1
|
Ge M, Zeng F, Wang Z, Ma JJ, Zhang J. Band alignment of one-dimensional transition-metal dichalcogenide heterotubes. NANOSCALE 2024; 16:17495-17504. [PMID: 39225006 DOI: 10.1039/d4nr03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
One-dimensional (1D) van der Waals (vdW) heterotubes, where different kinds of 1D nanotubes coaxially nest inside each other, offer a flexible platform for promising applications. The various properties of these 1D heterotubes depend on their diameter. Here, we present a systematic theoretical investigation into the structural and electronic properties of two kinds of 1D transition-metal dichalcogenide (TMD) heterotubes. We demonstrate that the thermodynamic stability of 1D heterotubes is determined by their interlayer distance. Additionally, we establish that the band alignment transition changes from type I to type II in 1D TMD heterotubes. We identify two distinct transition mechanisms, originating from the exchange of either the valence band maximum or the conduction band minimum. According to an electrostatic model, the band alignment transition is attributed to the interlayer electric field effect, which depends on the heterotube diameter. The findings in this work provide valuable physical insights into the band alignment transition in 1D heterotubes and are instrumental for their potential applications in nanotechnology.
Collapse
Affiliation(s)
- Mei Ge
- College of Physics and Electronic Engineering, Hainan Normal University, Haikou, 571158, China.
| | - Fanmin Zeng
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Zixuan Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Jiang-Jiang Ma
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
| | - Junfeng Zhang
- College of Physics and Electronic Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
2
|
Wang S, Levshov DI, Otsuka K, Zhang BW, Zheng Y, Feng Y, Liu M, Kauppinen EI, Xiang R, Chiashi S, Wenseleers W, Cambré S, Maruyama S. Evaluating the Efficiency of Boron Nitride Coating in Single-Walled Carbon-Nanotube-Based 1D Heterostructure Films by Optical Spectroscopy. ACS NANO 2024; 18:9917-9928. [PMID: 38548470 PMCID: PMC11008362 DOI: 10.1021/acsnano.3c09615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Single-walled carbon nanotube (SWCNT) films exhibit exceptional optical and electrical properties, making them highly promising for scalable integrated devices. Previously, we employed SWCNT films as templates for the chemical vapor deposition (CVD) synthesis of one-dimensional heterostructure films where boron nitride nanotubes (BNNTs) and molybdenum disulfide nanotubes (MoS2NTs) were coaxially nested over the SWCNT networks. In this work, we have further refined the synthesis method to achieve precise control over the BNNT coating in SWCNT@BNNT heterostructure films. The resulting structure of the SWCNT@BNNT films was thoroughly characterized using a combination of electron microscopy, UV-vis-NIR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. Specifically, we investigated the pressure effect induced by BNNT wrapping on the SWCNTs in the SWCNT@BNNT heterostructure film and demonstrated that the shifts of the SWCNT's G and 2D (G') modes in Raman spectra can be used as a probe of the efficiency of BNNT coating. In addition, we studied the impact of vacuum annealing on the removal of the initial doping in SWCNTs, arising from exposure to ambient atmosphere, and examined the effect of MoO3 doping in SWCNT films by using UV-vis-NIR spectroscopy and Raman spectroscopy. We show that through correlation analysis of the G and 2D (G') modes in Raman spectra, it is possible to discern distinct types of doping effects as well as the influence of applied pressure on the SWCNTs within SWCNT@BNNT heterostructure films. This work contributes to a deeper understanding of the strain and doping effect in both SWCNTs and SWCNT@BNNTs, thereby providing valuable insights for future applications of carbon-nanotube-based one-dimensional heterostructures.
