1
|
Liu F, Geng J, Zhang W, Dou J, Guo Q, Duan J, Tang Q. A multifunctional phenylphosphinamide additive for stable flexible inverted perovskite solar cells. Chem Commun (Camb) 2024; 60:11335-11338. [PMID: 39300948 DOI: 10.1039/d4cc03491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The multifunctional phenylphosphinamide additive is used in flexible inverted perovskite solar cells to release tensile strain and increase the toughness of the perovskite film, achieving enhanced device efficiency and stability.
Collapse
Affiliation(s)
- Feihu Liu
- Institute of Carton Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Jidong Geng
- Institute of Carton Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Wei Zhang
- Institute of Carton Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Jie Dou
- Institute of Carton Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Qiyao Guo
- Institute of Carton Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Jialong Duan
- Institute of Carton Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| | - Qunwei Tang
- Institute of Carton Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China.
| |
Collapse
|
2
|
Sun Y, Huang C, Liu Y, Zhao X, Cai K. Poly(3,4-ethylenedioxythiophene)-Coated Vanadium-Doped MnO 2 Nanorods for High-Performance Flexible Aqueous Zinc-Ion Battery Cathode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52373-52382. [PMID: 39289173 DOI: 10.1021/acsami.4c10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Manganese-based aqueous zinc-ion batteries (AZIBs) are considered promising cathode materials for large-scale energy storage applications due to their low cost and high safety. However, the primary constraints on achieving high specific capacity and cycling stability are the inherent low conductivity and suboptimal structural stability of the AZIB cathodes. Herein, we report a high-performance poly(3,4-ethylenedioxythiophene) (PEDOT)-coated vanadium-doped MnO2 nanorod (NR) electrode for AZIBs. First, vanadium-doped MnO2 (V-MnO2) NRs were synthesized by a simple hydrothermal synthesis method. The V-MnO2 NRs were further encapsulated with a nanolayer of PEDOT through an in situ polymerization process, which was subsequently treated with sulfuric acid to achieve a smooth surface. The V doping creates oxygen vacancies within the MnO2, allowing for the rapid embedding and diffusion of Zn2+. The PEDOT nanolayer greatly enhances the conductivity and structural stability of the V-MnO2. Benefiting from the unique features, an optimal composite NRs electrode exhibits a high specific capacity of 250 mAh g-1 at 0.4 A g-1, a high energy density (388 Wh kg-1 at 151 W kg-1), and excellent stability over 5000 cycles at 3 A g-1. In addition, the flexible pouch cell assembled with the electrode shows good stability under bending. Given the positive outcomes, the material holds great potential for use as a cathode in next-generation flexible energy storage systems.
Collapse
Affiliation(s)
- Yuning Sun
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Changjun Huang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yuexin Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xiaoli Zhao
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Kefeng Cai
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
3
|
Zhao J, Yu H, Yang R, Tan F, Zhou Z, Yan W, Zhang Q, Mei L, Zhou J, Tan C, Zeng Z. Customization of Manganese Oxide Cathodes via Precise Electrochemical Lithium-Ion Intercalation for Diverse Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401258. [PMID: 38794878 DOI: 10.1002/smll.202401258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Manganese oxide-based aqueous zinc-ion batteries (ZIBs) are attractive energy storage devices, owing to their good safety, low cost, and ecofriendly features. However, various critical issues, including poor conductivity, sluggish reaction kinetics, and unstable structure still restrict their further development. Oxygen defect engineering is an effective strategy to improve the electrochemical performance of manganese oxides, but challenging in the accurate regulation of oxygen defects. In this work, an effective and controllable defect engineering strategy-controllable electrochemical lithium-ion intercalation - is proposed to tackle this issue. The incorporation of lithium ions and oxygen defects can promote the conductivity, lattice spacing, and structural stability of Mn2O3 (MO), thus improving its capacity (232.7 mAh g-1), rate performance, and long-term cycling stability (99.0% capacity retention after 3000 cycles). Interestingly, the optimal ratio of intercalated lithium-ion varies at different temperature or mass-loading of MO, which provides the possibility to customize diverse ZIBs to meet different application conditions. In addition, the fabricated ZIBs present good flexibility, superior safety, and admirable adaptability under extreme temperatures (-20-100 °C). This work provides an inspiration on the structural customization of metal oxide nanomaterials for diverse ZIBs, and sheds light on the construction of future portable electronics.
Collapse
Affiliation(s)
- Jiangqi Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Haojie Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Feipeng Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Weibin Yan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingyong Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Liang Mei
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
4
|
Saifi S, Xiao X, Cheng S, Guo H, Zhang J, Müller-Buschbaum P, Zhou G, Xu X, Cheng HM. An ultraflexible energy harvesting-storage system for wearable applications. Nat Commun 2024; 15:6546. [PMID: 39095398 PMCID: PMC11297324 DOI: 10.1038/s41467-024-50894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The swift progress in wearable technology has accentuated the need for flexible power systems. Such systems are anticipated to exhibit high efficiency, robust durability, consistent power output, and the potential for effortless integration. Integrating ultraflexible energy harvesters and energy storage devices to form an autonomous, efficient, and mechanically compliant power system remains a significant challenge. In this work, we report a 90 µm-thick energy harvesting and storage system (FEHSS) consisting of high-performance organic photovoltaics and zinc-ion batteries within an ultraflexible configuration. With a power conversion efficiency surpassing 16%, power output exceeding 10 mW cm-2, and an energy density beyond 5.82 mWh cm-2, the FEHSS can be tailored to meet the power demands of wearable sensors and gadgets. Without cumbersome and rigid components, FEHSS shows immense potential as a versatile power source to advance wearable electronics and contribute toward a sustainable future.
Collapse
Affiliation(s)
- Sakeena Saifi
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Xiao Xiao
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Simin Cheng
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Haotian Guo
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Jinsheng Zhang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748, Garching, Germany
| | - Guangmin Zhou
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Xiaomin Xu
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
5
|
Xiao BH, Xiao K, Li JX, Xiao CF, Cao S, Liu ZQ. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem Sci 2024; 15:11229-11266. [PMID: 39055032 PMCID: PMC11268522 DOI: 10.1039/d4sc02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Given the escalating demand for wearable electronics, there is an urgent need to explore cost-effective and environmentally friendly flexible energy storage devices with exceptional electrochemical properties. However, the existing types of flexible energy storage devices encounter challenges in effectively integrating mechanical and electrochemical performances. This review is intended to provide strategies for the design of components in flexible energy storage devices (electrode materials, gel electrolytes, and separators) with the aim of developing energy storage systems with excellent performance and deformability. Firstly, a concise overview is provided on the structural characteristics and properties of carbon-based materials and conductive polymer materials utilized in flexible energy storage devices. Secondly, the fabrication process and strategies for optimizing their structures are summarized. Subsequently, a comprehensive review is presented regarding the applications of carbon-based materials and conductive polymer materials in various fields of flexible energy storage, such as supercapacitors, lithium-ion batteries, and zinc-ion batteries. Finally, the challenges and future directions for next-generation flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Bo-Hao Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Can-Fei Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Shunsheng Cao
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
6
|
Deng L, Sun K, Liu J, Li Z, Cao J, Liao S. High Performance Aqueous Zinc-Ion Batteries Developed by PANI Intercalation Strategy and Separator Engineering. Molecules 2024; 29:3147. [PMID: 38999098 PMCID: PMC11243406 DOI: 10.3390/molecules29133147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Aqueous zinc-ion batteries (ZIBs) have attracted burgeoning attention and emerged as prospective alternatives for scalable energy storage applications due to their unique merits such as high volumetric capacity, low cost, environmentally friendly, and reliable safety. Nevertheless, current ZIBs still suffer from some thorny issues, including low intrinsic electron conductivity, poor reversibility, zinc anode dendrites, and side reactions. Herein, conductive polyaniline (PANI) is intercalated as a pillar into the hydrated V2O5 (PAVO) to stabilize the structure of the cathode material. Meanwhile, graphene oxide (GO) was modified onto the glass fiber (GF) membrane through simple electrospinning and laser reduction methods to inhibit dendrite growth. As a result, the prepared cells present excellent electrochemical performance with enhanced specific capacity (362 mAh g-1 at 0.1 A g-1), significant rate capability (280 mAh g-1 at 10 A g-1), and admirable cycling stability (74% capacity retention after 4800 cycles at 5 A g-1). These findings provide key insights into the development of high-performance zinc-ion batteries.
