1
|
Yashima Y, Yamazaki T, Kimura Y. Micrometer-Scale Graphene-Based Liquid Cells of Highly Concentrated Salt Solutions for In Situ Liquid-Cell Transmission Electron Microscopy. ACS OMEGA 2024; 9:39914-39924. [PMID: 39346859 PMCID: PMC11425617 DOI: 10.1021/acsomega.4c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
In situ liquid-cell transmission microscopy has attracted much attention as a method for the direct observations of the dynamics of soft matter. A graphene liquid cell (GLC) has previously been investigated as an alternative to a conventional SiN x liquid cell. Although GLCs are capable of scavenging radicals and providing high spatial resolutions, their production is fundamentally stochastic, and a significant compositional change in liquids encapsulated in GLCs has recently been pointed out. We found that graphene-based liquid cells were formed in nano- to micrometer sizes with high reproducibility when the concentration of the encapsulated aqueous salt solution was high. In contrast, when we revisited conventional fabrication methods, water-encapsulated GLC was formed with low yield, and any electron diffraction spots from ice were not confirmed by a cooling experiment. The reason for this was the presence of intrinsic defects in the graphene, the presence of which we confirmed by the etch-pit method. The shrinkage of a water-encapsulated cell and a decrease in the bubble area in an aqueous (NH4)2SO4 solution cell suggested that volatile water molecules and gas molecules can leak from the cells during the fabrication and observation processes. Further revision of the conditions for the formation of liquid cells and a reduction in the number of intrinsic graphene defects are expected to lead to the provision of graphene-based liquid cells capable of encapsulating dilute aqueous solutions or pure water.
Collapse
Affiliation(s)
- Yuga Yashima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
2
|
Strobel KR, Schlegel M, Jain M, Kretschmer S, Krasheninnikov AV, Meyer JC. Temperature-dependence of beam-driven dynamics in graphene-fullerene sandwiches. Micron 2024; 184:103666. [PMID: 38850966 DOI: 10.1016/j.micron.2024.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
C60 fullerenes encapsulated between graphene sheets were investigated by aberration-corrected high-resolution transmission electron microscopy at different temperatures, namely about 93 K, 293 K and 733 K, and by molecular dynamics simulations. We studied beam-induced dynamics of the C60 fullerenes and the encapsulating graphene, measured the critical doses for the initial damage to the fullerenes and followed the beam-induced polymerization. We find that, while the doses for the initial damage do not strongly depend on temperature, the clusters formed by the subsequent polymerization are more tubular at lower temperatures, while sheet-like structures are generated at higher temperatures. The experimental findings are supported by the results of first-principles and analytical potential molecular dynamics simulations. The merging of curved carbon sheets is clearly promoted at higher temperatures and proceeds at once over few-nm segments.
Collapse
Affiliation(s)
- Kevin R Strobel
- University of Tübingen, Institute of Applied Physics, Auf der Morgenstelle 10, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen 72770, Germany.
| | - Michael Schlegel
- University of Tübingen, Institute of Applied Physics, Auf der Morgenstelle 10, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen 72770, Germany
| | - Mitisha Jain
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Silvan Kretschmer
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Jannik C Meyer
- University of Tübingen, Institute of Applied Physics, Auf der Morgenstelle 10, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, Reutlingen 72770, Germany.
| |
Collapse
|
3
|
Pedrazo-Tardajos A, Claes N, Wang D, Sánchez-Iglesias A, Nandi P, Jenkinson K, De Meyer R, Liz-Marzán LM, Bals S. Direct visualization of ligands on gold nanoparticles in a liquid environment. Nat Chem 2024; 16:1278-1285. [PMID: 38937593 DOI: 10.1038/s41557-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
The interactions between gold nanoparticles, their surface ligands and the solvent critically influence the properties of these nanoparticles. Although spectroscopic and scattering techniques have been used to investigate their ensemble structure, a comprehensive understanding of these processes at the nanoscale remains challenging. Electron microscopy makes it possible to characterize the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and the requirement for ultrahigh-vacuum conditions, which prevent the investigation of dynamic aspects. Here we show that, by exploiting high-quality graphene liquid cells, we can overcome these limitations and investigate the structure of the ligand shell around gold nanoparticles and at the ligand-gold interface in a liquid environment. Using this graphene liquid cell, we visualize the anisotropy, composition and dynamics of ligand distribution on gold nanorod surfaces. Our results indicate a micellar model for surfactant organization. This work provides a reliable and direct visualization of ligand distribution around colloidal nanoparticles.