Collapse
Affiliation(s)
- Shuhui Wang
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Dmitry I. Levshov
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Keigo Otsuka
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Bo-Wen Zhang
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Yongjia Zheng
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Ya Feng
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Esko I. Kauppinen
- Department
of Applied Physics, Aalto University School
of Science, Espoo 15100, FI-00076 Aalto, Finland
| | - Rong Xiang
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
- State
Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical
Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Shohei Chiashi
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| | - Wim Wenseleers
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Sofie Cambré
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Shigeo Maruyama
- Department
of Mechanical Engineering, The University
of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Cetindag S, Park SJ, Buchsbaum SF, Zheng Y, Liu M, Wang S, Xiang R, Maruyama S, Fornasiero F, Shan JW. Ion and Hydrodynamic Translucency in 1D van der Waals Heterostructured Boron-Nitride Single-Walled Carbon Nanotubes. ACS NANO 2024; 18:355-363. [PMID: 38134351 DOI: 10.1021/acsnano.3c07282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
An unresolved challenge in nanofluidics is tuning ion selectivity and hydrodynamic transport in pores, particularly for those with diameters larger than a nanometer. In contrast to conventional strategies that focus on changing surface functionalization or confinement degree by varying the radial dimension of the pores, we explore a unique approach for manipulating ion selectivity and hydrodynamic flow enhancement by externally coating single-walled carbon nanotubes (SWCNTs) with a few layers of hexagonal boron nitride (h-BN). For van der Waals heterostructured BN-SWCNTs, we observed a 9-fold increase in cation selectivity for K+ versus Cl- compared to pristine SWCNTs of the same 2.2 nm diameter, while hydrodynamic slip lengths decreased by more than an order of magnitude. These results suggest that the single-layer graphene inner surface may be translucent to charge-regulation and hydrodynamic-slip effects arising from h-BN on the outside of the SWCNT. Such 1D heterostructures could serve as synthetic platforms with tunable properties for exploring distinct nanofluidic phenomena and their potential applications.
Collapse
Affiliation(s)
- Semih Cetindag
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sei Jin Park
- Physical and Life Sciences,Lawrence Livermore National Laboratory, Livermore, California 94550 United States
| | - Steven F Buchsbaum
- Physical and Life Sciences,Lawrence Livermore National Laboratory, Livermore, California 94550 United States
| | - Yongjia Zheng
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shuhui Wang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Francesco Fornasiero
- Physical and Life Sciences,Lawrence Livermore National Laboratory, Livermore, California 94550 United States
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Yomogida Y, Nagano M, Liu Z, Ueji K, Rahman MA, Ahad A, Ihara A, Nishidome H, Yagi T, Nakanishi Y, Miyata Y, Yanagi K. Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures. NANO LETTERS 2023; 23:10103-10109. [PMID: 37843011 DOI: 10.1021/acs.nanolett.3c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Transition metal dichalcogenide (TMDC) nanotubes exhibit unique physical properties due to their nanotube structures. The development of techniques for synthesizing TMDC nanotubes with controlled structures is very important for their science and applications. However, structural control efforts have been made only for the homostructures of TMDC nanotubes and not for their heterostructures that provide an important platform for their two-dimensional counterparts. In this study, we synthesized heterostructures of TMDC nanotubes, MoS2/WS2 heteronanotubes, and demonstrated a technique for controlling features of their structures, such as diameters, layer numbers, and crystallinity. The diameter of the heteronanotubes could be tuned with inner nanotube templates and was reduced by using small-diameter WS2 nanotubes. The layer number and crystallinity of the MoS2 outer wall could be controlled by controlling their precursors and synthesis temperatures, resulting in the formation of high-crystallinity TMDC heteronanotubes with specific chirality. This study can expand the research of van der Waals heterostructures.
Collapse
Affiliation(s)
- Yohei Yomogida
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Mai Nagano
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Zheng Liu
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
| | - Kan Ueji
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Md Ashiqur Rahman
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Physics, Comilla University, Cumilla 3506, Bangladesh
| | - Abdul Ahad
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Department of Physics, Comilla University, Cumilla 3506, Bangladesh
| | - Akane Ihara
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Hiroyuki Nishidome
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takashi Yagi
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8563, Japan
| | - Yusuke Nakanishi
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
5
|
Gulo DP, Hung NT, Chen WL, Wang S, Liu M, Kauppinen EI, Maruyama S, Chang YM, Saito R, Liu HL. Interacting Phonons between Layers in Raman Spectra of Carbon Nanotubes inside Boron Nitride Nanotubes. J Phys Chem Lett 2023; 14:10263-10270. [PMID: 37939010 DOI: 10.1021/acs.jpclett.3c02528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
We present the resonant Raman spectra of a single-wall carbon nanotube inside a multiwall boron nitride nanotube (SWNT@BNNT). At EL = 1.58 eV, SWNT@BNNT exhibited resonant Raman spectra at 807 (ωBN) and 804 cm-1 (ωGr). Their intensities almost disappeared at EL = 2.33 eV. We assigned ωBN to the out-of-plane BN phonon mode that coupled with ωGr. At EL = 4.66 eV, the G+ and G- bands of the SWNT@BNNT red-shifted 3.8 cm-1 compared with the SWNT, suggesting the interwall interactions between the in-plane modes of SWNT and BNNT. Moreover, the E2g mode of the BNNT in SWNT@BNNT appeared at 1370.3 ± 0.1 cm-1, which is undistinguishable for EL < 3 eV because of the overlap with the D band frequency. The assignment of the present Raman spectra was confirmed through the first-principles calculations.