Collapse
Affiliation(s)
- Ling Deng
- School of Physics and Optoelectronics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- School of Energy, Mechanical and Electrical Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Kailing Sun
- School of Physics and Optoelectronics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Jie Liu
- School of Physics and Optoelectronics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Zeyang Li
- School of Physics and Optoelectronics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Juexian Cao
- School of Physics and Optoelectronics & Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
| | - Shijun Liao
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Yadav A, Saini A, Bag M. Air-Processed All-Inorganic Halide Perovskites Integrated Photorechargeable Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32232-32239. [PMID: 38865562 DOI: 10.1021/acsami.4c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Due to their easy integration for self-powered operation, integrated energy harvesting and storage could be the game changer in smart, flexible, and portable electronic devices. Three-electrode integration is the most promising approach among all possible configurations because it is less complex and compatible with most techniques. Although the photoconversion efficiency has increased above 20% due to the integration of high-performance perovskite solar cells, the electrochemical storage efficiency (efficacy of the integration) is much below 80% due to a significant potential drop and impedance mismatch. In this context, we introduced perovskite-based solid-state thin film supercapacitors integrated with stable, air-processed perovskite solar cells for an uninterrupted power supply. Our measurement shows that the best performance can be achieved by optimizing several parameters, including series-connected solar cells, light intensity, and photovoltaic active area. The critical challenge with these integrated systems is to maintain a uniform charging current of the supercapacitors throughout the charging cycle while minimizing self-discharging. We achieved an electrochemical storage efficiency of ∼87% at an overpotential of 0.8 V. The overpotential can be as low as 2 mV. We fabricated fully solution-processed series-connected solar cells to integrate with stacked supercapacitors to improve the operating voltage beyond 2.1 V. The photocharging and dark discharging of these integrated devices have been tested over 200 cycles, and a negligible drop in efficiency has been observed. Our detailed energy conversion and storage analysis in these systems unveils the mechanism and losses due to three-terminal integration.
Collapse
Affiliation(s)
- Ankur Yadav
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, IIT Roorkee, Roorkee 247667, India
| | - Ankush Saini
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, IIT Roorkee, Roorkee 247667, India
| | - Monojit Bag
- Advanced Research in Electrochemical Impedance Spectroscopy Laboratory, IIT Roorkee, Roorkee 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
8
|
Hu X, Liao Y, Wu M, Zheng W, Long M, Chen L. Mesoporous copper-doped δ-MnO 2 superstructures to enable high-performance aqueous zinc-ion batteries. J Colloid Interface Sci 2024; 674:297-305. [PMID: 38936086 DOI: 10.1016/j.jcis.2024.06.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the key to storing Zn2+. Manganese-based cathode materials have attracted considerable attention because of their abundance, low toxicity, low cost, and abundant valence states (Mn2+, Mn3+, Mn4+, and Mn7+). However, as a typical cathode material, birnessite-MnO2 (δ-MnO2) has low conductivity and structural instability. The crystal structure may undergo severe distortion, disorder, and structural damage, leading to severe cyclic instability. In addition, its energy-storage mechanism is still unclear, and most of the reported manganese oxide-based materials do not have excellent electrochemical performance. Herein, we propose a copper-doped Cu0.05K0.11Mn0.84O2·0.54H2O (Cu2-KMO) cathode, which exhibits a large interlayer spacing, a stable structure, and accelerated reaction kinetics. This cathode was prepared using a simple hydrothermal method. The AZIB assembled using Cu2-KMO showed high specific capacity (600 mA h g-1 at 0.1 A g-1 after 75 cycles). The dissolution-deposition energy storage mechanism of Cu-KMO in AZIBs with double electron transfer was revealed using ex situ tests. The good electrochemical performance of the Cu2-KMO cathode fabricated by the doping strategy in this study provides ideas for the subsequent preparation of manganese dioxide using other strategies.
Collapse
Affiliation(s)
- Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Mujun Long
- Laboratory of Materials and Metallurgy, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
9
|
Shao B, Chen Z, Su H, Peng S, Song M. The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications. Int J Mol Sci 2024; 25:6152. [PMID: 38892343 PMCID: PMC11172637 DOI: 10.3390/ijms25116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro-nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development.
Collapse
Affiliation(s)
- Bingqian Shao
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Zhitao Chen
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Hengzhe Su
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Shuzhe Peng
- School of Applied Science and Technology, Hainan University, Haikou 570228, China; (B.S.); (Z.C.); (H.S.); (S.P.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Wen X, Zhong Y, Chen S, Yang Z, Dong P, Wang Y, Zhang L, Wang Z, Jiang Y, Zhou G, Liu J, Gao J. 3D Hierarchical Sunflower-Shaped MoS 2/SnO 2 Photocathodes for Photo-Rechargeable Zinc Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309555. [PMID: 38502881 DOI: 10.1002/advs.202309555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Photo-rechargeable zinc-ion batteries (PRZIBs) have attracted much attention in the field of energy storage due to their high safety and dexterity compared with currently integrated lithium-ion batteries and solar cells. However, challenges remain toward their practical applications, originating from the unsatisfactory structural design of photocathodes, which results in low photoelectric conversion efficiency (PCE). Herein, a flexible MoS2/SnO2-based photocathode is developed via constructing a sunflower-shaped light-trapping nanostructure with 3D hierarchical and self-supporting properties, enabled by the hierarchical embellishment of MoS2 nanosheets and SnO2 quantum dots on carbon cloth (MoS2/SnO2 QDs@CC). This structural design provides a favorable pathway for the effective separation of photogenerated electron-hole pairs and the efficient storage of Zn2+ on photocathodes. Consequently, the PRZIB assembled with MoS2/SnO2 QDs@CC delivers a desirable capacity of 366 mAh g-1 under a light intensity of 100 mW cm-2, and achieves an ultra-high PCE of 2.7% at a current density of 0.125 mA cm-2. In practice, an integrated battery system consisting of four series-connected quasi-solid-state PRZIBs is successfully applied as a wearable wristband of smartwatches, which opens a new door for the application of PRZIBs in next-generation flexible energy storage devices.