Collapse
Affiliation(s)
- Adrián Pedrazo-Tardajos
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Nathalie Claes
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Da Wang
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Donostia-San Sebastián, Spain
| | - Proloy Nandi
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kellie Jenkinson
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Robin De Meyer
- EMAT-University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Cinbio, Universidade de Vigo, Vigo, Spain
| | - Sara Bals
- EMAT-University of Antwerp, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Arenas Esteban D, Wang D, Kadu A, Olluyn N, Sánchez-Iglesias A, Gomez-Perez A, González-Casablanca J, Nicolopoulos S, Liz-Marzán LM, Bals S. Quantitative 3D structural analysis of small colloidal assemblies under native conditions by liquid-cell fast electron tomography. Nat Commun 2024; 15:6399. [PMID: 39080248 PMCID: PMC11289127 DOI: 10.1038/s41467-024-50652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Electron tomography has become a commonly used tool to investigate the three-dimensional (3D) structure of nanomaterials, including colloidal nanoparticle assemblies. However, electron microscopy is typically done under high-vacuum conditions, requiring sample preparation for assemblies obtained by wet colloid chemistry methods. This involves solvent evaporation and deposition on a solid support, which consistently alters the nanoparticle organization. Here, we suggest using electron tomography to study nanoparticle assemblies in their original colloidal liquid environment. To address the challenges related to electron tomography in liquid, we devise a method that combines fast data acquisition in a commercial liquid-cell with a dedicated alignment and reconstruction workflow. We present the advantages of this methodology in accurately characterizing two different systems. 3D reconstructions of assemblies comprising polystyrene-capped Au nanoparticles encapsulated in polymeric shells reveal less compact and more distorted configurations for experiments performed in a liquid medium compared to their dried counterparts. A similar expansion can be observed in quantitative analysis of the surface-to-surface distances of self-assembled Au nanorods in water rather than in a vacuum, in agreement with bulk measurements. This study, therefore, emphasizes the importance of developing high-resolution characterization tools that preserve the native environment of colloidal nanostructures.
Collapse
Affiliation(s)
- Daniel Arenas Esteban
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Da Wang
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Ajinkya Kadu
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
| | - Noa Olluyn
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | | | | | | | - Luis M Liz-Marzán
- CIC biomaGUNE, Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramon 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
- Cinbio, Universidade de Vigo, 36310, Vigo, Spain.
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
5
|
Hu H, Yang R, Zeng Z. Advances in Electrochemical Liquid-Phase Transmission Electron Microscopy for Visualizing Rechargeable Battery Reactions. ACS NANO 2024; 18:12598-12609. [PMID: 38723158 DOI: 10.1021/acsnano.4c03319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This review presents an overview of the application of electrochemical liquid-phase transmission electron microscopy (ELP-TEM) in visualizing rechargeable battery reactions. The technique provides atomic-scale spatial resolution and real-time temporal resolution, enabling direct observation and analysis of battery materials and processes under realistic working conditions. The review highlights key findings and insights obtained by ELP-TEM on the electrochemical reaction mechanisms and discusses the current limitations and future prospects of ELP-TEM, including improvements in spatial and temporal resolution and the expansion of the scope of materials and systems that can be studied. Furthermore, the review underscores the critical role of ELP-TEM in understanding and optimizing the design and fabrication of high-performance, long-lasting rechargeable batteries.
Collapse
Affiliation(s)
- Honglu Hu
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
| | - Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| |
Collapse
|
6
|
Li JY, Wang ZB, Xu ZP, Xiao DD, Gu L, Wang H. Modes of Nanodroplet Formation and Growth on an Ultrathin Water Film. J Phys Chem B 2024; 128:3732-3741. [PMID: 38568211 DOI: 10.1021/acs.jpcb.3c07150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Using nanobubbles as geometrical confinements, we create a thin water film (∼10 nm) in a graphene liquid cell and investigate the evolution of its instability at the nanoscale under transmission electron microscopy. The breakdown of the water films, resulting in the subsequent formation and growth of nanodroplets, is visualized and generalized into different modes. We identified distinct droplet formation and growth modes by analyzing the dynamic processes involving 61 droplets and 110 liquid bridges within 31 Graphene Liquid Cells (GLCs). Droplet formation is influenced by their positions in GLCs, taking on a semicircular shape at the edge and a circular shape in the middle. Growth modes include liquid mass transfer driven by Plateau-Rayleigh instability and merging processes in and out-of-plane of the graphene interface. Droplet growth can lead to the formation of liquid bridges for which we obtain multiview projections. Data analysis reveals the general dynamics of liquid bridges, including drawing liquids from neighboring residual water films, merging with surrounding droplets, and merging with other liquid bridges. Our experimental observations provide insights into fluid transport at the nanoscale.