Collapse
Affiliation(s)
| | - Nguyen Tuan Hung
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Shuhui Wang
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Esko I Kauppinen
- Department of Applied Physics, Aalto University School of Science, Espoo 15100, FI-00076 Aalto, Finland
| | - Shigeo Maruyama
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yu-Ming Chang
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Riichiro Saito
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | - Hsiang-Lin Liu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Nakanishi Y, Furusawa S, Sato Y, Tanaka T, Yomogida Y, Yanagi K, Zhang W, Nakajo H, Aoki S, Kato T, Suenaga K, Miyata Y. Structural Diversity of Single-Walled Transition Metal Dichalcogenide Nanotubes Grown via Template Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306631. [PMID: 37795543 DOI: 10.1002/adma.202306631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/27/2023] [Indexed: 10/06/2023]
Abstract
Monolayers of transition metal dichalcogenides (TMDs) are an ideal 2D platform for studying a wide variety of electronic properties and potential applications due to their chemical diversity. Similarly, single-walled TMD nanotubes (SW-TMDNTs)-seamless cylinders of rolled-up TMD monolayers-are 1D materials that can exhibit tunable electronic properties depending on both their chirality and composition. However, much less has been explored about their geometrical structures and chemical variations due to their instability under ambient conditions. Here, the structural diversity of SW-TMDNTs templated by boron nitride nanotubes (BNNTs) is reported. The outer surfaces and inner cavities of the BNNTs promote and stabilize the coaxial growth of SW-TMDNTs with various diameters, including few-nanometers-wide species. The chiral indices (n,m) of individual SW-MoS2 NTs are assigned by high-resolution transmission electron microscopy, and statistical analyses reveals a broad chirality distribution ranging from zigzag to armchair configurations. Furthermore, this methodology can be applied to the synthesis of various TMDNTs, such as selenides and alloyed Mo1- x Wx S2 . Comprehensive microscopic and spectroscopic analyses also suggest the partial formation of Janus MoS2(1- x ) Se2 x nanotubes. The BNNT-templated reaction provides a universal platform to characterize the chirality-dependent properties of 1D nanotubes with various electronic structures.
Collapse
Affiliation(s)
- Yusuke Nakanishi
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Shinpei Furusawa
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yuta Sato
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Takumi Tanaka
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yohei Yomogida
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Wenjin Zhang
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Hiroshi Nakajo
- Department of Electronic Engineering, Tohoku University, 980-8579, Sendai, Japan
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan
- KOKUSAI ELECTRIC CORP., Toyama, 939-2393, Japan
| | - Soma Aoki
- Department of Electronic Engineering, Tohoku University, 980-8579, Sendai, Japan
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Toshiaki Kato
- Department of Electronic Engineering, Tohoku University, 980-8579, Sendai, Japan
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, 567-0047, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
7
|
Fu W, John M, Maddumapatabandi TD, Bussolotti F, Yau YS, Lin M, Johnson Goh KE. Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition. ACS NANO 2023; 17:16348-16368. [PMID: 37646426 DOI: 10.1021/acsnano.3c04581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The manipulation of edge configurations and structures in atomically-thin transition metal dichalcogenides (TMDs) for versatile functionalization has attracted intensive interest in recent years. The chemical vapor deposition (CVD) approach has shown promise for TMD edge engineering of atomic edge configurations (1H, 1T or 1T'-zigzag or armchair edges) as well as diverse edge morphologies (1D nanoribbons, 2D dendrites, 3D spirals, etc.). These edge-rich TMD layers offer versatile candidates for probing the physical and chemical properties and exploring potential applications in electronics, optoelectronics, catalysis, sensing, and quantum technologies. In this Review, we present an overview of the current state-of-the-art in the manipulation of TMD atomic edges and edge-rich structures using CVD. We highlight the vast range of distinct properties associated with these edge configurations and structures and provide insights into the opportunities afforded by such edge-functionalized crystals. The objective of this Review is to motivate further research and development efforts to use CVD as a scalable approach to harness the benefits of such crystal-edge engineering.