Collapse
Affiliation(s)
- Xinyang Wen
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yaotang Zhong
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Shuai Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Zhengchi Yang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Pengyu Dong
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yuqi Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Zhen Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yue Jiang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Junming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinwei Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Centre for Advanced Optoelectronics, School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
11
|
Tang B, Wei Y, Jia R, Zhang F, Tang Y. Rational Design of High-Loading Electrodes with Superior Performances Toward Practical Application for Energy Storage Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308126. [PMID: 38009584 DOI: 10.1002/smll.202308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
High-loading electrodes play a crucial role in designing practical high-energy batteries as they reduce the proportion of non-active materials, such as current separators, collectors, and battery packaging components. This design approach not only enhances battery performance but also facilitates faster processing and assembly, ultimately leading to reduced production costs. Despite the existing strategies to improve rechargeable battery performance, which mainly focus on novel electrode materials and high-performance electrolyte, most reported high electrochemical performances are achieved with low loading of active materials (<2 mg cm-2). Such low loading, however, fails to meet application requirements. Moreover, when attempting to scale up the loading of active materials, significant challenges are identified, including sluggish ion diffusion and electron conduction kinetics, volume expansion, high reaction barriers, and limitations associated with conventional electrode preparation processes. Unfortunately, these issues are often overlooked. In this review, the mechanisms responsible for the decay in the electrochemical performance of high-loading electrodes are thoroughly discussed. Additionally, efficient solutions, such as doping and structural design, are summarized to address these challenges. Drawing from the current achievements, this review proposes future directions for development and identifies technological challenges that must be tackled to facilitate the commercialization of high-energy-density rechargeable batteries.
Collapse
Affiliation(s)
- Bin Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yike Wei
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Rui Jia
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Fan Zhang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Wang Z, Xue R, Zhang H, Zhang Y, Tang X, Wang H, Shao A, Ma Y. A Hydrogel Electrolyte toward a Flexible Zinc-Ion Battery and Multifunctional Health Monitoring Electronics. ACS NANO 2024; 18:7596-7609. [PMID: 38415583 DOI: 10.1021/acsnano.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The compact design of an environmentally adaptive battery and effectors forms the foundation for wearable electronics capable of time-resolved, long-term signal monitoring. Herein, we present a one-body strategy that utilizes a hydrogel as the ionic conductive medium for both flexible aqueous zinc-ion batteries and wearable strain sensors. The poly(vinyl alcohol) hydrogel network incorporates nano-SiO2 and cellulose nanofibers (referred to as PSC) in an ethylene glycol/water mixed solvent, balancing the mechanical properties (tensile strength of 6 MPa) and ionic diffusivity at -20 °C (2 orders of magnitude higher than 2 M ZnCl2 electrolyte). Meanwhile, cathode lattice breathing during the solvated Zn2+ intercalation and dendritic Zn protrusion at the anode interface are mitigated. Besides the robust cyclability of the Zn∥PSC∥V2O5 prototype within a wide temperature range (from -20 to 80 °C), this microdevice seamlessly integrates a zinc-ion battery with a strain sensor, enabling precise monitoring of the muscle response during dynamic body movement. By employing transmission-mode operando XRD, the self-powered sensor accurately documents the real-time phasic evolution of the layered cathode and synchronized strain change induced by Zn deposition, which presents a feasible solution of health monitoring by the miniaturized electronics.
Collapse
Affiliation(s)
- Zhiqiao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Rongrong Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huiqing Zhang
- Training Center for Engineering Practices, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Yichi Zhang
- Queen Mary University of London Engineering School, NPU, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Xiaoyu Tang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Helin Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Ahu Shao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Yue Ma
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
13
|
Wang Y, Deng Y, Liu J, Zhang B, Chen Q, Cheng C. Three-dimensional Ordered Macroporous Flexible Electrode Design toward High-Performance Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38415652 DOI: 10.1021/acsami.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Flexible zinc-ion batteries (ZIBs) have been considered to have huge potential in portable and wearable electronics due to their high safety, cost efficiency, and considerable energy density. Therein, the design and construction of flexible electrodes significantly determine the performance and lifespan of flexible battery devices. In this work, an ultrathin flexible three-dimensional ordered macroporous (3DOM) Sn@Zn anode (60 μm in thickness) is presented to relieve dendrite growth and expand the lifespan of flexible ZIBs. The 3DOM structure can ensure uniform electric field distribution, guide oriented zinc plating/stripping, and extend the lifespan of anodes. The rich zincophilic Sn sites on the electrode surface significantly facilitate Zn nucleation. Accordingly, a lowered nucleation overpotential of 8.9 mV and an ultralong cycling performance of 2400 h at 0.1 mA cm-2 and 0.1 mAh cm-2 are achieved in symmetric cells, and the 3DOM Sn@Zn anode can also operate in deep cycling for over 200 h at 10 mA cm-2 and 5 mAh cm-2. A flexible 3DOM MnO2/Ni cathode with a high structural stability and a high mass-specific capacity is fabricated to match with the anode to form a flexible ZIB with a total thickness of 200 μm. The flexible device delivers a high volumetric energy density of 11.76 mWh cm-3 at 100 mA gMnO2-1 and a high average open-circuit voltage of 1.5 V and exhibits high-performance power supply under deformation in practical application scenarios. This work may shed some light on the design and fabrication of flexible energy-storage devices.
Collapse
Affiliation(s)
- Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yan Deng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ji'ao Liu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Boyi Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Qi Chen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
14
|
Fan Q, Xiao Q, Zhang H, Heng J, Xie M, Wei Z, Jia X, Liu X, Kang Z, Li CZ, Li S, Zhang T, Zhou Y, Huang J, Li Z. Highly Efficient and Stable ITO-Free Organic Solar Cells Based on Squaraine N-Doped Quaternary Bulk Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307920. [PMID: 37823840 DOI: 10.1002/adma.202307920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Simultaneously achieving high efficiency and robust device stability remains a significant challenge for organic solar cells (OSCs). Solving this challenge is highly dependent on the film morphology of the bulk heterojunction (BHJ) photoactive blends; however, there is a lack of rational control strategy. Herein, it is shown that the molecular crystallinity and nanomorphology of nonfullerene-based BHJ can be effectively controlled by a squaraine-based doping strategy, leading to an increase in device efficiency from 17.26% to 18.5% when doping 2 wt% squaraine into the PBDB-TF:BTP-eC9:PC71 BM ternary BHJ. The efficiency is further improved to 19.11% (certified 19.06%) using an indium-tin-oxide-free column-patterned microcavity (CPM) architecture. Combined with interfacial modification, CPM quaternary OSC excitingly shows an extrapolated lifetime of ≈23 years based on accelerated aging test, with the mechanism behind enhanced stability well studied. Furthermore, a flexible OSC module with a high and stable efficiency of 15.2% and an overall area of 5 cm2 is successfully fabricated, exhibiting a high average output power for wearable electronics. This work demonstrates that OSCs with new design of BHJ and device architecture are highly promising to be practical relevance with excellent performance and stability.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qi Xiao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hanqing Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jinzi Heng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Meiling Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zihao Wei
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaowei Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaodong Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhangli Kang
- National Institute of Measurement and Testing Technology, Chengdu, Sichuan, 610021, China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shibin Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Ting Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yu Zhou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Jiang Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Guangdong, 523808, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Yang G, Yang W, Gu H, Fu Y, Wang B, Cai H, Xia J, Zhang N, Liang C, Xing G, Yang S, Chen Y, Huang W. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300383. [PMID: 36906920 DOI: 10.1002/adma.202300383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Metal halide hybrid perovskite solar cells (PSCs) have received considerable attention over the past decade owing to their potential for low-cost, solution-processable, earth-abundant, and high-performance superiority, increasing power conversion efficiencies of up to 25.7%. Solar energy conversion into electricity is highly efficient and sustainable, but direct utilization, storage, and poor energy diversity are difficult to achieve, resulting in a potential waste of resources. Considering its convenience and feasibility, converting solar energy into chemical fuels is regarded as a promising pathway for boosting energy diversity and expanding its utilization. In addition, the energy conversion-storage integrated system can efficiently sequentially capture, convert, and store energy in electrochemical energy storage devices. However, a comprehensive overview focusing on PSC-self-driven integrated devices with a discussion of their development and limitations remains lacking. Here, focus is on the development of representative configurations of emerging PSC-based photo-electrochemical devices including self-charging power packs, unassisted solar water splitting/CO2 reduction. The advanced progresses in this field, including configuration design, key parameters, working principles, integration strategies, electrode materials, and their performance evaluations are also summarized. Finally, scientific challenges and future perspectives for ongoing research in this field are presented.