Collapse
Affiliation(s)
- Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Zi-Bing Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Zhi-Peng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| | - Dong-Dong Xiao
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Science, Beijing 100190, P. R. China
- School of Material Science and Engineering, Tsinghua University, Beijing 100190, P. R. China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
7
|
Takeguchi M, Hashimoto A, Mitsuishi K. Depth sectioning using environmental and atomic-resolution STEM. Microscopy (Oxf) 2024; 73:145-153. [PMID: 38252480 DOI: 10.1093/jmicro/dfae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
(Scanning) transmission electron microscopy (TEM) images of samples in gas and liquid media are acquired with an environmental cell (EC) via silicon nitride membranes. The ratio of sample signal against the background is a significant factor for resolution. Depth-sectioning scanning TEM (STEM) is a promising technique that enhances the signal for a sample embedded in a matrix. It can increase the resolution to the atomic level, thereby enabling EC-STEM applications in important areas. This review introduces depth-sectioning STEM and its applications to high-resolution EC-STEM imaging of samples in gases and in liquids.
Collapse
Affiliation(s)
- Masaki Takeguchi
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ayako Hashimoto
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Kazutaka Mitsuishi
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
8
|
Toleukhanova S, Shen TH, Chang C, Swathilakshmi S, Bottinelli Montandon T, Tileli V. Graphene Electrode for Studying CO 2 Electroreduction Nanocatalysts under Realistic Conditions in Microcells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311133. [PMID: 38217533 DOI: 10.1002/adma.202311133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Indexed: 01/15/2024]
Abstract
The ability to resolve the dynamic evolution of electrocatalytically induced processes with electrochemical liquid-phase electron microscopy (EM) is limited by the microcell configuration. Herein, a free-standing tri-layer graphene is integrated as a membrane and electrode material into the electrochemical chip and its suitability as a substrate electrode at the high cathodic potentials required for CO2 electroreduction (CO2ER) is evaluated. The three-layer stacked graphene is transferred onto an in-house fabricated single-working electrode chip for use with bulk-like reference and counter electrodes to facilitate evaluation of its effectiveness. Electrochemical measurements show that the graphene working electrode exhibits a wider inert cathodic potential range than the conventional glassy carbon electrode while achieving good charge transfer properties for nanocatalytic redox reactions. Operando scanning electron microscopy studies clearly demonstrate the improvement in spatial resolution but reveal a synergistic effect of the electron beam and the applied potential that limits the stability time window of the graphene-based electrochemical chip. By optimizing the operating conditions, in situ monitoring of Cu nanocube degradation is achieved at the CO2ER potential of -1.1 V versus RHE. Thus, this improved microcell configuration allows EM observation of catalytic processes at potentials relevant to real systems.
Collapse
Affiliation(s)
- Saltanat Toleukhanova
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Tzu-Hsien Shen
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Chen Chang
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | | | | | - Vasiliki Tileli
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
9
|
Park J, Jeong H, Noh N, Park JS, Ji S, Kang S, Huh Y, Hyun J, Yuk JM. Single-Molecule Graphene Liquid Cell Electron Microscopy for Instability of Intermediate Amyloid Fibrils. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309936. [PMID: 38016113 DOI: 10.1002/adma.202309936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Single-molecule techniques are powerful microscopy methods that provide new insights into biological processes. Liquid-phase transmission electron microscopy (LP-TEM) is an ideal single-molecule technique for overcoming the poor spatiotemporal resolution of optical approaches. However, single-molecule LP-TEM is limited by several challenges such as electron-beam-induced molecular damage, difficulty in identifying biomolecular species, and a lack of analytical approaches for conformational dynamics. Herein, a single-molecule graphene liquid-cell TEM (GLC-TEM) technique that enables the investigation of real-time structural perturbations of intact amyloid fibrils is presented. It is demonstrated that graphene membranes significantly extend the observation period of native amyloid beta proteins without causing oxidative damage owing to electron beams, which is necessary for imaging. Stochastic and time-resolved investigations of single fibrils reveal that structural perturbations in the early fibrillar stage are responsible for the formation of various amyloid polymorphs. The advantage of observing structural behavior in real time with unprecedented resolution will potentially make GLC-TEM a complementary approach to other single-molecule techniques.
Collapse
Affiliation(s)
- Jungjae Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeongseop Jeong
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Chungcheongbuk-do, Cheongju-si, 28119, Republic of Korea
| | - Namgyu Noh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji Su Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghyeon Ji
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sung Kang
- Analysis and Assessment Research Center, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yoon Huh
- Analysis and Assessment Research Center, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Xu J, Gao X, Zheng L, Jia X, Xu K, Ma Y, Wei X, Liu N, Peng H, Wang HW. Graphene sandwich-based biological specimen preparation for cryo-EM analysis. Proc Natl Acad Sci U S A 2024; 121:e2309384121. [PMID: 38252835 PMCID: PMC10835136 DOI: 10.1073/pnas.2309384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
High-quality specimen preparation plays a crucial role in cryo-electron microscopy (cryo-EM) structural analysis. In this study, we have developed a reliable and convenient technique called the graphene sandwich method for preparing cryo-EM specimens. This method involves using two layers of graphene films that enclose macromolecules on both sides, allowing for an appropriate ice thickness for cryo-EM analysis. The graphene sandwich helps to mitigate beam-induced charging effect and reduce particle motion compared to specimens prepared using the traditional method with graphene support on only one side, therefore improving the cryo-EM data quality. These advancements may open new opportunities to expand the use of graphene in the field of biological electron microscopy.