Collapse
Affiliation(s)
- Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Mark John
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
| | - Thathsara D Maddumapatabandi
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Yong Sean Yau
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03 138634, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
8
|
Venkatesh M, Kim VV, Boltaev GS, Konda SR, Svedlindh P, Li W, Ganeev RA. High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants. Int J Mol Sci 2023; 24:ijms24076540. [PMID: 37047513 PMCID: PMC10094757 DOI: 10.3390/ijms24076540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The transition metal dichalcogenides have instigated a lot of interest as harmonic generators due to their exceptional nonlinear optical properties. Here, the molybdenum disulfide (MoS2) molecular structures with dopants being in a plasma state are used to demonstrate the generation of intense high-order harmonics. The MoS2 nanoflakes and nickel-doped MoS2 nanoflakes produced stronger harmonics with higher cut-offs compared with Mo bulk and MoS2 bulk. Conversely, the MoS2 with nickel nanoparticles and carbon nanotubes (MoS2-NiCNT) produced weaker coherent XUV emissions than other materials, which is attributed to the influence of phase mismatch. The influence of heating and driving pulse intensities on the harmonic yield and cut-off energies are investigated in MoS2 molecular structures. The enhanced coherent extreme ultraviolet emission at ~32 nm (38 eV) due to the 4p-4d resonant transitions is obtained from all aforementioned molecular structures, except for MoS2-NiCNT.
Collapse
Affiliation(s)
- Mottamchetty Venkatesh
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
- Correspondence: (M.V.); (R.A.G.)
| | - Vyacheslav V. Kim
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Laboratory of Nonlinear Optics, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Institute of Fundamental and Applied Research, TIIAME National Research University, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
| | - Ganjaboy S. Boltaev
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Institute of Fundamental and Applied Research, TIIAME National Research University, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Faculty of Physics and Matematics, Chirchik State Pedagogical University, 104 Amir Temur, Chirchik 111700, Uzbekistan
| | - Srinivasa Rao Konda
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Rashid A. Ganeev
- GPL Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- Laboratory of Nonlinear Optics, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia
- Institute of Fundamental and Applied Research, TIIAME National Research University, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Faculty of Physics and Matematics, Chirchik State Pedagogical University, 104 Amir Temur, Chirchik 111700, Uzbekistan
- Department of Physics, Voronezh State University, 394006 Voronezh, Russia
- Correspondence: (M.V.); (R.A.G.)
| |
Collapse
|
9
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
Su J, Li X, Xu M, Zhang J, Liu X, Zheng X, Shi Y, Zhang Q. Enhancing Photodetection Ability of MoS 2 Nanoscrolls via Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3307-3316. [PMID: 36596237 DOI: 10.1021/acsami.2c18537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Van der Waals semiconductors have been really confirmed in two-dimensional (2D) layered systems beyond the traditional limits of lattice-matching requirements. The extension of this concept to the 1D atomic level may generate intriguing physical functionalities due to its non-covalent bonding surface. However, whether the curvature of the lattice in such rolled-up structures affects their optoelectronic features or the performance of devices established on them remains an open question. Here, MoS2-based nanoscrolls were obtained by virtue of an alkaline solution-assisted method and the 0D/1D (BaTiO3/MoS2) strategy to tune their optoelectronic properties and improve the light sensing performance was explored. The capillary force generated by a drop of NaHCO3 solution could drive the delamination of nanosheets from the underlying substrate and a spontaneous rolling-up process. The package of BaTiO3 particles in MoS2 nanoscrolls has been evident by TEM image, and the optical characterizations were mirrored via micro-Raman spectroscopy and photoluminescence. These bare MoS2 nanoscrolls reveal a reduced photoresponse compared to the plane structures due to the curvature of the lattice. However, such BaTiO3/MoS2 nanoscrolls exhibit a significantly improved photodetection (Rhybrid = 73.9 A/W vs Ronly = 1.1 A/W and R2D = 1.5 A/W at 470 nm, 0.58 mW·cm-2), potentially due to the carrier extraction/injection occurring between BaTiO3 and MoS2. This study thereby provides an insight into 1D van der Waals material community and demonstrates a general approach to fabricate high-performance 1D van der Waals optoelectronic devices.