Collapse
Affiliation(s)
- Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Nan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330000, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710000, P. R. China
| |
Collapse
|
16
|
Weng S, Chu W, Zhu H, Li J, Dong R, Niu R, Yang J, Zhang C, Li Z, Yang L. Near-Neighbor Electron Orbital Coupling Effect of Single-Atomic-Layer Au Cluster Intercalated Bilayer 2H-TaS 2 for Surface Enhanced Raman Scattering Sensing. J Phys Chem Lett 2023; 14:8477-8484. [PMID: 37721451 DOI: 10.1021/acs.jpclett.3c02225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
It is difficult to perfectly analyze the enhancement mechanism of two-dimensional (2D) materials and their combination with precious metals as surface enhanced Raman scattering (SERS) substrates using chemical enhancement mechanisms. Here, we propose a new mentality based on the coupling effect of neighboring electron orbitals to elucidate the electromagnetic field enhancement mechanism of single-atom-layer Au clusters embedded in double-layer 2H-TaS2 for SRES sensing. The insertion of Au atoms into the 2H-TaS2 interlayer was verified by XRD, AFM, and HRTEM, and a SERS signal enhancement of 2 orders of magnitude was obtained compared to the pure 2H-TaS2. XPS and micro-UV/vis-NIR spectra indicate that the outer electrons of neighboring Au and 2H-TaS2 overlap and migrate from Au to 2H-TaS2. First-principles calculations suggest strong electronic coupling between Au and 2H-TaS2. This study offers insights into SERS enhancement in nonprecious metal compounds and guides the development of new SERS substrates.
Collapse
Affiliation(s)
- Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenjun Chu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Huaze Zhu
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Yang
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
17
|
Cao J, Zhang D, Chanajaree R, Yue Y, Zhang X, Yang X, Cheng C, Li S, Qin J, Zhou J, Zeng Z. Highly Reversible Zn Metal Anode with Low Voltage Hysteresis Enabled by Tannic Acid Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45045-45054. [PMID: 37708461 DOI: 10.1021/acsami.3c10773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The zinc dendrites and side reactions formed on the zinc anode have greatly hindered the development of aqueous zinc-ion batteries (ZIBs). Herein, we introduce tannic acid (TA) as an additive in the ZnSO4 (ZSO) electrolyte to enhance the reversible Zn plating/stripping behavior. TA molecules are found to adsorb onto the zinc surface, forming a passivation layer and replacing some of the H2O molecules in the Zn2+ solvation sheath to form the [Zn(H2O)6-xTAx]2+ complex; this process effectively prevents side reactions. Moreover, the lower desolvation energy barrier of the [Zn(H2O)6-xTAx]2+ structure facilitates uniform Zn metal deposition and enables a stable plating/stripping lifespan of 2500 h with low voltage hysteresis (53 mV at 0.5 mA cm-2) as compared to the ZSO electrolyte (167 h and 104 mV). Additionally, the incorporation of the MnO2 cathode in the TA + ZSO electrolyte shows improved cycling capacity retention, from 64% (ZSO) to 85% (TA + ZSO), after 250 cycles at 1 A g-1, demonstrating the effectiveness of the TA additive in enhancing the performance of ZIBs.
Collapse
Affiliation(s)
- Jin Cao
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Dongdong Zhang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Rungroj Chanajaree
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yilei Yue
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Xinyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Xuelin Yang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University Changsha, Hunan 410083, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
18
|
Xia H, Xu G, Cao X, Miao C, Zhang H, Chen P, Zhou Y, Zhang W, Sun Z. Single-Ion-Conducting Hydrogel Electrolytes Based on Slide-Ring Pseudo-Polyrotaxane for Ultralong-Cycling Flexible Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301996. [PMID: 37339158 DOI: 10.1002/adma.202301996] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Flexible zinc-ion batteries (ZIBs) with high capacity and long cycle stability are essential for wearable electronic devices. Hydrogel electrolytes have been developed to provide ion-transfer channels while maintaining the integrity of ZIBs under mechanical strain. However, hydrogel matrices are typically swollen with aqueous salt solutions to increase ionic conductivity, which can hinder intimate contact with electrodes and reduce mechanical properties. To address this, a single-Zn-ion-conducting hydrogel electrolyte (SIHE) is developed by integrating polyacrylamide network and pseudo-polyrotaxane structure. The SIHE exhibits a high Zn2+ transference number of 0.923 and a high ionic conductivity of 22.4 mS cm-1 at room temperature. Symmetric batteries with SIHE demonstrate stable Zn plating/stripping performance for over 160 h, with a homogenous and smooth Zn deposition layer. Full cells with La-V2 O5 cathodes exhibit a high capacity of 439 mA h g-1 at 0.1 A g-1 and excellent capacity retention of 90.2% after 3500 cycles at 5 A g-1 . Moreover, the flexible ZIBs display stable electrochemical performance under harsh conditions, such as bending, cutting, puncturing, and soaking. This work provides a simple design strategy for single-ion-conducting hydrogel electrolytes, which could pave the way for long-life aqueous batteries.