Collapse
Affiliation(s)
- Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yuwei Ma
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Beijing Graphene Institute, Beijing100095, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing100084, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| |
Collapse
|
11
|
Li JY, Liu F, Xu J, Kim YJ, Kwon OH, Xia B, Wang H, Granick S. The ergodicity question when imaging DNA conformation using liquid cell electron microscopy. Proc Natl Acad Sci U S A 2024; 121:e2314797121. [PMID: 38194452 PMCID: PMC10801859 DOI: 10.1073/pnas.2314797121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
Assessing the ergodicity of graphene liquid cell electron microscope measurements, we report that loop states of circular DNA interconvert reversibly and that loop numbers follow the Boltzmann distribution expected for this molecule in bulk solution, provided that the electron dose is low (80-keV electron energy and electron dose rate 1-20 e- Å-2 s-1). This imaging technique appears to act as a "slow motion" camera that reveals equilibrated distributions by imaging the time average of a few molecules without the need to image a spatial ensemble.
Collapse
Affiliation(s)
- Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing100871, China
| | - Fan Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing100871, China
- Beijing NMR Center, School of Life Science, Peking University, Beijing100871, China
| | - Jing Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing100871, China
- Beijing NMR Center, School of Life Science, Peking University, Beijing100871, China
| | - Ye-Jin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan44919, South Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan44919, South Korea
| | - Bin Xia
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing100871, China
- Beijing NMR Center, School of Life Science, Peking University, Beijing100871, China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, National Biomedical Imaging Center, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing100871, China
| | - Steve Granick
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan44919, South Korea
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan44919, South Korea
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
12
|
DiCecco LA, Gao R, Gray JL, Kelly DF, Sone ED, Grandfield K. Liquid Transmission Electron Microscopy for Probing Collagen Biomineralization. NANO LETTERS 2023; 23:9760-9768. [PMID: 37669509 DOI: 10.1021/acs.nanolett.3c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Collagen biomineralization is fundamental to hard tissue assembly. While studied extensively, collagen mineralization processes are not fully understood, with the majority of theories derived from electron microscopy (EM) under static, dehydrated, or frozen conditions, unlike the liquid phase environment where mineralization occurs. Herein, novel liquid transmission EM (TEM) strategies are presented, in which collagen mineralization was explored in liquid for the first time via TEM. Custom thin-film enclosures were employed to visualize the mineralization of reconstituted collagen fibrils in a calcium phosphate and polyaspartic acid solution to promote intrafibrillar mineralization. TEM highlighted that at early time points precursor mineral particles attached to collagen and progressed to crystalline mineral platelets aligned with fibrils at later time points. This aligns with observations from other techniques and validates the liquid TEM approach. This work provides a new liquid imaging approach for exploring collagen biomineralization, advancing toward understanding disease pathogenesis and remineralization strategies for hard tissues.
Collapse
Affiliation(s)
- Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Ruixin Gao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Jennifer L Gray
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Eli D Sone
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
13
|
Qu J, Sui M, Li R. Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. iScience 2023; 26:107072. [PMID: 37534164 PMCID: PMC10391733 DOI: 10.1016/j.isci.2023.107072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The process of heterogeneous catalytic reaction under working conditions has long been considered a "black box", which is mainly because of the difficulties in directly characterizing the structural changes of catalysts at the atomic level during catalytic reactions. The development of in situ transmission electron microscopy (TEM) techniques offers opportunities for introducing a realistic chemical reaction environment in TEM, making it possible to uncover the mystery of catalytic reactions. In this article, we present a comprehensive overview of the application of in situ TEM techniques in heterogeneous catalysis, highlighting its utility for observing gas-solid and liquid-solid reactions during thermal catalysis, electrocatalysis, and photocatalysis. in situ TEM has a unique advantage in revealing the complex structural changes of catalysts during chemical reactions. Revealing the real-time dynamic structure during reaction processes is crucial for understanding the intricate relationship between catalyst structure and its catalytic performance. Finally, we present a perspective on the future challenges and opportunities of in situ TEM in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
| |
Collapse
|
14
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
15
|
Zhou YY, Xu YC, Yao ZF, Li JY, Pan CK, Lu Y, Yang CY, Ding L, Xiao BF, Wang XY, Shao Y, Zhang WB, Wang JY, Wang H, Pei J. Visualizing the multi-level assembly structures of conjugated molecular systems with chain-length dependent behavior. Nat Commun 2023; 14:3340. [PMID: 37286537 DOI: 10.1038/s41467-023-39133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023] Open
Abstract
It remains challenging to understand the structural evolution of conjugated polymers from single chains to solvated aggregates and film microstructures, although it underpins the performance of optoelectrical devices fabricated via the mainstream solution processing method. With several ensemble visual measurements, here we unravel the morphological evolution process of a model system of isoindigo-based conjugated molecules, including the hidden molecular assembly pathways, the mesoscale network formation, and their unorthodox chain dependence. Short chains show rigid chain conformations forming discrete aggregates in solution, which further grow to form a highly ordered film that exhibits poor electrical performance. In contrast, long chains exhibit flexible chain conformations, creating interlinked aggregates networks in solution, which are directly imprinted into films, forming interconnective solid-state microstructure with excellent electrical performance. Visualizing multi-level assembly structures of conjugated molecules provides a deep understanding of the inheritance of assemblies from solution to solid-state, accelerating the optimization of device fabrication.