Collapse
Affiliation(s)
- Jun Su
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Jian Zhang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xiaolian Liu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xin Zheng
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| |
Collapse
|
11
|
Chen J, Liu B, Cai H, Liu S, Yamauchi Y, Jun SC. Covalently Interlayer-Confined Organic-Inorganic Heterostructures for Aqueous Potassium Ion Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204275. [PMID: 36403212 DOI: 10.1002/smll.202204275] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Artificial assembly of organic-inorganic heterostructures for electrochemical energy storage at the molecular level is promising, but remains a great challenge. Here, a covalently interlayer-confined organic (polyaniline [PANI])-inorganic (MoS2 ) hybrid with a dual charge-storage mechanism is developed for boosting the reaction kinetics of supercapacitors. Systematic characterizations reveal that PANI induces a partial phase transition from the 2H to 1T phases of MoS2 , expands the interlayer spacing of MoS2 , and increases the hydrophilicity. More in-depth insights from the synchrotron radiation-based X-ray technique illustrate that the covalent grafting of PANI to MoS2 induces the formation of MoN bonds and unsaturated Mo sites, leading to increased active sites. Theoretical analysis reveals that the covalent assembly facilitates cross-layer electron transfer and decreases the diffusion barrier of K+ ions, which favors reaction kinetics. The resultant hybrid material exhibits high specific capacitance and good rate capability. This design provides an effective strategy to develop organic-inorganic heterostructures for superior K-ion storage. The K-ion storage mechanism concerning the reversible insertion/extraction upon charge/discharge is revealed through ex situ X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Jianping Chen
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Bin Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Hang Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Shude Liu
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| |
Collapse
|
12
|
Aftab S, Iqbal MZ, Rim YS. Recent Advances in Rolling 2D TMDs Nanosheets into 1D TMDs Nanotubes/Nanoscrolls. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205418. [PMID: 36373722 DOI: 10.1002/smll.202205418] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Transition metal dichalcogenides (TMDs) van der Waals (vdW) 1D heterostructures are recently synthesized from 2D nanosheets, which open up new opportunities for potential applications in electronic and optoelectronic devices. The most recent and promising strategies in regards to forming 1D TMDs nanotubes (NTs) or nanoscrolls (NSs) in this review article as well as their heterostructures that are produced from 2D TMDs are summarized. In order to improve the functionality of ultrathin 1D TMDs that are coaxially combined with boron nitride nanotubes and single-walled carbon nanotubes. 1D heterostructured devices perform better than 2D TMD nanosheets when the two devices are compared. The photovoltaic effect in WS2 or MoS2 NTs without a junction may exceed the Shockley-Queisser limit for the above-band-gap photovoltage generation. Photoelectrochemical hydrogen evolution is accelerated when monolayer WS2 or MoS2 NSs are incorporated into a heterojunction. In addition, the photovoltaic performance of the WSe2 /MoS2 NSs junction is superior to that of the performance of MoS2 NSs. The summary of the current research about 1D TMDs can be used in a variety of ways, which assists in the development of new types of nanoscale optoelectronic devices. Finally, it also summarizes the current challenges and prospects.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| | - Muhammad Zahir Iqbal
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640, Pakistan
| | - You Seung Rim
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
13
|
Zhang C, Fortner J, Wang P, Fagan JA, Wang S, Liu M, Maruyama S, Wang Y. van der Waals SWCNT@BN Heterostructures Synthesized from Solution-Processed Chirality-Pure Single-Wall Carbon Nanotubes. ACS NANO 2022; 16:18630-18636. [PMID: 36346984 DOI: 10.1021/acsnano.2c07128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-wall carbon nanotubes in boron nitride (SWCNT@BN) are one-dimensional van der Waals heterostructures that exhibit intriguing physical and chemical properties. As with their carbon nanotube counterparts, these heterostructures can form from different combinations of chiralities, providing rich structures but also posing a significant synthetic challenge to controlling their structure. Enabled by advances in nanotube chirality sorting, clean removal of the surfactant used for solution processing, and a simple method to fabricate free-standing submonolayer films of chirality pure SWCNTs as templates for the BN growth, we show it is possible to directly grow BN on chirality enriched SWCNTs from solution processing to form van der Waals heterostructures. We further report factors affecting the heterostructure formation, including an accelerated growth rate in the presence of H2, and significantly improved crystallization of the grown BN, with the BN thickness controlled down to one single BN layer, through the presence of a Cu foil in the reactor. Transmission electron microscopy and electron energy-loss spectroscopic mapping confirm the synthesis of SWCNT@BN from the solution purified nanotubes. The photoluminescence peaks of both (7,5)- and (8,4)-SWCNT@BN heterostructures are found to redshift (by ∼10 nm) relative to the bare SWCNTs. Raman scattering suggests that the grown BN shells pose a confinement effect on the SWCNT core.