Collapse
Affiliation(s)
- Huan Xia
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Xin Cao
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Chunyang Miao
- Jiangsu National Synergetic Innovation Center for Advanced Materials Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Hanning Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Pengyu Chen
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Zhou
- State Key Laboratory of High Performance Civil Engineering Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - ZhengMing Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
19
|
Liu S, Chen H, Fan L, Zhang X. Highly Robust {In 2}-Organic Framework for Efficiently Catalyzing CO 2 Cycloaddition and Knoevenagel Condensation. Inorg Chem 2023; 62:3562-3572. [PMID: 36791403 DOI: 10.1021/acs.inorgchem.2c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To improve the catalytic performance of metal-organic frameworks (MOFs), creating higher defects is now considered as the most effective strategy, which can not only optimize the Lewis acidity of metal ions but also create more pore space to enhance diffusion and mass transfer in the channels. Herein, the exquisite combination of scarcely reported [In2(CO2)5(H2O)2(DMF)2] clusters and 2,6-bis(2,4-dicarboxylphenyl)-4-(4-carboxylphenyl)pyridine (H5BDCP) under solvothermal conditions generated a highly robust nanoporous framework of {[In2(BDCP)(DMF)2(H2O)2](NO3)}n (NUC-65) with nanocaged voids (14.1 Å) and rectangular nanochannels (15.94 Å × 11.77 Å) along the a axis. It is worth mentioning that an In(1) ion displays extremely low tetra-coordination modes after the thermal removal of its associated four solvent molecules of H2O and DMF. Activated {[In2(BDCP)](Br)}n (NUC-65Br), as a defective material because of its extremely unsaturated metal centers, could be generated by bromine ion exchange, solvent exchange, and vacuum drying. Catalytic experiments proved that the conversion of epichlorohydrin with 1 atm CO2 into 4-(chloromethyl)-1,3-dioxolan-2-one catalyzed by 0.11 mol % NUC-65Br could reach 99% at 65 °C within 24 h. Moreover, with the aid of 5 mol % cocatalyst n-Bu4NBr, heterogeneous NUC-65Br owns excellent universal catalytic performance in most epoxides under mild conditions. In addition, NUC-65Br, as a heterogeneous catalyst, exhibits higher activity and better selectivity for Knoevenagel condensation of aldehydes and malononitrile. Hence, this work offers a fresh insight into the design of structure defect cationic metal-organic frameworks, which can be better applied to various fields because of their promoted performance.
Collapse
Affiliation(s)
- Shurong Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongtai Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
20
|
Zheng S, Zhao W, Chen J, Zhao X, Pan Z, Yang X. 2D Materials Boost Advanced Zn Anodes: Principles, Advances, and Challenges. NANO-MICRO LETTERS 2023; 15:46. [PMID: 36752865 PMCID: PMC9908814 DOI: 10.1007/s40820-023-01021-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Aqueous zinc-ion battery (ZIB) featuring with high safety, low cost, environmentally friendly, and high energy density is one of the most promising systems for large-scale energy storage application. Despite extensive research progress made in developing high-performance cathodes, the Zn anode issues, such as Zn dendrites, corrosion, and hydrogen evolution, have been observed to shorten ZIB's lifespan seriously, thus restricting their practical application. Engineering advanced Zn anodes based on two-dimensional (2D) materials are widely investigated to address these issues. With atomic thickness, 2D materials possess ultrahigh specific surface area, much exposed active sites, superior mechanical strength and flexibility, and unique electrical properties, which confirm to be a promising alternative anode material for ZIBs. This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress. Firstly, the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced. Then, the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized. Finally, perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed.
Collapse
Affiliation(s)
- Songhe Zheng
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wanyu Zhao
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Jianping Chen
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaoli Zhao
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Zhenghui Pan
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| | - Xiaowei Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
21
|
Gao Z, Lu GG, Cao LC, Zhu ZX, Li YX, Wei FX, Ji Z, Sui YW, Qi JQ, Meng QK, Ren YJ. Rationally designed Mn 2O 3@ZnMn 2O 4/C core-shell hollow microspheres for aqueous zinc-ion batteries. Dalton Trans 2023; 52:1768-1776. [PMID: 36655798 DOI: 10.1039/d2dt03652e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Manganese-based oxides are common cathode materials for aqueous zinc ion batteries (AZIBs) because of their great capacity and high working voltage. However, the sharp decline of capacity caused by the dissolution of manganese-based cathode materials and the low-rate performance restrict their development. To address these problems, unique core-shell structured Mn2O3@ZnMn2O4/C hollow microspheres are reported as an ideal cathode material for AZIBs. Benefiting from the hollow structure, the zeolitic imidazolate framework (ZIF)-derived carbon and ZnMn2O4. Its application in AZIBs as the cathode demonstrates its satisfactory rate performance, high cycle stability, and excellent reversibility. Its high reversible capacity is remarkable, which reaches its maximum of 289.9 mA h g-1 at 200 mA g-1 and maintains a capacity of 203.5 mA h g-1 after cycling for 700 times at 1000 mA g-1. These excellent performances indicate that this material is a potential cathode material of AZIBs.
Collapse
Affiliation(s)
- Zhan Gao
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China.
| | - Guo-Ge Lu
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China.
| | - Liu-Cheng Cao
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China.
| | - Zong-Xiu Zhu
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China.
| | - Ying-Xin Li
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China.
| | - Fu-Xiang Wei
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China. .,The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou, PR China
| | - Zhe Ji
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China.
| | - Yan-Wei Sui
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China. .,The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou, PR China
| | - Ji-Qiu Qi
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China. .,The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou, PR China
| | - Qing-Kun Meng
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China. .,The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou, PR China
| | - Yao-Jian Ren
- School of Materials and Physics, China University of Mining & Technology, 1, University Road, Xuzhou, 221116, PR China. .,The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology & Equipments, China University of Mining & Technology, Xuzhou, PR China
| |
Collapse
|
22
|
Zhao J, Liu X, Liu P, Deng K, Lv X, Tian W, Wang C, Tan S, Ji J. Oxygen vacancies refilling and potassium ions intercalation of δ-manganese dioxide with high structural stability toward 2.3 V high voltage asymmetric supercapacitors. J Colloid Interface Sci 2023; 629:1039-1048. [PMID: 36209567 DOI: 10.1016/j.jcis.2022.09.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
Abstract
Oxygen vacancies occupation and coordination environment modulation of the transition-metal based electrodes are effective strategies to improve the structural stability and electrochemical performance. In this work, the 2-methylimidazole (2-MI) doped manganese dioxide (MnO2) anchored on carbon cloth (CC) is fabricated via a simple method (MI-MnO2-x/CC), where the oxygen defects on/inside the K+ doped δ-MnO2 nanosheets are in-situ created by reductive ethanol/Mn2+ and occupied by 2-MI ligands. With the pre-embedded K+ ions and abundant ligand-refilled defects, the electronic coordination structure, structural stability and electron/ion diffusion efficiency can be effectively enhanced. Therefore, the MI-MnO2-x/CC reveals a remarkable specific capacitance of 721.2 mF cm-2 with excellent cycle durability (capacitance retention of 93.4% after 10,000 cycles) under 1.3 V operation potential window. In addition, an asymmetric supercapacitor assembled by MI-MnO2-x/CC and activated mechanical exfoliated graphene oxide yields a maximum energy density of 57.0 Wh kg-1 and a highest power density of 23.0 kW kg-1 under 2.3 V. This effective oxygen defect stabilization strategy by ligands refilling can be extended to various metal oxide-based electrodes for energy storage and conversion.
