34206760 PMCID: PMC8271883 DOI: 10.3390/s21134381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Chiral materials, which show different optical behaviors when illuminated by left or right circularly polarized light due to broken mirror symmetry, have greatly impacted the field of optical sensing over the past decade. To improve the sensitivity of chiral sensing platforms, enhancing the chiroptical response is necessary. Metasurfaces, which are two-dimensional metamaterials consisting of periodic subwavelength artificial structures, have recently attracted significant attention because of their ability to enhance the chiroptical response by manipulating amplitude, phase, and polarization of electromagnetic fields. Here, we reviewed the fundamentals of chiroptical metasurfaces as well as categorized types of chiroptical metasurfaces by their intrinsic or extrinsic chirality. Finally, we introduced applications of chiral metasurfaces such as multiplexing metaholograms, metalenses, and sensors.
Collapse
Affiliation(s)
- Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (J.K.); (Y.K.); (I.K.); (T.B.)
| | - Ahsan Sarwar Rana
- NanoTech Lab, Department of Electrical Engineering, Information Technology University of the Punjab, Ferozepur Road, Lahore 54600, Pakistan; (A.S.R.); (M.Z.)
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (J.K.); (Y.K.); (I.K.); (T.B.)
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (J.K.); (Y.K.); (I.K.); (T.B.)
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (J.K.); (Y.K.); (I.K.); (T.B.)
| | - Muhammad Zubair
- NanoTech Lab, Department of Electrical Engineering, Information Technology University of the Punjab, Ferozepur Road, Lahore 54600, Pakistan; (A.S.R.); (M.Z.)
| | - Muhammad Qasim Mehmood
- NanoTech Lab, Department of Electrical Engineering, Information Technology University of the Punjab, Ferozepur Road, Lahore 54600, Pakistan; (A.S.R.); (M.Z.)
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (J.K.); (Y.K.); (I.K.); (T.B.)
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
33
|
Dong G, Jiang Z, Li Y, Zhu Z, Lv T, Sun M, Lv B, Li Y, Guan C, Liu Z, Shi J. Large asymmetric anomalous reflection in bilayer gradient metasurfaces. OPTICS EXPRESS 2021; 29:16769-16780. [PMID: 34154232 DOI: 10.1364/oe.425987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Gradient metasurfaces have attracted much attention due to intriguing wavefront and polarization manipulation. Here, a bilayer gradient metasurface is constructed by use of a rectangular nanorod layer and its complementary nanoaperture. It reveals asymmetric anomalous reflection and symmetric anomalous transmission for two counter-propagating directions. The dependence of the anomalous reflection and transmission phenomena on nanostructure thickness are numerically studied in optical frequencies. The increasing metallic layer thickness of the gradient metasurface greatly enhances anomalous reflection of the left-handed circularly polarized wave (LCP) for the nanorod side and suppresses anomalous reflection for the other side. Both resonant frequencies of anomalous reflection and transmission linearly shift with the refractive index. The bilayer gradient metasurface is important for realizing wavefront modulation and optical sensing.
Collapse
|
34
|
Suchitta A, Suri P, Xie Z, Xu X, Ghosh A. Chiro-optical response of a wafer scale metamaterial with ellipsoidal metal nanoparticles. NANOTECHNOLOGY 2021; 32:315705. [PMID: 33857929 DOI: 10.1088/1361-6528/abf877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We report a large chiro-optical response from a nanostructured film of aperiodic dielectric helices decorated with ellipsoidal metal nanoparticles. The influence of the inherent fabrication variation on the chiro-optical response of the wafer-scalable nanostructured film is investigated using a computational model which closely mimics the material system. From the computational approach, we found that the chiro-optical signal is strongly dependent on the ellipticities of the metal nanoparticles and the developed computational model can account for all the variations caused by the fabrication process. We report the experimentally realized dissymmetry factor ∼1.6, which is the largest reported for wafer scalable chiro-plasmonic samples till now. The calculations incorporate strong multipolar contributions of the plasmonic interactions to the chiro-optical response from the tightly confined ellipsoidal nanoparticles, improving upon the previous studies carried in the coupled dipole approximation regime. Our analyzes confirm the large chiro-optical response in these films developed by a scalable and simple fabrication technique, indicating their applicability pertaining to manipulation of optical polarization, enantiomer selective identification and enhanced sensing and detection of chiral molecules.
Collapse
Affiliation(s)
- Aakansha Suchitta
- Department of Electrical Engineering, Indian Institute Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Suri
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Zhuolin Xie
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Xianfan Xu
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Physics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
35
|
|