Collapse
Affiliation(s)
- Chiyu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shuhui Wang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Goto M, Yamane I, Arasawa S, Yanase T, Yokokura S, Nagahama T, Chueh YL, Shin Y, Kim Y, Shimada T. Synthesis of Epitaxial MoS 2/MoO 2 Core-Shell Nanowires by Two-Step Chemical Vapor Deposition with Turbulent Flow and Their Physical Properties. ACS OMEGA 2022; 7:39362-39369. [PMID: 36340117 PMCID: PMC9631877 DOI: 10.1021/acsomega.2c05586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
MoO2 nanowires (NWs), MoO2/MoS2 core-shell NWs, and MoS2 nanotubes (NTs) were synthesized by the turbulent flow chemical vapor deposition of MoO2 using MoO3, followed by sulfurization in the sulfur gas flow. The involvement of MoO x suboxide is suggested by density functional theory (DFT) calculations of the surface energies of MoO2. The thickness of the MoS2 layers can be controlled by precise tuning of sulfur vapor flow and temperatures. MoS2 had an armchair-type winding topology due to the epitaxial relation with the MoO2 NW surface. A single ∼ few-layer MoO2/MoS2 core-shell structure showed photoluminescence after the treatment with a superacid. The resistivities of an individual MoO2 NW and a MoS2 NT were measured, and they showed metallic and semiconducting resistivity-temperature relationships, respectively.
Collapse
Affiliation(s)
- Manami Goto
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
| | - Ichiro Yamane
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
| | - Shoki Arasawa
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
| | - Takashi Yanase
- Department
of Chemistry, Toho University, Miyama 2-2-1, Funabashi274-8510, Japan
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
| | - Seiya Yokokura
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
| | - Taro Nagahama
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
| | - Yu-lun Chueh
- Department
of Materials Science and Engineering, National
Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan R.O.C.
| | - Yongjun Shin
- Department
of Materials Science and Engineering, Seoul
National University, Seoul08826, Korea
| | - Yongmin Kim
- Department
of Physics, Dankook University, 119 Dandae-ro,
Dongnam-gu, Cheonan31116, Chungcheongnam-do, Korea
| | - Toshihiro Shimada
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo060-8628, Japan
| |
Collapse
|
15
|
Furusawa S, Nakanishi Y, Yomogida Y, Sato Y, Zheng Y, Tanaka T, Yanagi K, Suenaga K, Maruyama S, Xiang R, Miyata Y. Surfactant-Assisted Isolation of Small-Diameter Boron-Nitride Nanotubes for Molding One-Dimensional van der Waals Heterostructures. ACS NANO 2022; 16:16636-16644. [PMID: 36195582 DOI: 10.1021/acsnano.2c06067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rolling two-dimensional (2D) materials into 1D nanotubes allows for greater functionality. Boron-nitride nanotubes (BNNTs) can serve as insulating 1D templates for the coaxial growth of guest nanotubes, without interfering with property characterization. However, their application as 1D templates has been greatly hindered by their poor dispersibility, inevitably resulting in the formation of thick bundles. Here we present the facile preparation of well-dispersed BNNT templates via surfactant dispersions and synthesis of 1D van der Waals heterostructures based on the BNNTs. Comprehensive microscopic analyses show the isolation of clean, high-quality BNNTs. Statistical analyses revealed that small-diameter double-walled BNNTs are highly enriched by chemical peeling of BN sidewalls through the sonication process. We further demonstrate that the isolated BNNTs can template the coaxial growth of carbon and MoS2 nanotubes by using chemical vapor deposition. The present strategy can be applied to the synthesis of a variety of nanotubes, thereby allowing for their characterization.