Collapse
Affiliation(s)
- Jingli Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Sichuan 610041, PR China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
23
|
Gao Y, Xia L, Yin J, Gan Z, Feng X, Meng G, Cheng Y, Xu X. Unlocking the Potential of Vanadium Oxide for Ultrafast and Stable Zn 2+ Storage Through Optimized Stress Distribution: From Engineering Simulation to Elaborate Structure Design. SMALL METHODS 2022; 6:e2200999. [PMID: 36284472 DOI: 10.1002/smtd.202200999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Compared with lithium-ion batteries (LIBs), aqueous zinc batteries (AZIBs) have received extensive attention due to their safety and cost advantages in recent years. The cathode determines the electrochemical performance of AZIBs to a large extent. Vanadium-based materials exhibit excellent capacity when used as AZIB cathodes. However, unexpected structural stress is inevitably induced during cycling and high current densities, which can gradually lead to structural deterioration and capacity decay. In fact, the stress/strain distribution in nanomaterials is crucial for electrochemical performance. In this work, the optimized stress distribution of the hierarchical hollow structure is verified by the finite element simulation of COMSOL software firstly. Guided by this model, a simple solvothermal method to synthesize hierarchical hollow vanadium oxide nanospheres (VO-NSs), consisting of ≈10 nm ultrathin nanosheets and ≈500 nm hollow inner cavities, is employed. And a highly disordered structure is introduced to the VO-NSs by in situ electrochemical oxidation, which can also weaken the structural stress during Zn2+ insertion and extraction. Benefiting from this unique structure, VO-NSs exhibit high-rate and stable Zn2+ storage capability. The strategy of engineering-driven material design provides new insights into the development of AZIB cathodes.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Linghan Xia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Junyi Yin
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Zihan Gan
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Xiang Feng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Guodong Meng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Xin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
24
|
Wang Z, Wang Y, Lin Y, Bian G, Liu HY, Li X, Yin J, Zhu J. Manipulating Oxygen Vacancies by K + Doping and Controlling Mn 2+ Deposition to Boost Energy Storage in β-MnO 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47725-47736. [PMID: 36251265 DOI: 10.1021/acsami.2c13030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) have gained wide attention for their low cost, high safety, and environmental friendliness in recent years. β-MnO2, a potential cathode material for ZIBs, has been restricted by its small channels for efficient charge storage. Herein, β-MnO2 nanorods with oxygen vacancies are fabricated by a K+-doping strategy to improve the performance of ZIBs. The assembled batteries exhibit a capacity of 468 mAh g-1, a power density of 2605 W kg-1, and an energy density of 179 Wh kg-1, which outperforms most reported ZIBs. Such a performance is owing to the synergistic combination of the oxygen vacancies in β-MnO2 and concurrent deposition of ε-MnO2 from Mn2+ in the electrolyte. Furthermore, superior cycling stability with negligible capacity decay in these batteries is demonstrated over 1000 cycles at a high current of 2 A g-1. This study reveals the importance of oxygen vacancies and Mn2+ deposition effect in understanding the mechanism of charge storage in MnO2-based ZIBs.
Collapse
Affiliation(s)
- Zhao Wang
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Yurou Wang
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Gang Bian
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Hai-Yang Liu
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Xiang Li
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University, Tianjin300350, P. R. China
- National Institute for Advanced Materials, Nankai University, Tianjin300350, P. R. China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, P. R. China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin300350, P. R. China
| |
Collapse
|
25
|
Zhou Z, Li X, Hu T, Xue B, Chen H, Ma L, Liang R, Tan C. Molybdenum‐Based Nanomaterials for Photothermal Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xiangqian Li
- School of Chemical and Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Pingdingshan University Pingdingshan 467000 P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Baoli Xue
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Chaoliang Tan
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P.R. China
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P.R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P.R. China
| |
Collapse
|
26
|
Flexible self-powered integrated sensing system based on a rechargeable zinc-ion battery by using a multifunctional polyacrylamide/carboxymethyl chitosan/LiCl ionic hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Liu S, Chen H, Zhang X. Bifunctional {Pb 10K 2}–Organic Framework for High Catalytic Activity in Cycloaddition of CO 2 with Epoxides and Knoevenagel Condensation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
28
|
|
29
|
Chen H, Zhang T, Liu S, Lv H, Fan L, Zhang X. Fluorine-Functionalized NbO-Type {Cu 2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO 2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg Chem 2022; 61:11949-11958. [PMID: 35839442 DOI: 10.1021/acs.inorgchem.2c01686] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The high catalytic activity of metal-organic frameworks (MOFs) can be realized by increasing their effective active sites, which prompts us to perform the functionalization on selected linkers by introducing a strong Lewis basic group of fluorine. Herein, the exquisite combination of paddle-wheel [Cu2(CO2)4(H2O)] clusters and meticulously designed fluorine-funtionalized tetratopic 2',3'-difluoro-[p-terphenyl]-3,3″,5,5″-tetracarboxylic acid (F-H4ptta) engenders one peculiar nanocaged {Cu2}-organic framework of {[Cu2(F-ptta)(H2O)2]·5DMF·2H2O}n (NUC-54), which features two types of nanocaged voids (9.8 Å × 17.2 Å and 10.1 Å × 12.4 Å) shaped by 12 paddle-wheel [Cu2(COO)4H2O)2] secondary building units, leaving a calculated solvent-accessible void volume of 60.6%. Because of the introduction of plentifully Lewis base sites of fluorine groups, activated NUC-54a exhibits excellent catalytic performance on the cycloaddition reaction of CO2 with various epoxides under mild conditions. Moreover, to expand the catalytic scope, the deacetalization-Knoevenagel condensation reactions of benzaldehyde dimethyl acetal and malononitrile were performed using the heterogenous catalyst of NUC-54a. Also, NUC-54a features high recyclability and catalytic stability with excellent catalytic performance in subsequent catalytic tests. Therefore, this work not only puts forward a new solution for developing high-efficiency heterogeneous catalysts, but also enriches the functionalization strategies for nanoporous MOFs.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tao Zhang
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, People's Republic of China
| | - Shurong Liu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
30
|
Ultrasmall Mn3O4 nanocrystalline@three-dimensional macroporous honeycomb-like hollow carbon matrix for high-rate and long-lifetime zinc-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Liu F, Zou Y, Wang H, Wang Z, Zhang M, Wu W, Du D, Zhao W, Zhao T, Liu Y, Yao N, Ma Y. Boosting Li-Ion Diffusion Kinetics of Na 2Ti 6-xMo xO 13 via Coherent Dimensional Engineering and Lattice Tailoring: An Alternative High-Rate Anode. ACS NANO 2022; 16:9117-9129. [PMID: 35593703 DOI: 10.1021/acsnano.2c01200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Featured with an exposed active facet, favorable ion diffusion pathway, and tailorable interfacial properties, low-dimensional structures are extensively explored as alternative electroactive materials with game-changing redox properties. Through a stepwise "proton exchange-insertion-exfoliation" procedure, in this article, we develop Na2Ti6-xMoxO13 (NTMO) nanosheets with weakened out-of-plane bonding and in-plane Mo6+ doping of the tunnel structure. Real-time phase tracking of the laminated NTMO structures upon the lithiation/delithiation process suggests mitigated lattice variation; meanwhile, the kinetics simulation shows a mitigated Li-ion diffusion barrier along the [010] orientation. At an industrial-level areal capacity loading (2.5 mAh cm-2), the NTMO electrode maintains robust cycling endurance (91% capacity retention for 2000 cycles) even at 40 C, as well as the high energy/power densities in the as-constructed NTMO||LiFePO4 full cell prototype. The dimensional and lattice modifications presented in this study thus encourage further exploration of the tailored cation diffusion pathway for the construction of fast-charging batteries.