Collapse
Affiliation(s)
- Yang-Yang Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu-Chun Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chen-Kai Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chi-Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bu-Fan Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center or Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Abstract
ConspectusGold nanorods (Au NRs) are an exceptionally promising tool in nanotechnology due to three key factors: (i) their strong interaction with electromagnetic radiation, stemming from their plasmonic nature, (ii) the ease with which the resonance frequency of their longitudinal plasmon mode can be tuned from the visible to the near-infrared region of the electromagnetic spectrum based on their aspect ratio, and (iii) their simple and cost-effective preparation through seed-mediated chemical growth. In this synthetic method, surfactants play a critical role in controlling the size, shape, and colloidal stability of Au NRs. For example, surfactants can stabilize specific crystallographic facets during the formation of Au NRs, leading to the formation of NRs with specific morphologies.The process of surfactant adsorption onto the NR surface may result in various assemblies of surfactant molecules, such as spherical micelles, elongated micelles, or bilayers. Again, the assembly mode is critical toward determining the further availability of the Au NR surface to the surrounding medium. Despite its importance and a great deal of research effort, the interaction between Au NPs and surfactants remains insufficiently understood, because the assembly process is influenced by numerous factors, including the chemical nature of the surfactant, the surface morphology of Au NPs, and solution parameters. Therefore, gaining a more comprehensive understanding of these interactions is essential to unlock the full potential of the seed-mediated growth method and the applications of plasmonic NPs. A plethora of characterization techniques have been applied to reach such an understanding, but many open questions remain.In this Account, we review the current knowledge on the interactions between surfactants and Au NRs. We briefly introduce the state-of-the-art methods for synthesizing Au NRs and highlight the crucial role of cationic surfactants during this process. The self-assembly and organization of surfactants on the Au NR surface is then discussed to better understand their role in seed-mediated growth. Subsequently, we provide examples and elucidate how chemical additives can be used to modulate micellar assemblies, in turn allowing for a finer control over the growth of Au NRs, including chiral NRs. Next, we review the main experimental characterization and computational modeling techniques that have been applied to shed light on the arrangement of surfactants on Au NRs and summarize the advantages and disadvantages for each technique. The Account ends with a "Conclusions and Outlook" section, outlining promising future research directions and developments that we consider are still required, mostly related to the application of electron microscopy in liquid and in 3D. Finally, we remark on the potential of exploiting machine learning techniques to predict synthetic routes for NPs with predefined structures and properties.
Collapse
Affiliation(s)
- Jesús Mosquera
- Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, 15071 A Coruña, Spain
| | - Da Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA) and CIBER-BBN, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
17
|
Hirokawa S, Teshima H, Solís-Fernández P, Ago H, Li QY, Takahashi K. Random but limited pressure of graphene liquid cells. Ultramicroscopy 2023; 250:113747. [PMID: 37104983 DOI: 10.1016/j.ultramic.2023.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
Even though many researchers have used graphene liquid cells for atomic-resolution observation of liquid samples in the last decade, no one has yet simultaneously measured their three-dimensional shape and pressure. In this study, we have done so with an atomic force microscope, for cells with base radii of 20-134 nm and height of 3.9-21.2 nm. Their inner pressure ranged from 1.0 to 63 MPa but the maximum value decreased as the base radius increased. We discuss the mechanism that results in this inverse relationship by introducing an adhesive force between the graphene membranes. Also, the sample preparation procedure used in this experiment is highly reproducible and transferable to a wide variety of substrates.