Collapse
Affiliation(s)
- Shinpei Furusawa
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yusuke Nakanishi
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yohei Yomogida
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuta Sato
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Yongjia Zheng
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Takumi Tanaka
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kazuhiro Yanagi
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8565, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8565, Japan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
16
|
Erkens M, Levshov D, Wenseleers W, Li H, Flavel BS, Fagan JA, Popov VN, Avramenko M, Forel S, Flahaut E, Cambré S. Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy. ACS NANO 2022; 16:16038-16053. [PMID: 36167339 PMCID: PMC9620404 DOI: 10.1021/acsnano.2c03883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The coaxial stacking of two single-wall carbon nanotubes (SWCNTs) into a double-wall carbon nanotube (DWCNT), forming a so-called one-dimensional van der Waals structure, leads to synergetic effects that dramatically affect the optical and electronic properties of both layers. In this work, we explore these effects in purified DWCNT samples by combining absorption, wavelength-dependent infrared fluorescence-excitation (PLE), and wavelength-dependent resonant Raman scattering (RRS) spectroscopy. Purified DWCNTs are obtained by careful solubilization that strictly avoids ultrasonication or by electronic-type sorting, both followed by a density gradient ultracentrifugation to remove unwanted SWCNTs that could obscure the DWCNT characterization. Chirality-dependent shifts of the radial breathing mode vibrational frequencies and transition energies of the inner and outer DWCNT walls with respect to their SWCNT analogues are determined by advanced two-dimensional fitting of RRS and PLE data of DWCNT and their reference SWCNT samples. This exhaustive data set verifies that fluorescence from the inner DWCNT walls of well-purified samples is severely quenched through efficient energy transfer from the inner to the outer DWCNT walls. Combined analysis of the PLE and RRS results further reveals that this transfer is dependent on the inner and outer wall chirality, and we identify the specific combinations dominant in our DWCNT samples. These obtained results demonstrate the necessity and value of a combined structural characterization approach including PLE and RRS spectroscopy for bulk DWCNT samples.
Collapse
Affiliation(s)
- Maksiem Erkens
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Dmitry Levshov
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Wim Wenseleers
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jeffrey A. Fagan
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, 20899 Gaithersburg, Maryland, United States
| | | | - Marina Avramenko
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Salomé Forel
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
- Laboratoire
des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Emmanuel Flahaut
- CIRIMAT,
UMR 5085, CNRS-INP-UPS, Université
Toulouse 3 Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Sofie Cambré
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| |
Collapse
|
17
|
Gao B, Lin S, Wan J, Cai H, Zhu Z. Buckling behavior of ternary one-dimensional van der Waals heterostructures. NANOTECHNOLOGY 2022; 34:015701. [PMID: 36167004 DOI: 10.1088/1361-6528/ac9531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
One-dimensional van der Waals heterostructures (1D vdWHs) may suffer from external compression when applied in field-effect, light-emitting and photovoltaic devices. Ternary 1D vdWHs were recently reported to be successfully synthesized (Xianget al2020Science367, 537). In present work, the buckling behavior of ternary 1D vdWH consisting of an inner carbon nanotube, a middle boron nitride nanotube and an outer molybdenum disulfide nanotube is extensively investigated by using molecular dynamics simulations. We find that the composite can effectively enhance the capability of axial compression of the inner nanotubes. The 1D vdWH gradually loses its stability under uniaxial compression and the critical stress of buckling decreases as the temperature increases. Slenderness ratioαof 4.8 ≤α≤ 7.2 has a slight influence on the strength and stability of ternary 1D vdWH under axial compression. To obtain a 1D vdWH with best compressive stability and strength, there is an optimal diameter existing for any specific length. Our work provides guidance for the design of 1D vdWH with desired compressive stability.
Collapse
Affiliation(s)
- Bingjie Gao
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shu Lin
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing Wan
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haifang Cai
- Science and Technology on Aerospace Chemical Power Laboratory, Xiangyang 441003, People's Republic of China
| | - Zuoquan Zhu
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou, People's Republic of China
| |
Collapse
|
18
|
Kumar A, Sood A, Han SS. Molybdenum disulfide (MoS 2)-based nanostructures for tissue engineering applications: prospects and challenges. J Mater Chem B 2022; 10:2761-2780. [PMID: 35262167 DOI: 10.1039/d2tb00131d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molybdenum disulfide (MoS2) nanostructures have recently earned substantial thoughts from the scientific communities owing to their unique physicochemical, optical and electrical properties. Although MoS2 has been mostly highlighted for its industrial applications, its biological applicability has not been extensively explored. The introduction of nanotechnology in the field of tissue engineering has significantly contributed to human welfare by displaying advancement in tissue regeneration. Assimilation of MoS2 nanostructures into the polymer matrix has been considered a persuasive material of choice for futuristic tissue engineering applications. The current review provides a general discussion on the structural properties of different MoS2 nanostructures. Further, this article focuses on the interactions of MoS2 with biological systems in terms of its cellular toxicity, and biocompatibility along with its capability for cell proliferation, adhesion, and immunomodulation. The article continues to confer the utility of MoS2 nanostructure-based scaffolds for various tissue engineering applications. The article also highlights some emerging prospects and possibilities of the applicability of MoS2-based nanostructures in large organ tissue engineering. Finally, the article concludes with a brief annotation on the challenges and limitations that need to be overcome in order to make plentiful use of this wonderful material for tissue engineering applications.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea. .,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea. .,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| |
Collapse
|
19
|
Jiang JW. One-dimensional transition metal dichalcogenide lateral heterostructures. Phys Chem Chem Phys 2021; 23:27312-27319. [PMID: 34850785 DOI: 10.1039/d1cp04850c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Forming heterostructures is a well-established technique to utilize different constituent materials to achieve novel properties like efficient light emission and high-quality electron tunneling. Recent experiments have successfully synthesized one-dimensional van der Waals heterostructures and have discovered plenty of superior properties benefiting from the dimension reduction. Inspired by the success of the van der Waals counterparts, we propose a one-dimensional lateral heterostructure based on transition metal dichalcogenide nanotubes. Molecular simulations show that the misfit strain is restricted to the radial direction due to the one-dimensional tubular confined structure, and the regular exponential distribution of the radial misfit strain can be well interpreted by a mechanics model. Besides the normal exponential distribution, there also exists an abnormal strain distribution within a narrow domain nearby the interface, in which the structure of the larger lattice constant is stretched instead of compressed by the misfit strain. The abnormal misfit strain is due to the interplay between several bending interactions and the stretching interaction. Possible experiments to synthesize this new type of heterostructure are discussed based on current experimental techniques.