Collapse
Affiliation(s)
- Fu Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yiming Zou
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, School of Science, Xi'an University of Technology, Xi' an 710048, P. R. China
| | - Helin Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhiqiao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Min Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Weiwei Wu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Dou Du
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wenyu Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ting Zhao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yujie Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ning Yao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yue Ma
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
32
|
Zhang L, Shi H, Tan X, Jiang Z, Wang P, Qin J. Ten-Gram-Scale Mechanochemical Synthesis of Ternary Lanthanum Coordination Polymers for Antibacterial and Antitumor Activities. Front Chem 2022; 10:898324. [PMID: 35774860 PMCID: PMC9237552 DOI: 10.3389/fchem.2022.898324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
As rare-earth coordination polymers (CPs) have appreciable antimicrobial properties, ternary lanthanum CPs have been widely synthesized and investigated in recent years. Here, we report convenient, solvent-free reactions between the lanthanum salt and two ligands at mild temperatures that form ternary lanthanum nanoscale CPs with 10-gram-scale. The structural features and morphologies were characterized using a scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), ultraviolet-visible (UV–Vis), X-ray diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), Brunauer–Emmett–Teller (BET), elemental analysis, inductively coupled plasma mass spectrometry (ICP-MS), electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR), dynamic light scattering (DLS) and analyzer, and thermogravimetric and differential thermal analyzer (TG-DTA). Furthermore, the in vitro antibacterial activities of these ternary hybrids were studied using the zone of inhibition (ZOI) method, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and transmission electron microscope (TEM) and were found to have excellent antibacterial properties. The in vitro antitumor activities were performed in determining the absorbance values by CCK-8 (Cell Counting Kit-8) assay. This facile synthetic method would potentially enable the mass production of ternary lanthanum CPs at room temperature, which can be promising candidates as antibacterial compounds and antitumor agents.
Collapse
Affiliation(s)
- Liying Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Haoran Shi
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenqi Jiang
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- *Correspondence: Zhenqi Jiang, ; Ping Wang, ; Jieling Qin,
| | - Ping Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhenqi Jiang, ; Ping Wang, ; Jieling Qin,
| | - Jieling Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhenqi Jiang, ; Ping Wang, ; Jieling Qin,
| |
Collapse
|
33
|
Zhou Z, Wang Y, Peng F, Meng F, Zha J, Ma L, Du Y, Peng N, Ma L, Zhang Q, Gu L, Yin W, Gu Z, Tan C. Intercalation-Activated Layered MoO 3 Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy. Angew Chem Int Ed Engl 2022; 61:e202115939. [PMID: 35080098 DOI: 10.1002/anie.202115939] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/08/2023]
Abstract
The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2 O to obtain the short Na+ /H2 O co-intercalated MoO3-x (NH-MoO3-x ) nanobelts. In contrast to the inert MoO3 nanobelts, the NH-MoO3-x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH-MoO3-x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.,People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
| | - Yanlong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, P. R. China
| | - Feng Peng
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton, Upton, NY 11973, USA
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton, Upton, NY 11973, USA
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
34
|
Liu G, Zhao Y, Li J, Zhang T, Yang M, Guo D, Wu N, Wu K, Liu X. Hierarchical N/O co-doped hard carbon derived from waste saccharomyces cerevisiae for lithium storage. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
|
36
|
Cao J, Zhang D, Yue Y, Pakornchote T, Bovornratanaraks T, Zhang X, Zeng Z, Qin J, Huang Y. Boosting Zn 2+ Diffusion via Tunnel-Type Hydrogen Vanadium Bronze for High-Performance Zinc Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7909-7916. [PMID: 35103464 DOI: 10.1021/acsami.1c21581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aqueous zinc ion batteries (ZIBs) are emerging as a promising candidate in the post-lithium ion battery era, while the limited choice of cathode materials plagues their further development, especially the tunnel-type cathode materials with high electrochemical performance. Here, a tunnel-type vanadium-based compound based on hydrogen vanadium bronze (HxV2O5) microspheres has been fabricated and employed as the cathode for fast Zn2+ ions' intercalation/deintercalation, which delivers an excellent capacity (425 mAh g-1 at 0.1 A g-1), a remarkable cyclability (91.3% after 5000 cycles at 20 A g-1), and a sufficient energy density (311.5 Wh kg-1). As revealed by the experimental and theoretical results, such excellent electrochemical performance is confirmed to result from the fast ions/electrons diffusion kinetics promoted by the unique tunnel structure (3.7 × 4.22 Å2, along the c direction), which accomplishes a low Zn2+ ion diffusion barrier and the superior electron-transfer capability of HxV2O5. These results shed light on designing tunnel-type vanadium-based compounds to boost the prosperous development of Zn2+ ion storage cathodes.
Collapse
Affiliation(s)
- Jin Cao
- International Graduate Program of Nanoscience & Technology, Chulalongkorn University, Bangkok10330, Thailand
- Research Unit of Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok10330, Thailand
| | - Dongdong Zhang
- International Graduate Program of Nanoscience & Technology, Chulalongkorn University, Bangkok10330, Thailand
- Research Unit of Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok10330, Thailand
| | - Yilei Yue
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, P. R. China
| | - Teerachote Pakornchote
- Extreme Conditions Physics Research Laboratory, Physics of Energy Materials Research Unit, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok10400, Thailand
| | - Thiti Bovornratanaraks
- Extreme Conditions Physics Research Laboratory, Physics of Energy Materials Research Unit, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
- Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok10400, Thailand
| | - Xinyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao066004, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong999077, China
| | - Jiaqian Qin
- Research Unit of Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok10330, Thailand
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, China
| |
Collapse
|
37
|
Zhou Z, Wang Y, Peng F, Meng F, Zha J, Ma L, Du Y, Peng N, Ma L, Zhang Q, Gu L, Yin W, Gu Z, Tan C. Intercalation‐Activated Layered MoO
3
Nanobelts as Biodegradable Nanozymes for Tumor‐Specific Photo‐Enhanced Catalytic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
- People's Hospital of Zhengzhou University Henan Provincial People's Hospital Zhengzhou 450003 P. R. China
| | - Yanlong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Feng Peng
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection Luoyang Normal University Luoyang 471934 P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiajia Zha
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Lu Ma
- National Synchrotron Light Source II Brookhaven National Laboratory Upton Upton NY 11973 USA
| | - Yonghua Du
- National Synchrotron Light Source II Brookhaven National Laboratory Upton Upton NY 11973 USA
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China
| |
Collapse
|
38
|
Li J, Wang J, Liu Y, Yuan C, Liu G, Wu N, Liu X. Sodium tungsten bronze-supported Pt electrocatalysts for the high-performance hydrogen evolution reaction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00577h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaxWO3 nanotube bundle was fabricated as a support for hosting Pt nanoparticle. Benefitting from the metal–support interaction, the optimal catalyst shows excellent activity with 46 mV overpotential at −100 mA cm−2, superior to the commercial Pt/C.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Jiajun Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yu Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022 P. R. China
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Naiteng Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
39
|
Guo D, Yang M, Wang F, Cheng Y, Zhang A, Liu G, Wu N, CAO ANG, Mi H, Liu X. Regulating the electronic structure of MoO2/Mo2C/C by heterostructure and oxygen vacancies for boosting lithium storage kinetics. Dalton Trans 2022; 51:12620-12629. [DOI: 10.1039/d2dt01917e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure regulation of the electrode materials can improve the ion/electron kinetics, which are beneficial to the cyclic performance and rate capability for lithium ion batteries (LIBs). Herein, we...