Collapse
Affiliation(s)
- Sota Hirokawa
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pablo Solís-Fernández
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroki Ago
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
18
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
19
|
Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. J Am Chem Soc 2023; 145:6648-6657. [PMID: 36939571 DOI: 10.1021/jacs.2c07778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfred Vargas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Yamashita S, Inatomi Y, Inaba Y, Tanabe M, Nishi T, Kudo Y. Atomic-Scale Dynamics at Solid-Liquid Nanointerfaces Induced by Electron-Beam Irradiation. NANO LETTERS 2022; 22:10073-10079. [PMID: 36512517 DOI: 10.1021/acs.nanolett.2c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report electron-beam induced dynamics at PbS-Pb solid-liquid interfaces. We fabricated PbS-Pb solid-liquid nanointerfaces by heating PbS nanocrystals under vacuum to observe the entire process of structural evolution at the atomic scale. We investigated the dynamics using time-resolved high-angle annular dark-field imaging. Electron-beam irradiation caused layer-by-layer dissolution of PbS at the interface, resulting in the formation of the Pb nanodroplet. Ordered liquid layers were observed adjacent to the interface even under continuous electron-beam irradiation and followed the movement of the interface. Instantaneous epitaxial growth of PbS was observed as a reverse process of the dissolution. The resultant Pb nanodroplet provides indisputable evidence for selective sputtering of sulfur atoms via electron-beam irradiation. This paper demonstrates atomic resolution in situ observations of selective and complete sputtering. The observed dynamics can be explained by the intermittent phase transition via nonequilibrium states of the solid-liquid nanointerface triggered by selective sputtering.
Collapse
Affiliation(s)
- Shunsuke Yamashita
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Yuya Inatomi
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Yuta Inaba
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Mamoru Tanabe
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Toshio Nishi
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Yoshihiro Kudo
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| |
Collapse
|
21
|
Zhou S, Zheng Q, Tang S, Sun SG, Liao HG. Liquid cell electrochemical TEM: Unveiling the real-time interfacial reactions of advanced Li-metal batteries. J Chem Phys 2022; 157:230901. [PMID: 36550040 DOI: 10.1063/5.0129238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Li metal batteries (LMBs) reveal great application prospect in next-generation energy storage, because of their high energy density and low electrochemical potential, especially when paired with elemental sulfur and oxygen cathodes. Complex interfacial reactions have long been a big concern because of the elusive formation/dissolution of Li metal at the solid-electrolyte interface (SEI) layer, which leads to battery degradation under practical operating conditions. To precisely track the reactions at the electrode/electrolyte interfaces, in the past ten years, high spatio-temporal resolution, in situ electrochemical transmission electron microscopy (EC-TEM) has been developed. A preliminary understanding of the structural and chemical variation of Li metal during nucleation/growth and SEI layer formation has been obtained. In this perspective, we give a brief introduction of liquid cell development. Then, we comparably discuss the different configurations of EC-TEM based on open-cell and liquid-cell, and focus on the recent advances of liquid-cell EC-TEM and its investigation in the electrodes, electrolytes, and SEI. Finally, we present a perspective of liquid-cell EC-TEM for future LMB research.
Collapse
Affiliation(s)
- Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qizheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
22
|
Wang H, Xu Z, Mao S, Granick S. Experimental Guidelines to Image Transient Single-Molecule Events Using Graphene Liquid Cell Electron Microscopy. ACS NANO 2022; 16:18526-18537. [PMID: 36256532 DOI: 10.1021/acsnano.2c06766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In quest of the holy grail to "see" how individual molecules interact in liquid environments, single-molecule imaging methods now include liquid-phase electron microscopy, whose resolution can be nanometers in space and several frames per second in time using an ordinary electron microscope that is routinely available to many researchers. However, with the current state of the art, protocols that sound similar to those described in the literature lead to outcomes that can differ. The key challenge is to achieve sample contrast under a safe electron dose within a frame rate adequate to capture the molecular process. Here, we present such examples from different systems─synthetic polymer, lipid assembly, DNA-enzyme─in which we have done this using graphene liquid cells. We describe detailed experimental procedures and share empirical experience for conducting successful experiments, starting from fabrication of a graphene liquid cell, to identification of high-quality liquid pockets from desirable shapes and sizes, to effective searching for target sample pockets under electron microscopy, and to discrimination of sample molecules and molecular processes of interest. These experimental tips can assist others who wish to make use of this method.