Collapse
Affiliation(s)
- Jin-Wu Jiang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
20
|
Dong J, Hu H, Li H, Ouyang G. Spontaneous flexoelectricity and band engineering in MS 2 (M = Mo, W) nanotubes. Phys Chem Chem Phys 2021; 23:20574-20582. [PMID: 34505592 DOI: 10.1039/d1cp02090k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spontaneous flexoelectricity in transition metal dichalcogenide (TMD) nanotubes is critical to the design of new energy devices. However, the electronic properties adjusted by the flexoelectric effect in TMD nanotubes remain vague. In this work, we investigate the effect of flexoelectricity on band engineering in single- and double-wall MS2 (M = Mo, W) nanotubes with different diameters based on first-principles calculations and an atomic-bond-relaxation method. We find that the energy bandgap reduces and the polarization and flexoelectric voltage increase with decreasing diameter of single-wall MS2 nanotubes. The polarization charges promoted by the flexoelectric effect can lead to a straddling-to-staggered bandgap transition in the double-wall MS2 nanotubes. The critical diameters for bandgap transition are about 3.1 and 3.6 nm for double-wall MoS2 and WS2 nanotubes, respectively, which is independent of chirality. Our results provide guidance for the design of new energy devices based on spontaneous flexoelectricity.
Collapse
Affiliation(s)
- Jiansheng Dong
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Huamin Hu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Hai Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| | - Gang Ouyang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
21
|
One-dimensional van der Waals heterostructures: Growth mechanism and handedness correlation revealed by nondestructive TEM. Proc Natl Acad Sci U S A 2021; 118:2107295118. [PMID: 34508003 PMCID: PMC8449348 DOI: 10.1073/pnas.2107295118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO2 TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.
Collapse
|
22
|
Cambré S, Liu M, Levshov D, Otsuka K, Maruyama S, Xiang R. Nanotube-Based 1D Heterostructures Coupled by van der Waals Forces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102585. [PMID: 34355517 DOI: 10.1002/smll.202102585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/19/2021] [Indexed: 06/13/2023]
Abstract
1D van der Waals heterostructures based on carbon nanotube templates are raising a lot of excitement due to the possibility of creating new optical and electronic properties, by either confining molecules inside their hollow core or by adding layers on the outside of the nanotube. In contrast to their 2D analogs, where the number of layers, atomic type and relative orientation of the constituting layers are the main parameters defining physical properties, 1D heterostructures provide an additional degree of freedom, i.e., their specific diameter and chiral structure, for engineering their characteristics. The current state-of-the-art in synthesizing 1D heterostructures are discussed here, in particular focusing on their resulting optical properties, and details the vast parameter space that can be used to design heterostructures with custom-built properties that can be integrated into a large variety of applications. First, the effects of van der Waals coupling on the properties of the simplest and best-studied 1D heterostructure, namely a double-walled carbon nanotube, are described, and then heterostructures built from the inside and the outside are considered, which all use a nanotube as a template, and, finally, an outlook is provided for the future of this research field.
Collapse
Affiliation(s)
- Sofie Cambré
- Nanostructured and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Dmitry Levshov
- Nanostructured and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, Antwerp 2610, Belgium
| | - Keigo Otsuka
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|