Collapse
|
40
|
Tong Z, Yuan Y, Zhang D, Yin S, Guo S. Mn3O4 nanocrystalline@carbon nanotube-carbon nanotube for long-lifetime and excellent rate-capability zinc-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Zhang S, Xia Q, Ma S, Yang W, Wang Q, Yang C, Jin B, Liu C. Current advances and challenges in nanosheet-based wearable power supply devices. iScience 2021; 24:103477. [PMID: 34927023 PMCID: PMC8646179 DOI: 10.1016/j.isci.2021.103477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nowadays, wearable devices mainly exist in the form of portable accessories with various functions, connecting various kinds of terminals like mobile phones to form various wearable systems. In a wearable system, the wearable power supply device is the key component as energy dispenser for all devices. Nanosheets, a kind of two-dimensional material, which always displays a high surface-to-volume ratio and thus is lightweight and has remarkable conductive as well as electrochemical properties, have become the optimal choice for wearable power supply devices. The development and status of nanosheet-based wearable power supply devices including nanosheet-based wearable batteries, nanosheet-based wearable supercapacitors, nanosheet-based wearable self-powered energy suppliers are introduced in this article. Besides, the future opportunities and challenges of wearable devices are discussed.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Qingchao Xia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Shuyang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Polytechnic Institute, Zhejiang University, Ningbo, China
| | - Wei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Qianqian Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Canjun Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Bo Jin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Chen Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
42
|
Cheng M, Hu QQ, Li JR, Ding XD, Du CF, Huang XY. Multifunctional ionic liquid-assisted interfacial engineering towards ZnS nanodots with ultrastable high-rate lithium storage performance. Dalton Trans 2021; 50:16519-16527. [PMID: 34610065 DOI: 10.1039/d1dt02859f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, a new zinc-containing ionic liquid (IL) [HMMIm]2[ZnCl4] (HMMIm = 1-hexyl-2,3-dimethyl-imidazolium) is designed, which acts as a multifunctional source for the interfacial engineering of ZnS nanodots (NDs). Given the electrostatic interaction driven by the imidazolium cation, the steric effect of the alkyl chain, and the in situ released Zn ion from the IL, [HMMIm]2[ZnCl4] shows great advantages in controlling the formation of ZnS NDs. Based on this strategy, a nanocomposite consisting of homodispersed ZnS NDs anchored on sulfur/nitrogen dual-doped reduced graphene oxide (ZnS-NDs@SNG) is prepared. When evaluated as an anode material for lithium-ion batteries (LIBs), the nanocomposite delivers high reversible specific capacity, excellent high-rate performance, and superior cycling life. In particular, a discharge capacity of 648.1 mA h g-1 can be achieved at a high current density (10.0 A g-1) over 5000 cycles. Benefitting from the multifunctional IL and the simple synthesis protocol, the IL-assisted interfacial engineering strategy will enable a new avenue for the controllable synthesis of metal-sulfide-based anode materials.
Collapse
Affiliation(s)
- Min Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China.
| | - Qian-Qian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China.
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China.
| | - Xue-Da Ding
- College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Cheng-Feng Du
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China.
| |
Collapse
|
43
|
Sui D, Chang M, Peng Z, Li C, He X, Yang Y, Liu Y, Lu Y. Graphene-Based Cathode Materials for Lithium-Ion Capacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2771. [PMID: 34685207 PMCID: PMC8537845 DOI: 10.3390/nano11102771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
Lithium-ion capacitors (LICs) are attracting increasing attention because of their potential to bridge the electrochemical performance gap between batteries and supercapacitors. However, the commercial application of current LICs is still impeded by their inferior energy density, which is mainly due to the low capacity of the cathode. Therefore, tremendous efforts have been made in developing novel cathode materials with high capacity and excellent rate capability. Graphene-based nanomaterials have been recognized as one of the most promising cathodes for LICs due to their unique properties, and exciting progress has been achieved. Herein, in this review, the recent advances of graphene-based cathode materials for LICs are systematically summarized. Especially, the synthesis method, structure characterization and electrochemical performance of various graphene-based cathodes are comprehensively discussed and compared. Furthermore, their merits and limitations are also emphasized. Finally, a summary and outlook are presented to highlight some challenges of graphene-based cathode materials in the future applications of LICs.
Collapse
Affiliation(s)
- Dong Sui
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Meijia Chang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Zexin Peng
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Changle Li
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Xiaotong He
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yanliang Yang
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Z.P.); (C.L.); (X.H.); (Y.Y.)
| | - Yong Liu
- Collaborative Innovation Center of Nonferrous Metals of Henan Province, Henan Key Laboratory of Non-Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yanhong Lu
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
44
|
Liu G, Wei Y, Li T, Gu Y, Guo D, Wu N, Qin A, Liu X. Green and Scalable Fabrication of Sandwich-like NG/SiO x/NG Homogenous Hybrids for Superior Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2366. [PMID: 34578681 PMCID: PMC8467742 DOI: 10.3390/nano11092366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
SiOx is considered as a promising anode for next-generation Li-ions batteries (LIBs) due to its high theoretical capacity; however, mechanical damage originated from volumetric variation during cycles, low intrinsic conductivity, and the complicated or toxic fabrication approaches critically hampered its practical application. Herein, a green, inexpensive, and scalable strategy was employed to fabricate NG/SiOx/NG (N-doped reduced graphene oxide) homogenous hybrids via a freeze-drying combined thermal decomposition method. The stable sandwich structure provided open channels for ion diffusion and relieved the mechanical stress originated from volumetric variation. The homogenous hybrids guaranteed the uniform and agglomeration-free distribution of SiOx into conductive substrate, which efficiently improved the electric conductivity of the electrodes, favoring the fast electrochemical kinetics and further relieving the volumetric variation during lithiation/delithiation. N doping modulated the disproportionation reaction of SiOx into Si and created more defects for ion storage, resulting in a high specific capacity. Deservedly, the prepared electrode exhibited a high specific capacity of 545 mAh g-1 at 2 A g-1, a high areal capacity of 2.06 mAh cm-2 after 450 cycles at 1.5 mA cm-2 in half-cell and tolerable lithium storage performance in full-cell. The green, scalable synthesis strategy and prominent electrochemical performance made the NG/SiOx/NG electrode one of the most promising practicable anodes for LIBs.
Collapse
Affiliation(s)
- Guilong Liu
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (G.L.); (Y.W.); (T.L.); (Y.G.); (D.G.); (N.W.)
| | - Yilin Wei
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (G.L.); (Y.W.); (T.L.); (Y.G.); (D.G.); (N.W.)
| | - Tiantian Li
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (G.L.); (Y.W.); (T.L.); (Y.G.); (D.G.); (N.W.)
| | - Yingying Gu
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (G.L.); (Y.W.); (T.L.); (Y.G.); (D.G.); (N.W.)
| | - Donglei Guo
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (G.L.); (Y.W.); (T.L.); (Y.G.); (D.G.); (N.W.)
| | - Naiteng Wu
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (G.L.); (Y.W.); (T.L.); (Y.G.); (D.G.); (N.W.)
| | - Aimiao Qin
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China;
| | - Xianming Liu
- Key Laboratory of Function-Oriented Porous Materials of Henan Province, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (G.L.); (Y.W.); (T.L.); (Y.G.); (D.G.); (N.W.)
| |
Collapse
|