Collapse
Affiliation(s)
- Huan Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Center for Spectroscopy, Beijing Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- Department of Mechanics and Engineering Sciences, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Korea, 44919
- Department of Chemistry and Physics, Ulsan National Institute of Science and Technology, Ulsan, Korea 44919
| |
Collapse
|
23
|
Afshani J, Perez Mellor A, Bürgi T, Hagemann H. Crystallization of SrAl 12O 19 Nanocrystals from Amorphous Submicrometer Particles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:19336-19345. [PMID: 36425001 PMCID: PMC9677969 DOI: 10.1021/acs.jpcc.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Advanced instrumentation and modern analysis tools such as transmission electron microscopy (TEM) have led to phenomenal progress in understanding crystallization, in particular from solution, which is a prerequisite for the design-based preparation of a target crystal. Nevertheless, little has been understood about the crystallization pathway under high-temperature annealing (HTA) conditions. Metal oxide crystals are prominent materials that are usually obtained via HTA. Despite the widespread application of hydro-/solvothermal methods on the laboratory scale, HTA is the preferred method in many industries for the mass production of metal oxide crystals. However, poor control over the morphology and grain sizes of these crystals under extreme HTA conditions limits their applications. Here, applying ex-situ TEM, the transformation of a single amorphous spherical submicrometer precursor particle of SrAl12O19 (SA6) at 1150 °C toward a nanosized thermodynamically favored hexagonal crystal is explored. It is illustrated in real space, step by step, how both kinetic and thermodynamic factors contribute to this faceting and morphology evolution. These results demonstrate a nonclassical nucleation and growth process consisting of densification, crystallite domain formation, oriented attachment, surface nucleation, 2-dimensional (2D) growth, and surface diffusion of the atoms to eventually result in the formation of a hexagonal platelet crystal. The TEM images further delineate a parent crystal driving the crystal lattice and morphological orientation of a network of interconnected platelets.
Collapse
Affiliation(s)
- Jafar Afshani
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Ariel Perez Mellor
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Thomas Bürgi
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| | - Hans Hagemann
- Département de Chimie Physique, Université de Genève, Quai Ernest-Ansermet 30, Genève1211, Switzerland
| |
Collapse
|
24
|
Li M, Ling L. Visualizing Dynamic Environmental Processes in Liquid at Nanoscale via Liquid-Phase Electron Microscopy. ACS NANO 2022; 16:15503-15511. [PMID: 35969015 DOI: 10.1021/acsnano.2c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualizing the structure and processes in liquids at the nanoscale is essential for understanding the fundamental mechanisms and underlying processes of environmental research. Cutting-edge progress of in situ liquid-phase (scanning) transmission electron microscopy (LP-S/TEM) and inferred possible applications are highlighted as a more and more indispensable tool for visualization of dynamic environmental processes in this Perspective. Advancements in nanofabrication technology, high-speed imaging, comprehensive detectors, and spectroscopy analysis have made it increasingly convenient to use LP S/TEM, thus providing an approach for visualization of direct and insightful scientific information with the exciting possibility of solving an increasing number of tricky environmental problems. This includes evaluating the transformation fate and path of contamination, assessing toxicology of nanomaterials, simulating solid surface corrosion processes in the environment, and observing water pollution control processes. Distinct nanoscale or even atomic understanding of the reaction would provide dependable and precise identification and quantification of contaminants in dynamic processes, thus facilitating trouble-tracing of environmental problems with amplifying complexity.
Collapse
Affiliation(s)
- Meirong Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Tracking single adatoms in liquid in a transmission electron microscope. Nature 2022; 609:942-947. [PMID: 35896149 DOI: 10.1038/s41586-022-05130-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/20/2022] [Indexed: 02/01/2023]
Abstract
Single atoms or ions on surfaces affect processes from nucleation1 to electrochemical reactions2 and heterogeneous catalysis3. Transmission electron microscopy is a leading approach for visualizing single atoms on a variety of substrates4,5. It conventionally requires high vacuum conditions, but has been developed for in situ imaging in liquid and gaseous environments6,7 with a combined spatial and temporal resolution that is unmatched by any other method-notwithstanding concerns about electron-beam effects on samples. When imaging in liquid using commercial technologies, electron scattering in the windows enclosing the sample and in the liquid generally limits the achievable resolution to a few nanometres6,8,9. Graphene liquid cells, on the other hand, have enabled atomic-resolution imaging of metal nanoparticles in liquids10. Here we show that a double graphene liquid cell, consisting of a central molybdenum disulfide monolayer separated by hexagonal boron nitride spacers from the two enclosing graphene windows, makes it possible to monitor, with atomic resolution, the dynamics of platinum adatoms on the monolayer in an aqueous salt solution. By imaging more than 70,000 single adatom adsorption sites, we compare the site preference and dynamic motion of the adatoms in both a fully hydrated and a vacuum state. We find a modified adsorption site distribution and higher diffusivities for the adatoms in the liquid phase compared with those in vacuum. This approach paves the way for in situ liquid-phase imaging of chemical processes with single-atom precision.
Collapse
|
26
|
|
27
|
Kidambi PR, Chaturvedi P, Moehring NK. Subatomic species transport through atomically thin membranes: Present and future applications. Science 2021; 374:eabd7687. [PMID: 34735245 DOI: 10.1126/science.abd7687] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Piran R Kidambi
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.,Interdisciplinary Graduate Program in Material Science, Vanderbilt University, Nashville, TN, USA
| | - Pavan Chaturvedi
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nicole K Moehring
- Vanderbilt Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, TN, USA.,Interdisciplinary Graduate Program in Material Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Hirokawa S, Teshima H, Solís-Fernández P, Ago H, Li QY, Takahashi K. Pinning in a Contact and Noncontact Manner: Direct Observation of a Three-Phase Contact Line Using Graphene Liquid Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12271-12277. [PMID: 34644074 DOI: 10.1021/acs.langmuir.1c01589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pinning of a three-phase contact line at the nanoscale cannot be explained by conventional macroscale theories and thus requires an experimental insight to understand this phenomenon. We performed in-situ transmission electron microscopy observation of the three-phase contact lines of bubbles inside graphene liquid cells to experimentally investigate the causes of nanoscale pinning. In our observations, the three-phase contact line was not affected by the 0.6 nm-thick inhomogeneity of the graphene surface, but thicker metal nanoparticles with diameters of 2-10 nm and nanoflakes caused pinning of the gas-liquid interface. Notably, we found that flake-like objects can cause pinning that prevents the bubble overcome the flake object in a noncontact state, with a 2 nm-thick liquid film between them and the bubble. This phenomenon can be explained by the repulsive force obtained using the Derjaguin, Landau, Verwey, and Overbeek theory. We also observed that the flake temporally prevented the gas-liquid interface moving away from the flake. We discussed the physical mechanism of the attractive force-like phenomenon by considering the nanoconfinement effect of the liquid sandwiched by two graphene sheets and the hydration layer formed near the solid surface.
Collapse
Affiliation(s)
- Sota Hirokawa
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideaki Teshima
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Pablo Solís-Fernández
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan
| | - Hiroki Ago
- Global Innovation Center, Kyushu University, 6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Five-second STEM dislocation tomography for 300 nm thick specimen assisted by deep-learning-based noise filtering. Sci Rep 2021; 11:20720. [PMID: 34702955 PMCID: PMC8548491 DOI: 10.1038/s41598-021-99914-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022] Open
Abstract
Scanning transmission electron microscopy (STEM) is suitable for visualizing the inside of a relatively thick specimen than the conventional transmission electron microscopy, whose resolution is limited by the chromatic aberration of image forming lenses, and thus, the STEM mode has been employed frequently for computed electron tomography based three-dimensional (3D) structural characterization and combined with analytical methods such as annular dark field imaging or spectroscopies. However, the image quality of STEM is severely suffered by noise or artifacts especially when rapid imaging, in the order of millisecond per frame or faster, is pursued. Here we demonstrate a deep-learning-assisted rapid STEM tomography, which visualizes 3D dislocation arrangement only within five-second acquisition of all the tilt-series images even in a 300 nm thick steel specimen. The developed method offers a new platform for various in situ or operando 3D microanalyses in which dealing with relatively thick specimens or covering media like liquid cells are required.
Collapse
|
30
|
Moreno-Hernandez IA, Crook MF, Ondry JC, Alivisatos AP. Redox Mediated Control of Electrochemical Potential in Liquid Cell Electron Microscopy. J Am Chem Soc 2021; 143:12082-12089. [PMID: 34319106 DOI: 10.1021/jacs.1c03906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liquid cell electron microscopy enables the study of nanoscale transformations in solvents with high spatial and temporal resolution, but for the technique to achieve its potential requires a new level of control over the reactivity caused by radical generation under electron beam irradiation. An understanding of how to control electron-solvent interactions is needed to further advance the study of structural dynamics for complex materials at the nanoscale. We developed an approach that scavenges radicals with redox species that form well-defined redox couples and control the electrochemical potential in situ. This approach enables the observation of electrochemical structural dynamics at near-atomic resolution with precise control of the liquid environment. Analysis of nanocrystal etching trajectories indicates that this approach can be generalized to several chemical systems. The ability to simultaneously observe heterogeneous reactions at near-atomic resolution and precisely control the electrochemical potential enables the fundamental study of complex nanoscale dynamics with unprecedented detail.
Collapse
Affiliation(s)
- Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Ahn J, Bae C, Weiss PS, Kim ID. Celebrating 50 Years of KAIST: Collective Intelligence and Innovation for Confronting Contemporary Issues. ACS NANO 2021; 15:1895-1907. [PMID: 33577279 DOI: 10.1021/acsnano.1c01101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Choongsik Bae
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, California NanoSystems Institute, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|